Copyrighted Materials

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

Programming In

Java

Second Edition

SACHIN MALHOTRA

Associate Professor
IMS, Ghaziabad

SAURABH CHOUDHARY

Formerly, Head
IT Department
IMS, Ghaziabad

OXFORD

UNIVERSITY PRESS

[vww.ebook3000.con)

http://www.ebook3000.org

OXFORD

UNIVERSITY PRESS

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press
YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2010, 2014
The moral rights of the author/s have been asserted.

First Edition published in 2010
Second Edition published in 2014

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the
prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics
rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the
address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-809485-2
ISBN-10: 0-19-809485-X

Typeset in Times New Roman
by Sukuvisa Enterprises
Printed in India by Yash Printographics, Noida 201301

[vww.ebook3000.con)

http://www.ebook3000.org

Copyrighted Materials

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

Dedicated
fo
Our Parents

[vww.ebook3000.con)

http://www.ebook3000.org

Copyrighted Materials

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

About the Authors

Sachin Malhotra is currently Associate Professor in the IT department of IMS Ghaziabad. He has more
than a decade long experience in mentoring students on developing Java applications as well as training
practising professionals in the field of Java. He has also designed and conducted various corporate
trainings in Java and networking.

Saurabh Choudhary is currently a practising IT consultant and corporate trainer. He has more than 12
years of experience in industry, academia, and consultancy. He has worked on positions of eminence
at IMS Ghaziabad as Head of IT department and Dean Academics (University Campus). His areas of
expertise include Java, Database Management System, and Information Systems.

-

From pervasive computing to communications industry, medical science to aerospace, Java is
gaining a foothold in every domain. Programming in Java has been written to arouse the interest
even in a novice computer programmer to an expert, craving to sharpen his programming skills.

Testimonials N

Pankaj Verma | Senior Software Engineer | OSI Inc.
It is definitely the best textbook on Java that I have run into. I highly recommend it.
Sachin Dhama | Team Lead | Accenture

Java is a very powerful language for developing enterprise applications. I am hopeful that this
book will provide a basic building platform for Java programmers to enhance their knowledge.

Awadhesh Kumar Katiyar | Technical Lead | HCL Technologies Ltd.

Java enables users to develop applications on the Internet for servers, desktops computers, and small
handheld devices. The future of computing is being influenced by the Internet, and Java promises to
play a big part in it. This book is perfect for those who are seeking a clear understanding of Java. It
should allow the readers to create codes that are a lot clearer and are far more effective than before.

Saurabh Moondhra | Sr. Technical Consultant | SGT Inc

This is the most interesting Java programming book for beginners; at the same time, it is equally
good for intermediate readers as well. This should be your first Java book if you are learning
from scratch.

Pankaj Jain | Senior Manager | Bank of America

When you go through this book, you will gain confidence after completing each chapter. The
authors have written it in such a simple way covering each and every aspect of Java that anyone
can learn how to develop effective codes.

9 Rajeev Varshney | Lead Consultant | HCL NZ Ltd.

[vww.ebook3000.con)

http://www.ebook3000.org

Copyrighted Materials

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

Preface to the First Edition

Java was primarily designed as a platform-independent language for usage in small consumer
electronic devices. It was derived from C++ but with a lot of difference. Java’s platform
independence originally addressed the problem that applications for embedded devices must
run on a wide variety of hardware. But since the Internet was emerging at the same time, Java
soon got adopted as an Internet language because of its portable nature. Major Internet browsers
such as Netscape Navigator and Microsoft Internet Explorer became Java-compatible, as it
effectively addressed the concerns for security by providing a firewall between web applications
and the computer. Eventually it became a standard programming language and is now being
used for creating a variety of applications including standalone applications, web applications,
enterprise-wide applications, and mobile games.

It can therefore be inferred that since its inception, Java has emerged as the most important
programming language. As the domain of Java is quite vast and a bit more complex than other
programming languages such as C, C++, and Visual Basic, it is observed that students and novice
programmers strive hard to comprehend its core concepts. Hence, a need for a book in this area,
which is both concise and simple, is a necessity.

About the Book

The book encapsulates the concepts of the latest version of Java, i.e. Java 6, encompassing a
comprehensive coverage of curriculum and industry expectations. It is useful for the students of
undergraduate and postgraduate courses of computer science and engineering and information
technology disciplines as well as for the instructors at various levels.

The book provides a thorough understanding of the basic concepts of object-oriented
programming principles and gradually moves on to the advanced concepts in Java. It includes
numerous examples, line-by-line description of examples, figures, explanation of concepts, and
key notes. Review questions and programming exercises are included as chapter-end exercises
to assess the learning outcomes. Every topic in the book is supported by examples followed
by an output and explanation. It also offers an appendix on general interview questions which
provides students an insight into the current requirements of the industry and allows them to
prepare accordingly.

The main features of this book include the following:

o an exhaustive coverage of Java features such as operators, classes, objects, inheritance,

packages, and exception handling

o comprehensive discussion on the latest features of Java such as enumerations, generics,
logging API, console class, StringBuilder class, NetworkInterface class, and assertions

o latest features combined with core concepts such as multithreading, applets, AWT, and
swings

e an introduction to the advanced concepts in Java such as servlets, RMI, and JDBC

[vww.ebook3000.con)

http://www.ebook3000.org

Preface to the First Edition xi

ACKNOWLEDGEMENTS

Several people have been instrumental throughout this tiring yet wonderful journey. First of all,
we would like to express our sincere gratitude to our families without whose support, patience,
and cooperation, this would not have been possible and we would not have been what we are
today. We are very thankful to Dr R. K. Bharadwaj, Head of our institution, for his inspirational
thoughts which inculcated urgency for writing this book. We are also thankful to our colleagues
for their endless support and suggestions during the entire process of writing this book.

Sachin Malhotra
Saurabh Choudhary

[vww.ebook3000.con)

http://www.ebook3000.org

Copyrighted Materials

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

Preface to the Second Edition

Java is an easy-to-learn, versatile, robust, portable, and secure language with rich user interfaces.
It has set up new benchmarks in the software development world ranging from desktop to web-
based enterprise applications to mobile and embedded applications. Since its inception in 1995,
it has come a long way by continuously evolving itself and in the process, changing the style of
programming the world over. Java is not only found in laptops or data centres, it is also widely
used in cell phones, SIM cards, smart cards, printers, routers and switches, set-top boxes, ATMs,
and navigation systems, to name a few. According to Oracle, a staggering 1.1 billion desktops
and 3 billion cell phones are based on Java.

This second edition of Programming in Java confirms to Java Standard Edition 7, the latest
release since Oracle took over Sun Microsystems. It is significant in the sense that the last update
was six years back and this major release comes bundled with plenty of enhancements which were
overdue. To list a few noticeable enhancements, Java 7 includes support for strings in switch and
try-with-resources statements, improved multi-catch, binary numeric literals, numeric literals
with underscores, new APIs in NIO such as path and files, automatic resource management, and
much more. All the new topics are appropriately explained with suitable examples.

New to the Second Edition

This revised edition has been updated thoroughly with greater topical coverage as well as more
programming examples in every chapter, in addition to the confirmation to Java 7. Practically
every chapter, with the exception of Chapter 11, has been revisited to refine the text as much as
possible. The most noticeable changes are as follows:

e New practical programming examples to show how Java is used in practice.

e Enhanced coverage of servlets and JDBC along with an introduction to JSP, Java beans,
Jar files and enterprise Java beans

o Enhanced coverage of swing components like JTree, JTable, layered pane, JDesktopPane,
internal frames, JColorChooser, JFileChooser, and JEditorPane

o New classes of java.nio package and project coin language enhancements
o Enhanced coverage of utility classes
o Appendix B contains more interview questions to help students prepare for their interviews.

o The second edition is supplemented with a rich online resource centre that contains chapter-
wise PPTs for teachers and additional practical programming examples for students.

Key Features

The most prominent feature of this book has been the line-by-line explanation section under
each program. They facilitate in-depth understanding of the whole program. We have retained
this feature in the second edition as it has been well appreciated by the users. Other noticeable
features include the following:

[vww.ebook3000.con)

http://www.ebook3000.org

Preface to the Second Edition vii

e Arecap of object-oriented programming concepts before introducing the concepts of Java

o Plenty of user-friendly programs and key notes at appropriate places to highlight important
concepts

o A variety of end-chapter exercises that includes subjective as well as objective questions

Extended Chapter Material

The second edition includes the following changes:

Chapter 1, Introduction to OOP: Enhanced coverage of UML and its application in pictorial
representation of OOP concepts.

Chapter 2, Getting Started with Java: New sections about the features of Java 7 and how
to install JDK 1.7.

Chapter 3, Java Programming Constructs: Numeric literals with underscores, binary
numeric literals, and how to use strings in switch statements.

Chapter 4, Classes and Objects: New topics such as inner classes, variable length arguments,
arrays as return values from methods, and objects as arguments to and return type from methods.
It contains a practical problem on complex numbers to demonstrate how OOP concepts can be
put to practise.

Chapter 5, Inheritance: New section that highlights the differences between shadowing and
overriding. At the end of the chapter, there is a practical programming example on circle and
cylinder class.

Chapter 6, Interfaces, Packages, and Enumeration: Practical problem on banking concepts
to demonstrate the usage of packages in creating applications.

Chapter 7, Exception, Assertions, and Logging: try-with-resources and catching multiple
exceptions features which are new enhancements of Java 7.

Chapter 8, Multithreading in Java: Concrete practical example to show the use of threads
in applications.

Chapter 9, Input/Output, Serialization, and Cloning: New classes included in java.nio
package and how to perform cloning of objects.

Chapter 10, Generics, java.util and other API: Utility classes like Random class, Runtime
class, Observer and Observable and reflection API.

Chapter 12, Applets: how to use threads and images in applets. The practical problem at the
end of the chapter explains how to display a digital clock.

Chapter 13, Event Handling in Java: Practical programming example that explains how to
create a cartoon on applet and performs its event handling. This is actually a series of examples
with gradual and step-by-step revision in all of them in order to enhance their functionality and
then eliminate their drawbacks.

Chapter 14, Abstract Window Toolkit: Mini project like programming example on CityMap
Applet. The applet shows the map of a city from top angle with five buttons, namely, Hospitals,
Shopping Malls, Police station, Post Office, and Stadium. If a user presses the Hospital button,
all the hospitals are shown on the map with a specific color and likewise for Malls, Police station,
Post office and Stadium.

Chapter 15, Swing: Explanation of new classes with examples and also includes a practical
programming example to create a mini text editor.

Chapter 16, Introduction to Advanced Java: Introductory sections on JSP, Java Beans, Jar
files and enterprise Java beans with lots of examples apart from enhanced coverage of servlets
and JDBC. This chapter also encompasses a login application built using servlets and database
to demonstrate how to create and use a web application.

[vww.ebook3000.con)

http://www.ebook3000.org

viii

Preface to the Second Edition

Content and Structure

This book comprises 16 chapters and two appendices. A brief outline of each chapter is as follows.

Chapter I focuses on the object-oriented concepts and principles. It provides real life mapping
of concepts and principles besides depicting them pictorially. In addition to this, the chapter also
provides an introduction to Unified Modeling Language (UML), which is a modeling language
to show classes, objects, and their relationship with other objects.

Chapter 2 introduces Java and its evolution from its inception to its current state. Besides
introducing the features of Java, it also tells you about the structure of JDK (Java Development
Kit) and the enhancements made to Java in its latest versions. It describes how to install and run
the JDK that is in turn required for executing a Java program.

Chapter 3 describes the basic programming constructs used in Java such as variables, data
types, identifiers, etc. Java reserved keywords are also depicted in this chapter. The operators
(arithmetic, relational, boolean, etc.) that act on variables are also explained in this chapter. For
each set of operators, we have provided sufficient examples along with their explanation and
output. Apart from variables and operators, this chapter focuses on statements like if and other
loops available in Java (for, while, do...while, and for...cach).

Chapter 4 deals with classes and objects. A lot of practical problems and their solutions
have been discussed in this chapter. It begins with how to define classes, objects, and method
creation. Method overloading is also discussed. Later, it emphasizes on the differences between
instance variables/methods and class variables and methods. Finally, a discussion about arrays,
this keyword, and command-line arguments is also provided.

Chapter 5 focuses on inheritance and its uses. How it is realized in Java is discussed in this
chapter. Apart from this, polymorphism concepts are visualized through method overriding and
super keyword. How practical programming problems are solved through super keyword forms
a major part of this chapter. Towards the end of the chapter, some related concepts like abstract
classes are also discussed.

Chapter 6 covers interfaces, packages, and enumeration. It highlights the differences between
abstract classes and interfaces and their practical usages with examples. The role of packages in
Java and their creation and usage is also discussed. In-depth coverage of a predefined package
java.lang is included in this chapter along with some of the famous classes such as String,
StringBuffer, StringBuilder, and Wrapper classes.

Chapter 7 discusses exceptions in detail. Apart from explaining in detail the five keywords
(try, catch, throw, throws, and finally) used in handling exceptions, it also discusses how a user
can create his own exceptions and handle them. Concepts such as exception, encapsulation, and
enrichment are also explained in this chapter. Besides these, the new facilities provided by Java
like assertions and logging are also discussed.

Chapter 8 covers multithreading concepts, its states, priorities, etc. It also discusses in detail
the inter-thread communication and synchronization concepts. Methods like wait(), notify(), and
notifyAll() have also been discussed.

Chapter 9 emphasizes on the essentials of I/O concepts like how standard input can be taken
and how output is delivered to the standard output. A few main classes of the java.io package
are discussed with examples and their usages. Console class, used for taking user input, is also
discussed. What is the use of making objects persistent and how will it be done is discussed
towards the end of the chapter.

Chapter 10 discusses the java.util package in detail. The interfaces like Map, Set, and List
etc have been discussed in detail as well as their subclasses like LinkedList, ArrayList, Vector,
HashSet, HashMap, TreeMap, etc. Java 5 introduced a new feature named ‘Generics’ which

[vww.ebook3000.con)

http://www.ebook3000.org

Preface to the Second Edition ix

forms the core of the java.util package. This concept along with its application has been covered
in detail.

Chapter 11 explains how network programming can be done in Java. In-depth coverage of
sockets is extended in this chapter. Client and server concept is illustrated by the programs
created. TCP and UDP clients and server and their interactions are demonstrated. The concept
of multithreading is merged with socket and illustrated to create server programs. Some main
classes such as URL, URL connection, and network interface (new feature) are also discussed.

Chapter 12 focuses on applets, its lifecycle, methods, etc. and how they are different from
applications. Besides providing an in-depth coverage of java.applet package, some of the
classes of java.awt package are also discussed as they are very useful in creating applets such
as Graphics class, Font class, Color class, and FontMetric class. All these classes are discussed
and supported by an example for each of them.

Chapter 13 talks about event handling in Java. Basically for creating effective GUI applications,
we need to handle events and this forms the basis of this chapter. The event handling model is
not only discussed but applied throughout the chapter. All the approaches to event handling have
been discussed such as Listener interfaces, Adapter classes, inner classes, and anonymous inner
classes.

Chapter 14 focuses on GUI creation through java.awt package. It has an in-depth coverage
of containers and components. Containers like Frame, Window, etc. and components like Label,
Button, TextField, Choice, Checkbox, List, etc. are discussed in detail. How the components can
be arranged in a container is also discussed, e.g. BorderLayout, GridBaglLayout, and GridLayout.

Chapter 15 shows how to create more advanced and lightweight GUI applications in Java.
More advanced layouts like SpringLayout have been discussed. Lightweight components like
JButton, JLabel, JCheckBox, JToggleButton, JList, JScrollPane, JTabbedPane, etc. have been
discussed. How to create Dialogs is also discussed. The pluggable look and feel of Java is
explained in detail.

Chapter 16 focuses on advanced Java concepts such as servlets, JDBC, and RMI. An
introduction to the advanced technologies has been discussed. This chapter is equipped with
numerous figures showing how to install the necessary softwares required for executing an
advanced Java program. The chapter also provides a step-by-step and simplified approach on
how to learn advanced concepts.

Appendix A on practical lab problems will facilitate better understanding of the concepts
explained in the book. Appendix B includes a list of interview questions along with their answers
that provides an overview of the industry scenario and their requirements.

ACKNOWLEDGEMENTS

Several people have been instrumental throughout this tiring yet wonderful journey. First of all, we
would like to express our sincere gratitude to our families without whose support, patience, and
cooperation, this would not have been possible and we would not have been what we are today.

We are also thankful to our colleagues and friends for their endless support and suggestions
during the entire process of writing this book. Lastly, we would also like to thank all our readers
/students who have supported us, encouraged us, and provided feedback to us regularly which
has helped us in shaping this edition.

Sachin Malhotra
Saurabh Choudhary

[vww.ebook3000.con)

http://www.ebook3000.org

Copyrighted Materials

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

Brief Contents

Preface to the Second Edition[vi]
Preface to the First Editionlx]
Detailed Contents|xIii]

Introduction to OOP

Getting Started With Java
Java Programming Constructs
Classes and Objects
Inheritance

Exception, Assertions, and Logging
Multithreading in Java

XN kWD~

H
e

Generics, java.util and other API

—_—
—

. Network Programming

—_
[\

. Applets
. Event Handling in Java
. Abstract Window Toolkit
. Swing

16. Introduction to Advanced Java
Appendix A: Lab Manual
Appendix B: Interview Questions

Index 657

—_ = =
wn A~ W

Interfaces, Packages, and Enumeration

Input/Output, Serialization and Cloning

DAL DO IR === |
HEEEEE =

W
W
[*))

N = (o] B [US)
| N\O| N N
W |] |\O B

Detailed Contents

Preface to the Second Edition[vi]
Preface to the First Edition[x

1. Introduction to OOP 2.6.6 Java is Multithreaded [20]
1.1 Introduction 2.6.7 Other Features 0] -
1.2 Need of Object-Oriented 2.7 Program Structure
Programming Bl 2.7.1 lI:IOW to Exte aJava
1.2.1 Procedural Languages rogram

2.7.2 Why Save as Example.Java?

1.2.2 Object-Oriented Modeli
ject-Oriented Modeling [2.7.3 Explanation

1.3 Principles of Object-Oriented

Languages Bl 2.8 Java Improvements
2.8.1 Java 5.0 Features
1.3.1 Classes
. 2.8.3 Java 6 Features
1.3.2 Objects [3] G3]
1.3.3 Abstraction [3] 2.8.4 JaYa7 Feature:s]
1.3.4 Inheritance 2.8.4 Brief Comparison of Different

Releases

2.9 Differences between Java and C++

1.3.5 Encapsulation
2.10 Installation of JDK 1.7 RI]

1.3.6 Polymorphism

1.4 P dural L (0]0)3
s Org:Dulrjasin a‘f&afe Vs %l 2.10.1 Getting Started With the JDK
1' 6 A licationsgo £OOP 6] 2.10.2 JDK Installation Notes [29]
0 PP 2.10.3 Exploring the JDK
2. Getting Started With Java 2.11 Integrated Development
Environment @l
2.1 Introduction
2.2 History of Java 3. Java Programming Constructs
2.3 Java’s Journey: From Embedded Systems 31 Variables
To Middle-Tier Applications ' o
. 3.2 Primitive Data Types
2.4 Java Essentials .
)) 3.3 Identifier
2.5 Java Virtual Machine 33.1 Rules for Naming
2.6 Java Features 3.3.2 Naming Convention
2.6.1 Platform Independence 3.33 Keywords
2.6.2 Object Oriented 3.4 Literals
2.6.3 Both Compiled and Interpreted 3.5 Operators
2.6.4 Java is Robust 3.5.1 Binary Operators
2.6.5 Java Language Security 3.5.2 Unary Operators

Features 3.5.3 Ternary Operator

xiv Detailed Contents

3.6 Expressions

3.7 Precedence Rules and
Associativity

3.8 Primitive Type Conversion
and Casting

3.9 Flow of Control
3.9.1 Conditional Statements
3.9.2 Loops
3.9.3 Branching Mechanism

4. Classes and Objects

4.1 Classes

4.2 Objects

4.2.1 Difference between Objects
and Classes

4.2.2 Why Should We Use
Objects and Classes?

Class Declaration in Java

4.3.1 Class Body

Creating Objects

4.4.1 Declaring an Object

4.4.2 Instantiating an Object

4.4.3 Initializing an Object [S0]

Methods

4.5.1 Why Use Methods?

4.5.2 Method Types

4.5.3 Method Declaration

4.3

44

4.5
52]

EIE El
— 1 W

4.5.3 Instance Method Invocation

4.5.4 Method Overloading
Constructors

4.6.1 Parameterized Constructors
4.6.2 Constructor Overloading
Cleaning Up Unused Objects

4.7.1 The Garbage Collector [96]
4.7.2 Finalization

4.7.3 Advantages and Disadvantages
Class Variable and

Methods—Static Keyword

4.8.1 Static Variables

4.8.2 Static Methods @l

4.8.3 Static Initialization Block

4.6

4.7

4.8

4.9 this Keyword
4.10 Arrays
4.10.1 One-Dimensional Arrays
4.10.2 Two-Dimensional Arrays |//0
4.10.3 Using for-each With Arrays
4.10.4 Passing Arrays to Methods

4.10.5 Returning Arrays from
Methods /16
4.10.6 Variable Arguments
4.11 Command-line Arguments
4.12 Nested Classes
4.12.1 Inner Class [/19
4.12.2 Static Nested Class [/22
4.12.3 Why Do We Create Nested
Classes? /24
4.13 Practical Problem: Complex
Number Program

117

5. Inheritance

5.1 Inheritance vs Aggregation

5.1.1 Types of Inheritance

5.1.2 Deriving Classes Using
Extends Keyword |/35

Overriding Method

super Keyword

final Keyword

Abstract Class

Shadowing vs Overriding

5.2
53
54
5.5
5.6
5.7 Practical Problem: Circle

and Cylinder Class

6. Interfaces, Packages, and

103
105

115
115

1=
—_ =
Nellies

— —_ ===
W Bl]|
— O[] [D]|—]]|

Enumeration
6.1 Interfaces
6.1.1 Variables in Interface [/58
6.1.2 Extending Interfaces [/60
6.1.3 Interface vs Abstract Classes
6.2 Packages 161

162
164
168

6.2.1 Creating Packages
6.2.2 Using Packages
6.2.3 Access Protection

6.3

6.4

6.5

java.lang Package 169

6.3.1 java.lang.0bject Class |/69

6.3.2 Java Wrapper Classes

6.3.3 String Class [/74

6.3.4 StringBuffer Class /79

6.3.5 StringBuilder Class |/80

6.3.6 Splitting Strings [187]

Enum Type 183

6.4.1 Using Conditional Statements with
an Enumerated Variable [/83

6.4.2 Using for Loop for Accessing
Values /85

6.4.3 Attributes and Methods Within
Enumeration /86

Practical Problem: Banking

Example

g

7. Exception, Assertions,

7.1

7.2

7.3
7.4

7.5
7.6

8. Multithreading in Java

8.1
8.2
8.3

and Logging

= I
ol |\o
O |\&

Introduction

7.1.1 Exception Types (201
Exception Handling Techniques
7.2.1 try..catch

7.2.2 throw Keyword
7.2.3 throws |207

7.2.4 finally Block
7.2.5 try-with-resources
Statement [210]

Multi Catch
Improved Exception Handling
in Java 7
User-Defined Exception
Exception Encapsulation

and Enrichment

]
(==
\S]

7.2.6
7.2.7

[\S]
i
|

)
—
AN

Assertions
Logging

Introduction

HE E BE

Multithreading in Java

NS]
[\
|

java.lang.Thread

8.4
8.5

8.6

8.7
8.8

8.9

8.10
8.11

8.12

9.

9.1

9.2
93

9.4
9.5

9.6

Detailed Contents Xv

Main Thread 227
Creation of New Threads 228
8.5.1 By Inheriting the Thread
Class [228
8.5.2 Implementing the Runnable
Interface
Thread.State in Java
8.6.1 Thread States
Thread Priority
Multithreading—Using isAlive()
and join()
Synchronization

8.9.1 Synchronized Methods

8.9.2 Synchronized Statements
Suspending and Resuming Threads
Communication between
Threads
Practical Problem: Time
Clock Example
Input/Output, Serialization
and Cloning
Introduction
9.1.1 java.io.InputStreamand
java io.OutputStream
java.io.File Class 258
Reading and Writing Data

9.3.1 Reading/Writing Files Using Byte
Stream [26/

Reading/Writing Console

(User Input)
Reading/Writing Files Using
Character Stream 69|
Reading/Writing Using Buffered
Byte Stream Classes
Reading/Writing Using Buffered
Character Stream Classes

932

933

934

9.3.5

Randomly Accessing a File 273
Reading and Writing Files

Using New 1/0O Package 276
Java 7 Nio Enhancements 278

xvi

9.7 Serialization
9.8 Cloning
10. Generics, java.util and other API

296
301

10.1 Introduction
10.2 Generics

10.3 Linked List 309
104 Set
10.4.1 Hashset Class [372
10.4.2 Treeset Class |[374
10.5 Maps
10.5.1 Hashmap Class
10.5.2 Treemap Class
10.6 Collections Class
10.7 Legacy Classes and Interfaces 319

10.8 Utility Classes: Random Class
10.8.1 Observer and Observable |322
10.9 Runtime Class
10.10 Reflection API
11. Network Programming
11.1 Introduction 336
11.1.1 TCP/IP Protocol Suite [336
11.2 Sockets
11.2.1 TCP Client and Server
11.2.2 UDP Client and Server
11.3 URL Class
11.4 Multithreaded Sockets
11.5 Network Interface 349

Detailed Contents

10.2.1 Using Generics in Arguments and
Return Types [304

10.2.2 Wildcards (304

10.2.3 Bounded Wildcards

10.2.4 Defining Your Own
Generic Classes

10.7.1 Difference between Vector
and Arraylist |3/9

10.7.2 Difference between Enumerations

and Iterator |320

283
285

12. Applets

12.1 Introduction

12.2 Applet Class

12.3 Applet Structure

12.4 Example Applet Program
12.4.1 How to Run an Applet?

12.5 Applet Life Cycle

12.6 Common Methods Used in
Displaying the Output

12.7 paint(), update(), and repaint()
12.7.1 paint() Method |364
12.7.2 update() Method [365
12.7.3 repaint() Method

12.8 More About Applet Tag

12.9 getDocumentbase() and
getCodebase() Methods

12.10 Appletcontext Interface

12.10.1 Communication between Two

Applets 371
12.11 How To Use An Audio Clip?
12.12 Images in Applet
12.12.1 Mediatracker Class
12.13 Graphics Class
12.13.1 An Example Applet Using
Graphics 379
12.14 Color
12.15 Font
12.16 Fontmetrics
12.17 Practical Problem: Digital Clock

375

13. Event Handling in Java

13.1 Introduction

13.2 Event Delegation Model

13.3 java.awt.Event Description
13.3.1 Event Classes

13.4 Sources of Events

13.5 Event Listeners

13.6 How Does The Model Work?

13.7 Adapter Classes

13.7.1 How To Use Adapter Classes

N

o] [Go GO] [S3] [C3] [C3] |99
N | n |] [] |n
NI \O 3| [V] [N |

U9 L2 S
~| | =)
=] i =] N

8] (W] W2
~J ~| |3
~J W [N

o] [GI] [G3] |] [S] [S] [C5
ol o] o \O| |o0] |oof |oo
(IS | 1] 9] |1©

N
[e)
g

EN R ENEEN
—| 2] |
2| O] |

10

13.7.2 Adapter Classes in Java
13.8 Inner Classes in Event Handling
13.9 Practical Problem: Cartoon
Applet
13.9.1 Smiling Cartoon With Blinking
Eyes (Part 1)
13.9.2 Smiling Cartoon With Blinking
Eyes (Part 2)
13.9.3 Smiling Cartoon (Part 3)

14. Abstract Window ToolKkit

14.1 Introduction
14.1.1 Why Awt?
14.1.2 java.awt Package
14.2 Components and Containers
14.2.1 Component
14.2.2 Components as Event
Generator [433
14.3 Button
14.4 Label
14.5 Checkbox
14.6 Radio Buttons
14.7 List Boxes
14.8 Choice Boxes
14.9 Textfield and Textarea
14.10 Container Class
14.10.1 Panels [455
14.10.2 Window [|456
14.10.3 Frame |456
14.11 Layouts
14.11.1 FlowLayout
14.11.2 BorderLayout
14.11.3 cardLayout
14.11.4 GridLayout
14.11.5 Gridbaglayout
14.12 Menu
14.13 Scrollbar
14.14 Practical Problem: City
Map Applet

413

416

E

432

N
[vs)
N

HEEE
N W |9
) 0l |

743

7

51

455

N

38

15. Swing

15.1

15.2
15.3
15.4

15.5 Components in Swings

Introduction

Detailed Contents xvii

15.1.1 Features of Swing

15.1.2 Differences between

Swing and AWT

JFrame
JApplet
JPanel

15.6 Layout Managers
15.6.1 Springlayout

15.7

15.8

15.9
15.10
15.11
15.12
15.13
15.14
15.15
15.16
15.17

16. Introduction to Advanced Java

15.6.2 Boxlayout
JList and JScrollPane

Split Pane
JTabbedPane
JTree

JTable

Dialog Box
JFileChooser
JColorChooser

Pluggable Look and Feel

Inner Frames

Practical Problem: Mini Editor

16.1 Introduction to J2ee
16.2 Database Handling Using JDBC
16.2.1 Load the Driver

16.3

16.2.2 Establish Connection

16.2.3 Create Statement

16.2.4 Execute Query

557

16.2.5 Iterate Resultset
16.2.6 Scrollable Resultset
16.2.7 Transactions

Servlets

16.3.1 Lifecycle of Servlets

16.3.2 First Servlet
16.3.3 Reading Client Data
16.3.4 Http Redirects

16.3.5 Cookies

571

559

=
o
n

N

=
\O
~J

| [n
| 1S S

O | N [[[3] [A [[] [
w| | N | (VS § (VS B (VS B [\6) — =] |~
W] | o |\ |—| || o N B W] |

]
W
(%)

N

62

xviii Detailed Contents

16.3.6 Session Management 16.7.1 Creating a Jar File [603
16.4 Practical Problem: Login Application [577] 16.7.2 Viewing the Contents of
16.5 Introduction to Java a Jar File
Server Pages 589) 16.7.3 Extracting the Contents
16.5.1 JSP Life Cycle [589 of Jar 607
16.5.2 Steps in JSP Page Execution [590] 16.7.4 Manifest Files [607
16.5.3 ISP Elements 90] 16.8 Remote Method Invocation

16.5.4 Placing Your JSP in the
Webserver [593
16.6 Java Beans
16.6.1 Properties of a Bean
16.6.2 Using Beans Through JSP [60/
16.6.3 Calculatebean Example [602]

16.8.1 RMI Networking Model

16.8.2 Creating an Rmi Application
16.9 Introduction to EJB 613

16.9.1 Types of EJB [6/4

16.9.2 EJB Architecture

16.7 Jar Files [603] 16.10 Hello World—EJB Example 616
Appendix A: Lab Manual 628
Appendix B: Interview Questions 650

Index 657

Copyrighted Materials)

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

Introduction to
OOP

Beauty is our weapon against nature; by it we make objects, giving them limit,

symmetry, proportion. Beauty halts and freezes the melting flux of nature.
Camille Paglia

~ After reading this chapter, the readers will be able to
¢ know what is object-oriented programming
understand the principles of OOP
understand how is OOP different from procedural languages
comprehend the problems in procedural programming and how OOP overcomes them
learn the applications of OOP
use UML notations

* & ¢ o o

1.1 INTRODUCTION

Object-oriented programming (OOP) is one of the most interesting and useful innovations in
software development. OOP has strong historical roots in programming paradigms and practices.
It addresses the problems commonly known as the software crisis. Software have become
inherently complex which has led to many problems within the development of large software
projects. Many software have failed in the past. The term ‘software crisis’ describes software
failure in terms of

o Exceeding software budget
o Software not meeting clients’ requirements
o Bugs in the software

OOP is a programming paradigm which deals with the concepts of object to build programs
and software applications. It is modeled around the real world. The world we live in is full of
objects. Every object has a well-defined identity, attributes, and behavior. Objects exhibit the
same behavior in programming. The features of object-oriented programming also map closely
to the real-world features like inheritance, abstraction, encapsulation, and polymorphism. We
will discuss them later in the chapter.

2 Programming in Java

1.2 NEED OF OBJECT-ORIENTED PROGRAMMING

There were certain limitations in earlier programming approaches and to overcome these
limitations, a new programming approach was required. We first need to know what these
limitations were.

1.2.1 Procedural Languages

In procedural languages, such as C, FORTRAN, and PASCAL, a program is a list of instructions.
The programmer creates a list of instructions to write a very small program. As the length of a
program increases, its complexity increases making it difficult to maintain a very large program.
In the structured programming, this problem can be overcome by dividing a large program into
different functions or modules, but this gives birth to other problems. Large programs can still
become increasingly complex. There are two main problems in procedural language—(i) the
functions have unrestricted access to global data and (ii) they provide poor mapping to the real
world.

Here are some other problems in the procedural languages. Computer languages generally
have built-in data types: integers, character, float, and so on. It is very difficult to create a new
data type or a user-defined data type. For example, if we want to work with dates or complex
numbers, then it becomes very difficult to work with built-in types. Creating our own data types is
a feature called extensibility: we can extend the capabilities of a language. Procedural languages
are not extensible. In the traditional languages, it is hard to write and maintain complex results.

1.2.2 Object-Oriented Modeling

In the physical world, we deal with objects like person, plane, or car. Such objects are not like
data and functions. In the complex real-world situations, we have objects which have some
attributes and behavior. We deal with similar objects in OOP. Objects are defined by their unique
identity, state, and behavior. The state of an object is identified by the value of its attributes and
behavior by methods.

Attributes

Attributes define the data for an object. Every object has some attributes. Different types of
objects contain different attributes or characteristics. For example, the attributes of a student
object are name, roll number, and subject; and the attributes for a car object would be color,
engine power, number of seats, etc. These attributes will have specific values, such as Peter (for
name) or 23 (for roll number).

Behavior

The response of an object when subjected to stimulation is called its behavior. Behavior defines
what can be done with the objects and may manipulate the attributes of an object. For example,
if a manager orders an employee to do some task, then he responds either by doing it or not
doing it. The wings of a fan start moving only when the fan is switched ON. Behavior actually
determines the way an object interacts with other objects. We can say that behavior is synonym
to functions or methods: we call a function to perform some task. For example, an Employee
class will have functions such as adding an employee, updating an employee details, etc.

Introduction to OOP 3

m If we try to represent the CPU of a computer in OOP terminology, then CPU is the object.
The CPU is responsible for fetching the instructions and executing them. So fetching and
executing are two possible functions (methods or behavior) of CPU. The place (attributes)
where CPU stores the retrieved instructions, values and result of the execution (registers) will
then be the attributes of the CPU.

1.3 PRINCIPLES OF OBJECT-ORIENTED LANGUAGES

OOP languages follow certain principles such as class, object, and abstraction. These principles
map very closely to the real world.

1.3.1 Classes

A class is defined as the blueprint for an object. It serves as a plan or a template. The description
of a number of similar objects is also called a class. An object is not created by just defining a
class. It has to be created explicitly. Classes are logical in nature. For example, furniture does
not have any existence but tables and chairs do exist. A class is also defined as a new data type,
a user-defined type which contains two things: data members and methods.

1.3.2 Objects

Objects are defined as the instances of a class, e.g. table, chair are all instances of the class
Furniture. Objects of a class will have same attributes and behavior which are defined in that
class. The only difference between objects would be the value of attributes, which may vary.
Objects (in real life as well as programming) can be physical, conceptual, or software. Objects
have unique identity, state, and behavior. There may be several types of objects:

e Creator objects: Humans, Employees, Students, Animal

o Physical objects: Car, Bus, Plane

o Objects in computer system: Monitor, Keyboard, Mouse, CPU, Memory

1.3.3 Abstraction

Can you classify the following items?

e Elephant e CD player
e Television o Chair
o Table o Tiger

How many classes do you identify here? The obvious answer anybody would give is three, i.e.,
Animal, Furniture, and Electronic items. But how do you come to this conclusion? Well, we
grouped similar items like Elephant and Tiger and focused on the generic characteristics rather
than specific characteristics. This is called abstraction. Everything in this world can be classified
as living or non-living and that would be the highest level of abstraction.

Another well-known analogy for abstraction is a car. We drive cars without knowing the
internal details about how the engine works and how the car stops on applying brakes. We are
happy with the abstraction provided to us, e.g., brakes, steering, etc. and we interact with them.
In real life, human beings manage complexity by abstracting details away. In programming,
we manage complexity by concentrating only on the essential characteristics and suppressing
implementation details.

[vww.ebook3000.con)

http://www.ebook3000.org

4 Programming in Java

1.3.4 Inheritance

Inheritance is the way to adopt the characteristics of one class into another class. Here we have
two types of classes: base class and subclass. There exists a parent—child relationship among
the classes. When a class inherits another class, it has all the properties of the base class and it
adds some new properties of its own. We can categorize vehicles into car, bus, scooter, ships,
planes, etc. The class of animals can be divided into mammals, amphibians, birds, and so on.

The principle of dividing a class into subclass is that each subclass shares common
characteristics with the class from where they are inherited or derived. Cars, scooters, planes,
and ships all have an engine and a speedometer. These are the characteristics of vehicles. Each
subclass has its own characteristic feature, e.g., motorcycles have disk braking system, while
planes have hydraulic braking system. A car can run only on the surface, while a plane can fly
in air and a ship sails over water (see Fig. 1.1).

Vehicle
Road vehicle Air vehicle Water vehicle
Bus Motor bike Aeroplane Boat

Fig. 1.1 Inheritance

Inheritance aids in reusability. When we create a class, it can be distributed to other
programmers which they can use in their programs. This is called reusability. Suppose someone
wants to make a program for a calculator, he can use a predefined class for arithmetic operations,
and then he need not define all the methods for these operations. This is similar to using library
functions in procedural language. In OOP, this can be done using the inheritance feature. A
programmer can use a base class with or without modifying it. He can derive a child class from
a parent class and then add some additional features to his class.

1.3.5 Encapsulation

Encapsulation is one of the features of object-oriented methodology. The process of binding
the data procedures into objects to hide them from
the outside world is called encapsulation (see Fig.
1.2). It provides us the power to restrict anyone from

directly altering the data. Encapsulation is also known e
as data hiding. An access to the data has to be through

the methods of the class. The data is hidden from the Method

outside world and as a result, it i§ protected. The d.etails AcCessing

that are not useful for other objects should be hidden |data Method

from them. This is called encapsulation. For example,

an object that does the calculation must provide an

interface to obtain the result. However, the internal

coding used to calculate need not be made available Fig. 1.2 Diagrammatic lllustration of a
to the requesting object. Class to Show Encapsulation

Introduction to OOP 5

1.3.6 Polymorphism

Polymorphism simply means many forms. It can be defined as the same thing being used in
different forms. For example, there are certain bacteria that exhibit in more than one morphological
form. In programming, polymorphism is of two types: compile-time and runtime polymorphism.
Runtime polymorphism, also known as dynamic binding or late binding, is used to determine
which method to invoke at runtime. The binding of method call to its method is done at runtime
and hence the term /ate binding is used. In case of compile-time polymorphism, the compiler
determines which method (from all the overloaded methods) will be executed. The binding of
method call to the method is done at compile time. So the decision is made early and hence
the term early binding. Compile-time polymorphism in Java is implemented by overloading
and runtime polymorphism by overriding. In overloading, a method has the same name with
different signatures. (A signature is the list of formal argument that is passed to the method.)
In overriding, a method is defined in subclass with the same name and same signature as that
of parent class. This distinction between compile-time and runtime polymorphism is of method
invocation. Compile-time polymorphism is also implemented by operator overloading which
is a feature present in C++ but not in Java. Operator overloading allows the user to define new
meanings for that operator so that it can be used in different ways. The operator (+) in Java is
however an exception as it can be used for addition of two integers as well as concatenation of
two strings or an integer with a string. This operator is overloaded by the language itself and
the Java programmer cannot overload any operator.

1.4 PROCEDURAL LANGUAGE VS OOP

Table 1.1 highlights some of the major differences between procedural and object-oriented
programming languages.

Table 1.1 Procedural Language vs OOP

Procedural Language ooP
e Separate data from functions that operate on them. | e Encapsulate data and methods in a class.
e Not suitable for defining abstract types. o Suitable for defining abstract types.
e Debugging is difficult. e Debugging is easier.
o Difficult to implement change. o Easier to manage and implement change.
e Not suitable for larger programs and applications. o Suitable for larger programs and applications.
e Analysis and design not so easy. e Analysis and design made easier.
e Faster. e Slower.
o Less flexible. o Highly flexible.
e Data and procedure based. e Object oriented.
o Less reusable. e More reusable.
e Only data and procedures are there. o Inheritance, encapsulation, and polymorphism are the
key features.
e Use top-down approach. e Use bottom-up approach.
e Only a function call another. e Object communication is there.
e Example: C, Basic, FORTRAN. e Example: JAVA, C++, VB.NET, C#.NET.

6 Programming in Java

1.5 OOAD USING UML

An object-oriented system comprises of objects. The behavior of a system results from its objects
and their interactions. Interaction between objects involves sending messages to each other.
Every object is capable of receiving messages, processing them, and sending to other objects.

Object-oriented Analysis and Design (OOAD)

It is an approach that models software as a group of interacting objects. A model is a description
ofthe system that we intend to build. Each object is characterized by its class having its own state
(attributes) and behavior. Object-oriented analysis (OOA) analyzes the functional requirements
of'a system and focuses on what the system should do. Object-oriented design (OOD) focuses on
how the system does it. The most popular modeling language for OOAD is the unified modeling
language (UML).

UML is a standard language for OOAD. It contains graphical notations for all entities (class,
object, etc.) used in the object-oriented languages along with the relationship that exists among
them. These notations are used to create models. UML helps in visualizing the system, thereby
reducing complexity and improving software quality. The notations used for class and object are
shown in Fig. 1.3. For example, consider an Employee class with attributes name, designation,
salary, etc. and operations such as addEmployee, deleteEmployee, and searchEmployee.

The notation for employee class and its object is as follows:

Employee <—Class

name

address _
designation <— Attributes

salary

addEmployee
deleteEmployee | €«—— Behavior
searchEmployee

Fig. 1.3 UML Notation for Class

The notation for an object is very much similar to the class notation. The class name underlined
and followed by a colon represents an object (Fig. 1.4).

:Employee <— Object

name=peter
address=NY
designation=manager
salary=10000

<— Attributes

addEmployee
deleteEmployee
searchEmployee

Fig. 1.4 UML Notation for Object

Introduction to OOP 7

An instance of a class can be related to any number of instances of other class known as
multiplicity of the relation. One-to-one, one-to-many, and many-to-many are different types
of multiplicities that exist among objects. The multiplicities along with their examples and
respective notations are shown below. Figure 1.5(a) illustrates the generic notation for representing
multiplicity in object-oriented analysis and design. One-to-one mapping is shown as a straight
line between the two classes. Figure 1.5(b) shows the UML notation for demonstrating the one-
to-one mapping. The 1..1 multiplicity depicted on the straight line (both ends) indicates a single
instance of a class is associated with single instance of other class. Figure 1.5 shows that each
country has a president and a president is associated with a country.

Country has » President Country 11 has 1.1 President

(a) (b)
Fig. 1.5 One-to-one Relationship

A country has many states and many states belong to a country. So there exists a one-to-many
relationship between the two. This relationship is shown in Fig. 1.6. Part (a) of this figure shows
the generic notation where a solid dot is indicated on the many side and both classes are joined
by a straight line. Figure 1.6(b) shows the UML notation where 1..* indicates the one to many
relationship between country and states. On the country end, a 1..1 multiplicity is placed to
indicate one country and on states end, a 1..* is placed to indicate many states.

Country has States Country 1.1 has 1. States

(a) (b)
Fig. 1.6 One-to-many Relationship

Let us take another example to explain many-to-many relationship. A teacher teaches many
students and a student can be taught by many teachers. There exists a many-to-many relationship
between them. Many-to-many relationship (Generic notation in OOAD) are represented by
placing solid dots on both ends joined by a straight line as shown in Fig. 1.7(a). The respective
notation in UML is shown in Fig. 1.7(b) where 1..* on both ends is used to signify many-to-
many relationship.

Teacher teaches Student Teacher 1. teaches 1. Student

Fig. 1.7 Many-to-many Relationship

8 Programming in Java

Besides multiplicity of relations, the relationships can be of various types: inheritance,
aggregation, composition. These relationships can be denoted in UML with links and associations.
The links represent the connection between the objects and associations represent groups of links
between classes. If a class inherits another class, then there exists a parent-child relationship
between them. This relationship is depicted in UML as shown in Fig. 1.8. For example, Shape
is the superclass, and the subclasses of Shape can take any shape, e.g., Square, Triangle, etc.

Shape

A

Triangle Square

Fig. 1.8 UML Diagram Depicting Inheritance

The above diagram can be extended to depict the OOP principle of polymorphism. Every shape
will have a method named area() which would calculate the area of that shape. The implementation
of area() method would be different for different shapes. For example, the formula for calculating
area of a triangle is different from a square. So the implementation is different but the name of
the method is same. This is polymorphism (one name many implementations). In Fig 1.9 below,
the area() method is overridden by Triangle and Square classes.

Shape

area()
Triangle Square Rectangle
area() area() area()

Fig. 1.9 UML Diagram Depicting Polymorphism

Another kind of relationship that exists among objects is the part-of-relationship. When a
particular object is a part of another object then we say that it is aggregation. For example, car is

Introduction to OOP 9

an aggregation of many objects: engine, door, etc. and engine in turn is an aggregation of many
objects, e.g., cylinder, piston, valves, etc. as shown in Fig. 1.10(a). A special kind of aggregation
is composition where one object owns other objects. If the owner object does not exist, the
owned objects also ceases to exist. For example, the human body is a very good example of
composition. It is a composition of different organs. The hands, feet, and internal organs such
as the lung and intestine are also parts of the body owned by the body.

Car
- Human body
Engine Door
Cylinder Radiator Liver Lungs

(a) (b)
Fig. 1.10 (a) Aggregation and (b) Composition

1.6 APPLICATIONS OF OOP

The basic thought behind object-oriented language is to make an object by combining data and
functions as a single unit and then operate on that data. In procedural approach, the focus is on
business process and the data needed to support the process. For example, in the last decade, a
problem bothered every programmer, popularly known as the Y2K problem. Everybody related
to the computer industry was afraid of what will happen past midnight 31 December 1999. The
problem arises due to the writing convention of the year attribute. In early programming days,
a programmer wrote a year in two digits, so there was a problem to distinguish the year 1900
from 2000 because if we write only the last two digits of a year, the computer cannot differentiate
between the two. Nobody perceived this problem and used the date and year code as and when
required, thus aggravating the problem. The solution to this problem was to analyze multiple
lines of codes everywhere and change the year to four digits rather than two. It seems simple to
change the state variable of year but analyzing a code of several thousands of lines to find how
many times you have used date in your code is not an easy task.

If object-oriented programming language had been used, we could have created a Date class
with day, month, and year attributes in it. Wherever the date functionality would be required,

10 Programming in Java

a Date object would be created and used. At a later point of time, if a change is required, for
example, the year of Date class needs to be changed to four digits, then this change would be
incorporated in the class only and this change would automatically be reflected in all the objects
of the Date class whenever they are created and used. So, the change would have to be done at
one place only, i.e., the class and wherever the objects of the class are being used, the changes
would be reflected automatically. There is no need to analyze the whole code and change it.

In OOP, we access data with the help of objects, so it is very easy to overcome a problem
without modifying the whole system. Likewise, OOP is used in various fields, such as

e Real-time systems
o Artificial intelligence
o Expert systems

Object-oriented languages have become an ubiquitous
standard for programming. They have been derived
from the real world. OOP revolves around objects and
classes. A class is defined as a group of objects with
similar attributes and behavior. OOP is a programming
paradigm which deals with the concepts of objects to
develop software applications. Certain principles have
been laid down by OOP which are followed by every
OOP language. These principles are: inheritance,
abstraction, encapsulation, and polymorphism.

We have presented a detailed comparison of
procedural and object-oriented languages. For building

Objective Questions
1. In an object model, which one of the following is
true?
(a) Abstraction, encapsulation, and multitasking
are the major principles
(b) Hierarchy, concurrency, and typing are the
major principles
(c) Abstraction, encapsulation, and polymor-
phism are the major principles
(d) Typing is the major principle
2. Which one of the following is not an object-
oriented language?
(a) Simula (b) Java
(c) C++ (d) C
3. The ability to hide many differentimplementations
behind an interface is.

(a) Abstraction (b) Inheritance

SUMMARY

EXERCISES

o Neural networks
o Database management

large projects, a technique known as OOAD is used.
Object-oriented analysis and design deals with how a
system is modeled. OOA deals with what the system
should do and OOD deals with how the system
achieves what has been specified by OOA.

OOAD is realized with the help of a language known
as UML. UML stands for unified modeling language;
it is a standard language used for visualizing the
software. An abstract model is created for the entire
software using graphical notations provided by UML.

(c) Polymorphism (d) None of the above
4. Which one of the following terms must relate to
polymorphism?
(a) Static allocation
(c) Dynamic binding

(b) Static typing

(d) Dynamic allocation

5. Providing access to an object only through its
member functions, while keeping the details
private is called
(a) Information hiding
(c) Modularity

(b) Encapsulation
(d) Inheritance

6. The concept of derived classes is involved in
(a) Inheritance

(b) Encapsulation

(c) Data hiding

(d) Abstract data types

7.

Inheritance is a way to

(a) Organize data

(b) Pass arguments to objects of classes

(c) Add features to existing classes without
rewriting them

(d) Improve data-hiding and encapsulation

UML is used for

(a) Creating models

(b) Representing classes, objects and their
relationships pictorially

(c) Reducing complexity and improving software
quality

Review Questions

1.

Explain the importance of object-oriented pro-
gramming languages.
Explain the difference between class and object.

Differentiate between procedural languages and
OOP languages.

Programming Exercises

1.

Identify the relevant classes along with their
attributes for the following: A departmental store
needs to maintain an inventory of cosmetic items
which might be found there. You should include
female as well as male cosmetic items. Keep
information on all items such as item name,
category, manufacturer, cost, date purchased,
and serial number.

Identify the relevant classes along with their
attributes from the following problem specification:

Answers to Objective Questions

1. (c) 2. (d)
5. (b) 6. (a)
9. (d) 10. (c)and (d)

10.

3. (c)
7. (c)

Introduction to OOP 11

(d) All the above

Which of the following is true about class?

(a) Class possesses data and methods

(b) Classes are physical in nature

(c) Collection of similar type of objects is a class
(d) Both (a) and (c)

Which of the following is true about procedural
languages?

(a) Debugging is easier

(b) analysis and design is easy

(c) less reusable

(d) difficult to implement changes

. Write short notes on: (a) inheritance, (b) poly-

morphism, (c) abstraction, (d) encapsulation.

Differentiate between runtime and compite-time
polymorphism.

A hospital wants to keep track of scheduled
appointments of a patient with his doctor. When
a patient is given an appointment, he should be
given a confirmation that states the time and date
of appointment along with the doctor’'s name.
Meanwhile the doctor should also be informed
about the patient details. Each doctor has one
weekday as off-day and no patients should be
assigned to a doctor on that day.

4. (o)
8. (d)

Copyrighted Materials)

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

Getting Started
with Java

The road of life can only reveal itself as it is traveled; each turn in the road reveals a
surprise. Man's future is hidden. Anon

After reading this chapter, the readers will be able to
+ know the history of Java
¢ understand the features of Java and its runtime environment
& know the basic structure of a Java program
¢ know the details about JDK installation
¢ understand various constituents of JDK and its development environments

2.1 INTRODUCTION

Java is a popular and powerful language. Although it is a very simple language, there are a
number of subtleties that can trip up less-experienced programmers. Java is an object-oriented
programming language with a built-in application programming interface (API) that can handle
graphical user interfaces (GUI) used to create applications or applets. Java provides a rich set
of APIs apart from being platform-independent.

Much of the syntax in Java is similar to C and C++. One of the major differences between
Java and other languages is that it does not have pointers. However, the biggest difference is that
you are forced to write object-oriented code in Java. Procedural code is embedded in objects.

In Java, we distinguish between applications and applets, applications being programs that
perform functions similar to those written in other programming languages and applets are
programs that are meant to be embedded in a web page and downloaded over the Internet.
When a program is compiled, a byte code is generated which can be executed on any platform,
provided the runtime environment exists on the destination platform.

This chapter guides the readers to a step-by-step introduction to Java programming. An
important thrust of this chapter is to cover the features of Java from an object-oriented perspective.

It also gives an insight about the installation of Java runtime environment and the various
integrated development environments (IDEs) of Java.

This chapter also focusses on the different versions of Java (including the latest Java 7) and
the Core API’s (Java 7 is also known as Java 1.7).

Getting Started with Java 13

2.2 HISTORY OF JAVA

It is often believed that the Java was developed specifically for the World Wide Web. Java as it
was initially developed was intended for the Web. However, it was improved to be a standard
programming language for the Internet application.

Bill Joy, the Vice President at Sun Micro systems, was thought to be the main person to
conceive the idea of a programming language that later became Java. In late 1970s, Bill Joy
wanted to design a language that could contain the best features of languages like MESA and
C. He found that C++ was inefficient for rewriting Unix operating system. In 1991, it was this
desire to invent a better programming tool that propelled Joy in the direction of Sun’s mammoth
project called as the ‘Stealth Project.” This name was given by Scott McNealy, Sun’s president.
In January 1991, a formal team of persons like Bill Joy, James Gosling, Mike Sheradin, Patrick
Naughton (formerly the project leader of Sun’s Open Windows user environment), and several
other individuals met in Aspen, Colorado for the first time to plan for the Stealth Project.
Stealth Project was all about developing consumer electronic devices that could all be centrally
controlled and programmed from a handheld remote control like device.

James Gosling was made responsible for suggesting a proper programming language for the
project. Initially he thought of using C++, but soon after was convinced about the inadequacy of
C++ for this particular project. He took the first step towards the development of an independent
language that would fit the project objectives by extending and modifying C++.

The idea of naming the language as ‘Oak’ struck Gosling while staring at an oak tree outside his
office window. Unfortunately, this name had already been patented by some other programming
language. Owing to the fear of copyright violation, the name ‘Oak’ was dropped. The team
struggled to find a proper name for the language for many days. After so many brainstorming
sessions, one day finally a thought struck their mind during a trip to the local coffee shop as
recalled by Gosling. The term ‘Java’in USA is generally a slang used for coffee. Java is also the
name of a coffee produced on the islands of Java in Indonesia. There are some other views also
towards the naming convention used for naming the language as Java. One of it speculates that
the name Java came from several individuals involved in the project: James Gosling, Arthur
Van Goff, Andy Bechtolsheim.

2.3 JAVA'S JOURNEY: FROM EMBEDDED SYSTEMS TO
MIDDLE-TIER APPLICATIONS

Java was designed to run standalone in small devices. The Java language was derived from C++
but with many differences. Java’s platform-independence originally addressed the problem that
applications for embedded devices must run on a wide variety of hardware. But later with the
advent of Internet in 1995, Java was soon adopted, as it could run on heterogeneous operating
systems. Netscape Navigator started using Java in its browser. Many applets (which run inside
a browser) were built and Java achieved popularity and acceptance.

Microsoft developed its own virtual machine that it used in its Internet Explorer which differed
from the specifications laid down. Therefore, Sun and Microsoft ran into a dispute, that was
settled later. Sun saw a potential for Java beyond the browser (see Fig. 2.1).

14 Programming in Java

Client
EioEE Internet

(running C—

Java applet)

Fig. 2.1 Java Applets Running on the Client System
Still Java was not popular for the client-side because of the following reasons:

o Less Impressive GUI Java’s early GUI (AWT) was primitive. The newer GUI (Swing)
was not shipped until the late 90’s (and Swing is still not supported by most modern
browsers without plug-ins).

e Microsoft’s Strong Presence Nearly 95% of the desktop world uses Microsoft.

o Clients’ Software Upgradation Good alternative methods were found to update clients’
software automatically (without having to download Java on-the-fly application code
each time).

o Success of DHTML Browsers have their own dynamic capabilities and many developers
found it easier to code in DHTML. In addition, DHTML pages tend to download and
start faster than Java applets.

Figure 2.2 shows how Java could be used as middle-tier services between the database and a
client browser. In 1997, Sun developed servlets, so that Java could be used to generate dynamic
content based on clients’ request. In 1999, Sun released its Java 2 Enterprise Edition (J2EE).

e
— CD { Client browser }

Java in Middle Tier

Fig. 2.2 Middle-tier Capabilities of Java to Run in Web/Application Server

Enterprise Java described how to build middle-tier components. Sun defined Enterprise Java
Beans for developing business logic. The J2EE framework allows developers to concentrate on
building applications rather than mulling over scalability, reliability, and security issues which
are handled by the Web/application server vendors.

2.4 JAVA ESSENTIALS

Java is a platform-independent, object-oriented programming language. Java encompasses the
following features:
o A High-level Language Java is a high-level language that looks very similar to C and
C++ but offers many unique features of its own.
o Java Bytecode Bytecode in Java is an intermediate code generated by the compiler,
such as Sun’s javac, that is executed by the JVM.
o Java Virtual Machine (JVM) JVM acts as an interpreter for the bytecode, which takes
bytecodes as input and executes it as if it was a physical process executing machine
code.

Getting Started with Java 15

Java is designed to be architecturally neutral so that it can run on multiple platforms. The
same runtime code can run on any platform that supports Java. To achieve its cross-architecture
capabilities, the Java compiler generates architecturally neutral bytecode instructions. These
instructions are designed to be both easily interpreted on any machine and easily translated into
native machine code on-the-fly, as shown in Fig. 2.3. Java Runtime Environment (JRE) includes
JVM, class libraries, and other supporting files.

JRE =JVM + Core Java API libraries
JDK = JRE + development tools like compilers

Source code resembles C++ but is simpler to
[JAVA source code] develop and understand
h 4 Same bytecode runs on any JVM (i.e. across
[JAVA bytecode] many platforms, so it is called write once run
anywhere (WORA)
A4 .
[VM] All major platforms have a JVM. Each JVM
Interprets bytecode to machine code on-the-fly

Fig. 2.3 Java Runtime Environment

Tools such as javac (compiler), java (interpreter), and others are provided in a bundle, popularly
known as Java Development Kit (JDK). JDK comes in many versions (enhanced in each version)
and is different for different platforms such as Windows and Linux. A runtime bundle is also
provided as a part of JDK (popularly known as Java Runtime Environment).

2.5 JAVA VIRTUAL MACHINE

At the heart of the Java platform lies the JVM. Most programming languages compile the source
code directly into machine code, suitable for execution on a particular microprocessor architecture.
The difference with Java is that it uses bytecode, an intermediate code.

Java bytecode executes on a virtual machine. Actually, there wasn’t a hardware implementation
of this microprocessor available when Java was first released. Instead, the processor architecture
is emulated by software known as the virtual machine. This virtual machine is an emulation of
a real Java processor—a machine within a machine (Fig. 2.4). The virtual machine runs on top
of the operating system, which is demonstrated in Fig. 2.5.

The JVM is responsible for interpreting Java bytecode, and

translating this into actions or operating system calls. The JVM
is responsible for catering to the differences between different
platforms and architectures in a way that the developers need not
be bothered about it.
JVM The JVM forms a part of a large system, the JRE. JRE varies
according to the underlying operating system and computer
Fig. 2.4 JVM Emulation Runona architecture. If JRE for a given environment is not available, it is
Physical CPU impossible to run the Java software.

Physical Machine

16 Programming in Java

Java Runtime Environment
(JRE)

|Java Virtual Machine (JVM)|

v 1

Operating Systems
(Window, Unix, etc)

A

\ 4

Hardware
(Intel, Motorola, Alpha, etc.)

Fig. 2.5 JVM Handles Translations

2.6 JAVA FEATURES

Here we list the basic features that make Java a powerful, object-oriented, and popular
programming language.

2.6.1 Platform Independence

Java was designed not only to be cross-platform in source form, like the previous languages
(C, C++), but also in compiled binary form. To achieve this, Java is compiled to an intermediate
form called the bytecode (see Figs 2.3 and 2.4). This bytecode is a platform-independent code
that is read by a special native program called the Java interpreter that executes the corresponding
native machine instructions. The Java compiler is also written in Java. The bytecodes are precisely
defined to remain uniform on all platforms.

The second important part of making Java cross-platform is the uniform definition of
architecture-dependent constructs. In contradiction to other languages, integers in Java are
always four bytes long, and floating point variables follow the IEEE floating point arithmetic
754 standard. You don’t have to worry about the meaning of any type, as it is not going to change
when you transit between different architectures, e.g., Pentium to Sparc. In Java, everything is
well defined. However, the virtual machine and some of its parts have to be written in native
code, thus making it platform-dependent.

2.6.2 Object Oriented

It is conceived that Java is a pure object-oriented language, meaning that the outermost level
of data structure in Java is the object. Everything in Java (constants, variables, and methods)
are defined inside a class and accessed through objects. Java has been developed in a way that
it allows the user to not only learn object-oriented programming but to apply and practise it.

But there are some constraints that violate the purity of Java. It was designed mainly for OOP,
but with some procedural elements. For example, Java supports primitive data types that are
not objects.

Getting Started with Java 17

2.6.3 Both Compiled and Interpreted

Java incorporates the elements of both interpretation and compilation. Here is more information
on these two approaches.

Interpretation

An interpreter reads one line of a program and executes it before going to the next line. The line
is parsed to its smallest operations, the corresponding machine-level code is found, and then
the instruction is executed (this could be done with something like the switch statement in C
with every possible operation-case listed). Basic was one of the earliest interpreted languages
where each text line was interpreted. Similarly, scripting languages like JavaScript, VBScript,
and PHP are also interpreted.

In interpretation, there are no intermediate steps between writing/modifying the code and
running it. The best part is: debugging is fast. Also, the programs are easily transportable to other
platforms (if an interpreter is available). The drawback is its slow performance.

Compilation

The program text file is first converted to native machine code with a program called a compiler.
A linker may also be required to connect together multiple code files together. The output of the
compiler is an executable code. C and C++ are both compiled languages.

The biggest advantage of a compiled language is its fast performance, since the machine
language code instructions load directly into the processor and get executed. In addition, the
compiler can perform certain optimization operations because it looks at the program as a whole
and not line by line. The disadvantages include slower debugging and reduced portability to
other platforms. The source code must be recompiled on the destination platform.

Java Approach

Java incorporates both interpretation and compilation. The text program is compiled to the
intermediate code, called bytecode, for the JVM. The JVM executes the bytecode instructions.
In other words, JVM interprets the bytecode. The bytecode can run on any platform on which a
JVM has been deployed. The program runs inside the JVM, so it does not bother which platform
it is getting executed on.

Thus, Java offers the best of both worlds. The compilation step allows for code optimization
and the JVM makes way for portability. Figure 2.4 will give you an idea about the two phases
involved in the execution of a Java source program, i.e., compile time and execution time (runtime).

Once the source code is converted to bytecode or class file, it is loaded so that it can be
processed by the execution engine of the JVM. Bytecode is loaded either through the bootstrap
class loader (sometimes referred to as the primordial class loader) or through a user-defined
class loader (sometimes referred to as the custom class loader). The bootstrap class loader (part
of the JVM) is responsible for loading trusted classes (e.g., basic Java class library classes).
User-defined class loaders (not part of JVM) are the subclasses of java.util. Class Loader class
that are compiled and instantiated just like any other Java class. The bytecode verifier verifies
the code and ensures that the code is fit to be executed by the JVM. Figure 2.6 shows the flow
of data and control from Java source code through the Java compiler to the JVM. The code is
not allowed to execute until it has passed the verifier’s test.

18 Programming in Java

Compile-Time Runtime

)
Java Class loader
source (Bytecode
loader)

\ 4 I
Bytecode Bytecode
. moves through ifi
Java compiler network or verifier
file system L T~

A Interoreter Machine code
v P generator

J

Operating system

v

Hardware

\ 4

Fig. 2.6 Compilation and Interpretation in Java

But there remains the drawback of an extra compilation step after every correction during
debugging. Also, the interpretation of bytecode is still slower in many cases than a program in
local machine code. Advanced JVM can ameliorate this, and in many cases, reach speeds similar
to programs compiled to local machine code.

2.6.4 Javais Robust

The type checking of Java is at least as strong as that of C++. The compile-time and runtime
checks in Java catch many errors and make them crash-proof. The program cannot crash the
system. To sum up, Java is one of the most robust languages to have ever evolved. Automatic
garbage collection of allocated memory is the biggest contributor here.

2.6.5 JAVA Language Security Features
Java has several language features that protect the integrity of the security system and prevent
several common attacks.
Security Through Definition Java is strict in its definition of the language:

o All primitive data types in the language have a specific size.

o All operations are defined to be performed in a specific order.
Security Through Lack of Pointer Arithmetic Java does not have pointer arithmetic, so Java
programmers cannot forge a pointer to memory. All methods and instance variables are referred
to with their symbolic names. Users cannot write a code that interprets system variables or
accesses private information stored in a system.
Security Through Garbage Collection Garbage collection makes Java programs more secure
and robust by automatically freeing memory, once it is no longer needed.

Getting Started with Java 19

Security Through Strict Compile-Time Checking The Java compiler performs extensive,
stringent compile-time checking so that as many errors as possible can be detected by the
compiler. The Java language is strongly typed, that is:

o Objects cannot be cast to a subclass without an explicit runtime check.

e References to methods and variables of a class are checked to ensure that the objects

are of the same class.

e Primitives and objects are not interconvertible.
Strict compilation checks make Java programs more robust and avoid runtime errors. The
bytecode verifier runs the bytecode generated by the compiler when an applet is loaded and
makes security checks. The compiler also ensures that a program does not access any uninitialized
variables.

Java Security Model

Java’s security model is focused on protecting users from hostile programs downloaded from
untrusted sources across a network. Programs downloaded over the Internet are executed in a
sandbox. It cannot take any action outside the boundaries specified by the sandbox.

The sandbox for untrusted Java applets, for example, prohibits many activities, including

Reading or writing to the local disk

e Making a network connection to any host, except the host from which the applet came
Creating a new process

Loading a new dynamic library and directly calling a native method

By making it impossible for the downloaded code to perform certain actions, Java’s security
model protects the user from the threat of hostile codes.

Sandbox—Definition

Traditionally, you had to trust a software before you ran it. You achieved security by allowing
a software from trusted sources only, and by regularly scanning for viruses. Once a software
gets access to your system, it has full control and if it is malicious, it can damage your system
because there are no restrictions placed on the software by the computer. So, in the first place,
you prevent malicious code from ever gaining access to your system.

The sandbox security model makes it easier to work with the software that comes from untrusted
sources by restricting codes from untrusted sources from taking any actions that could possibly
harm your system. The advantage is—you don’t need to figure out what code is trusted and what
is not. In addition to that, you don’t need to scan for viruses as well. The sandbox is made up of
the following components operating together.

Class Loader It is the first link in the security chain. It fetches executable codes from the
network and enforces the namespace hierarchy.

Bytecode Verifier The verifier checks that the applet conforms to the Java language guarantees
and that there are no violations like stack overflows, namespace violations, illegal data type
casts, etc.

Security Manager It enforces the boundary of the sandbox. Whenever an applet performs an
action which is a potential violation, the security manager decides whether it is approved or not.

20 Programming in Java

2.6.6 Java is Multithreaded

To explore this property, you must know the meaning of multithreading.It can be explained well
with the help of an example. Consider a four-gas burner on which food is cooked. The cook,
in order to save time, puts milk to boil on one gas burner, rice on the other, makes chapattis on
the third, and vegetable on the fourth. The cook switches between all the items to be cooked so
that neither of the items are red-heated to lose their taste. He may lower/brighten up the gas as
and when required. Here the cook is the processor and the four items being cooked are threads.
The processor (cook) switches from one thread to another.

A thread can be loosely defined as a separate stream of execution that takes place simultaneously
and independent of everything else that might be happening. Threads are independent parts of a
process that run concurrently. Using threads, a program cannot hold the CPU for a long duration
intentionally (e.g. infinite loop). The beauty of multithreading is that the other tasks that are not
stuck in the loop can continue processing without having to wait for the stuck task to finish.
Threads in Java can place locks on shared resources so that while one thread is using it, no other
thread is allowed to access it. This is achieved with the help of synchronization.

More about threads and its implementation will be taken up later in Chapter 8.

2.6.7 Other Features
Automatic Memory Management

Automatic garbage collection (memory management) is handled by the JVM. To create an instance
of a class, the ‘new’ operator is used (refer to Chapter 4). However, Java automatically removes
objects that are not being referenced. This is known as garbage collection. The advantages and
disadvantages of garbage collection are listed below.

Advantages

¢ Reduces the possibility of memory leaks, since memory is freed as needed. A memory leak
occurs when the memory allocated is not released, resulting in an unnecessary consumption
of all the available memory.

e Memory corruption does not occur.

Disadvantage
o Garbage collection is considered one of the greatest bottlenecks in the speed of execution.

Dynamic Binding

The linking of data and methods to where they are located is done at runtime. New classes can
be loaded at runtime. Linking is done on-the-fly, i.e., on-demand.

Good Performance

Interpretation of byte code slowed performance in early versions, but advanced virtual machines
with adaptive optimization and just-in-time compilation (combined with other features) provide
high speed code execution.

Built-in Networking

Java was designed with networking in mind and comes with many classes to develop sophisticated
Internet communications. A detailed discussion on this topic is taken up later in Chapter 11.

Getting Started with Java 21

No Pointers

Java uses references instead of pointers. A reference provides access to objects. The programmer
is relieved from the overhead of pointer manipulation.

No Global Variables

In Java, the global namespace is the class hierarchy and so, one cannot create a variable outside
the class. It is extremely difficult to ensure that a global variable is manipulated in a consistent
manner. Java allows a modified type of the global variable called static variable.

class Example 2.7 PROGRAM STRUCTURE
Class and Instance A Java application consists of a collection of classes. A class is
variables . . .
a template. An object is defined as an instance of the class. Each
Method ABC

instance (object) contains the members (fields and methods)
Local variables specified in the class. A field is one that holds a value. A method

Instruction defines operations on the fields and values that are passed as
Method XYZ arguments to the method (see Fig. 2.7).
Local variables Let us now create our first Java program. Example 2.1 below
Instruction shows a very simple Java program which displays a string on the
console. It has just one print statement (the program is explained
Fig. 2.7 Program Structure in Section 2.7.3).

m First Java Program

L1
L2
L3
L4
L5
L6
L7

/* Call this file"Example.java".*/

class Example {

//your program starts execution with a call to main()
public static void main (String args[]){
System.out.println(“This is a simple Java program”);
}

}

2.7.1 How to Execute a Java Program?

There are three easy steps for successfully executing the Java program:
1. Entering the Source Code The above program (Example 2.1) can be written in any
text editor (like Notepad) but make sure it is written exactly the same way it is shown.
2. Saving the Source Code Now that you’ve written the code in Notepad, this is how
you’ll save it

o Select File | Save As from the notepad menu.

o In the ‘File name’ field, type “Example.java” within double quotes.
o In the ‘Save as type’ field select All Files (*.*).

o Click enter to save the file.

22 Programming in Java

3. Compiling and Running the Source Java programs are compiled using DOS. For
opening OS, type cmd at the run prompt and move to the folder that contains the saved
Example.java file. Now compile the program using javac, specifying the name of the
source file on the command line as shown below. (Assuming the file was saved in a
folder ‘javaeg’ in the C drive.)

C:\>cd javaeg // change to directory javaeg using cd command
C:\javaeg\>javac Example.java

The javac compiler creates a file called Example.class (in the same directory). This class
contains the bytecode version of the program. This bytecode will be executed by the Java
interpreter using java followed by the class name as shown below.

C:\javaeg\>java Example
Output

This is a simple Java program

2.7.2 Why Save as Example.java?

When the Java source code is compiled, each individual class is put in its own output file named
after the class and using the .class extension. That is why it is a good idea to give the Java
source files the same name as that of the class they contain. The name of the .class file will
match exactly with the name of the source file.

In many programming languages, the name of the source code file can be arbitrary. This is
not so with Java. In the above example, the name of the source file should be Example.java. In
Java, a source file is a normal text file that contains one or more class definitions.

The extension for the source file must be .java. By convention, the name of the file and the
name of class should be same (even the case should match) and that is why we named the above
example as Example.java. Java is case-sensitive. So example and Example are two different
class names.

m You can also provide a different name for naming a source file. For example, the above
example can be saved as First.java. But in that case, when you compile the file, the .class
that will be generated will have the name Example.class. So for executing the program, you
have to mention java Example on the command line. This may lead to confusion, so it is
advised that the name of the Java file should match with the name of the class defined in the
file (case-wise also). Also note that in case the source file contains more than one classes
defined within itself, the java file name should match exactly with the class name that contains
the main method.

2.7.3 Explanation
L1 The program begins with the comment:
/* Call this file “Example.java”.*/

The comments are ignored by the compiler. Comments are a good way to induce documentation
in programming.
L2 The next line of code in the program is

class Example {

Getting Started with Java 23

This line uses the keyword class to declare that a new class is being defined followed by the
class name, i.e., Example. The entire class definition, including all its members, will be between
the opening curly brace ({) and the closing curly brace (}).

L3 Another type of comment is used in this line.

// your program starts execution with a call to main()

This type of comment is called a single-line comment, and it begins with a double slash //.
L4 This line shows the main method for the class.

public static void main (String args []) {

This is the line from where the program will start its execution. All applications in Java start
execution from main(). Every complete Java Application must contain a root class where the
execution can begin. A root class must contain a main method defined with the header, as shown
in this line. Let us take a brief look at the attributes of main().

public It is an access specifier used to specify that the code can be called from anywhere.main()is
declared public because it is called by codes outside the class it is a part of. It is called by the JVM.

static Itis declared static because it allows main()to be called without having to instantiate
the class. JVM need not create an instance of the class (i.e. object of the class) for calling the
main()method.

void It does not return a value. The keyword void simply tells the compiler that main()does not
return anything back to the caller, i.e., JVM.

string args[] It holds optional command line arguments passed to the class through the java
command line. The curly bracket at the end marks the beginning of the main method and it
ends in L6.

The Java compiler will compile classes that do not contain a main () method, but the
Java interpreter has no way to run these classes.

LS It shows a print statement. If you want to display anything on the standard output, this
statement is used.

System.out.println ("This is a simple Java program");

This line prints the string "This is a simple Java Program" on the standard output. System is
a predefined class. The string (mentioned in double quotes) passed to the println method is
displayed as it is on the standard output. All statements in Java are terminated by a semicolon (;).
Lines other than print1n()don’t end with a semicolon because they are technically not statements.

L6 The closing curly bracket marks the closing of the main method.
L7 The closing curly bracket marks the closing of the class.

2.8 JAVA IMPROVEMENTS
Features of different versions of Java are discussed in the following sections.

2.8.1 Java 5.0 Features

We present a host of features in Java 5 and later discuss some of the improvements in Java 5.

24 Programming in Java

Autoboxing and Unboxing

Chapter 3 explains that Java has primitive types like int for integers, and Chapter 4 explains
classes and objects. The difference between the two types is very important. In Chapter 6, we
examine the so-called autoboxing and unboxing features added to J2SE 5.0 that removes the
need for explicit conversions in most cases and thus improves code readability and removes
boilerplate codes and sources of errors.

Enhanced for Loop

Chapter 3 looks at several types of looping structures available in Java, one of which is the for
loop (quite similar to the C/C++ for loop). Version 5.0 includes an enhanced for loop syntax
that reduces code complexity and enhances readability. We introduce the enhanced for loop in
Chapter 4 and describe the object types with which the enhanced for loop works.

Enumerated Types

Chapter 6 presents a feature of C/C++ that many programmers have missed in Java. An
enumerated type has been added with the enum keyword. The new enumerated type includes all
the features of C/C++ enum including type safety.

stringBuilder Class

We will be discussing this class in Chapter 6, along with the older StringBuffer class. It offers
better performance than stringBuffer class.

Static Import

Release 5.0 includes a new technique for accessing Java static methods and constants in another
class without the need to include the full package and class name every time they are used. (We
will explain the terms class, package, static, import, etc. in Chapters 4 and 7). The ‘static
import’ facility makes your code easier to write and less error-prone. We will discuss static
import in more detail in Chapter 7 after discussing import in general.

Metadata

The metadata facility (annotation) is designed to reduce much of the boilerplate code that would
be required in the earlier versions of Java. Annotations, though not a part of the program, provide
information about the program to the compiler. This information can be used to detect errors and
supply warnings. Annotations begin with ‘@’. The javac compiler processes some annotations
and some require the annotation-processing tool, apt.

Formatted I/0 and Varargs

In Chapter 9, we discuss how to format numerical output with Java. Version 5.0 adds the ability
to produce formatted output easily in the form of a printf()method that behaves similar to
the printf() function in C/C++. There is also a formatted input feature (Scanner class) that is
described in Chapter 9. Both these features rely on ‘varargs,” which stands for variable argument
list in which the number of parameters passed to a Java method is not known when the source
is constructed (also known as variable arity methods) (see Chapter 4 for varargs).

Getting Started with Java 25

Graphics System Improvements

Release 5.0 includes numerous bug fixes and minor tweaks to Java’s graphics subsystems known
as AWT and Swing, including reduced memory usage. The biggest improvement is that it is no
longer necessary to call getContentPane() when adding Swing components.

New Concurrency Features

Chapter 8 discusses Java’s multithreading support that has been present since Version 1.0.
Release 5.0 enhances the multithreading features of Java. Some of these additions depend upon
the generics concept, so we wait until Chapter 10 to introduce these important new capabilities.

Generics

In Chapter 10, we introduce the new generics feature, an important subject that we will cover
in detail. Java is type-safe, which simply means that every variable has a well-defined type and
that only compatible types can be assigned to each other. However, the use of generics adds a
greater amount of compile-time safety to the Java language. The use of generics allows objects
of only a specified type to be added to a collection, thereby enhancing the runtime safety and
correctness of the program; otherwise a compile-time error occurs.

Other new features in J2SE 5.0 include core XML support, improvements to Unicode,
improvements to Java’s database connectivity package known as JDBC, and an improved,
high-compression format for JAR files that can greatly reduce download times for applets and
other networking applications.

Java 2 platform Standard Edition 5.0 (J2SE 5.0) dealt with improvements in the ease of
development (EoD) category. The new EoD features were all about syntax shortcuts that greatly
reduce the amount of code that must be entered, making coding faster and error-free. Some
features enable improved compile-time type checking, thus producing fewer runtime errors.
Apart from EoD category, new multithreading and concurrency features were added that provide
capabilities previously unavailable. The designers of J2SE considered quality, stability, and
compatibility to be the most important aspect of the new release. A lot of efforts were made
to ensure compatibility with previous versions of Java. Faster JVM startup time and smaller
memory footprint were important goals. These have been achieved through careful tuning of
the software and the use of class data sharing. It is much easier to watch memory usage, detect
and respond to a low-memory condition in Java 5.

2.8.2 Java 6 Features

Some of the major enhancements to Java 6 are given below.

Collections API

The motive was to provide bidirectional collection access. New interfaces have been added like
Deque, BlockingDeque, etc. and existing classes like Linked List, TreeSet, and TreeMap have
been modified to implement these new interfaces. A bunch of new classes have been added like
ArrayDeque, ConcurrentSkipListSet, etc.

Input/Output

A new class named Console has been added to the java.io package. It contains methods to
access character-based console. New methods have been added to File class.

26 Programming in Java

Jar and Zip Enhancements
Two new compressed streams have been added.
e java.util.zip.DeflaterInputStream:for compressing data

e java.util.zip.InflaterOutputStream:for decompressing data
These classes are useful for transmitting compressed data over a network.

Enhancements Common to Java Web Start and Java Plug-in

All dialogs have been redesigned to be more user-friendly. Caching can be disabled via the Java
control panel. A new support for SSL/TSL is added.

Enhanced Network Interface

It provides a number of new methods for accessing state and configuration information relating
to a system’s network adapters. This includes information such as MAC addresses and MTU
size (discussed in Chapter 11).

Splash Screen
Applications can display the splash screen even before the virtual machine starts.

Java 6 also enhanced the monitoring and mangement API and made significant changes to
JConsole.

2.8.3 Java 7 Features

A number of features have been added in Java 7 such as revised switch..case to accept strings,
multi-catch statements in exception handling,try-with-resource statements, the new file input
output API, the fork and join framework and a few others.

String in switch..case Statement

Java 7 added strings to be used in switch..case statements apart from primitives (short, byte,
int, char), enumerated type and few wrapper classes (discussed in Chapter 3).

Unicode 6.0.0 Support

Java 7 supports Unicode 6.0.0. A new string representation is used to express unicode characters
(discussed in Chapter 6).

Binary Literals and Numeric Literals (with Underscores)

Java 7 added binary literals and underscores to be used with numeric literals. This feature is
particularly useful in increasing the readability of larger literals with a long sequence of numbers
(discussed in Chapter 3).

Automatic Resource Management

A new try with resources statement is introduced so that resources specified with try are released/
nullified when try block exits. There is no need to manually free up the resources using finally
block as was the case with earlier versions of Java (discussed in Chapter 7).

Improved Exception Handling

Java 7 introduced a multi-catch block where multiple exceptions can be caught using a single
catch block (discussed in Chapter 7).

Getting Started with Java 27

nio 2.0 (Non-blocking I/0)—New File System API

java.nio.file package was created in Java 7 to include classes and interfaces like Path,Paths,
File System, File Systems and others. Simplified methods to efficiently copy, move, create
links and receive file/directory change notifications were also incorporated (Chapter 9).

Fork and Join Fork and Join Framework is incorporated in Java 7 to have a more efficient
kind of parallel processing. The task is divided (forked) into smaller task such that no thread is
idle and whose results are combined (joined) to achieve the desired outputs. The classes for the
Fork-Join mechanism are ForkJoinPool and ForkJoinTask.

Supporting Dynamism Java compiler performs the type checking of variables, methods,
arguments etc. Java 7 incorporates a new feature invokedynamic to let JVM resolve type
information at runtime like few other dynamic languages and incorporate non-java language
requirements.

Diamond Operator The Generics declaration, prior to Java 7, required the types to be declared
on both the sides of the declaration. Java 7 onwards the compiler can deduce the type on the right
side, using the diamond operator (< >), by looking at the left-hand-side declaration.

Swing Enhancements Swings added a host of features like AWT and Swing components can
be used together without any problems,JLayer class, Nimbus look and feel, HSV color selection
tab in the JColorChooser class and more (see Chapter 15 for details).

Java FX 2.2.3 Java FX provides the new GUI toolkit for creating rich cross-platform user
interfaces across different types of devices like TV, mobile, desktop etc. Java FX is bundled
with JDK 7.

2.8.4 Brief Comparison of Different Releases

Table 2.1 presents a brief comparison of different releases of Java.

Table 2.1 Java JDK Major Releases and their Differences

Version Name New Features Introduced

1.0 Oak Java released to public.

1.1 Sparkler Added a totally new event model, using Listeners, anonymous classes, and inner classes.

1.2 Playground Added Array List and other Collections, added swing. Added DSA code signing.
Added buffered image.

1.3 Kestrel java.util.Timer,java.lang.StrictMath,java.awt.print.Page Attributes, java.
media.sound (MIDI) Hotspot introduced. RMI can now also use CORBA’s IIOP protocol.
Added RSA code signing.

1.4 Merlin Added regexes, assertions,and nio.

1.5 Tiger Added StringBuilder, java.util.concurrent, generics, enumerations and, annotations.

1.6 Mustang Applet splash screens, table sorting, true double buffering, digitally signed XML files,
JavaCompilerTool, JDBC 4.0, smart card API, Console.readPassword, improved drag
and drop.

1.7 Dolphin Automatic resource management, String in switch..case, Fork and join framework,
dynamism support, Unicode 6 supported, Java Fx 2.2.3.

1.8 Not yet There is still on-going discussion on what should be included.

released

28 Programming in Java

2.9 DIFFERENCES BETWEEN JAVA AND C++
Here is a technical overview of the differences between Java and C++. The following points list
out the aspects that are present in Java and absent in C++.

Multiple Inheritance Not Allowed Multilevel inheritance is enforced, which makes the design
clearer. Multiple inheritance among classes is not supported in Java. Interfaces are used for
supporting multiple inheritance.

Common Parent All classes are single-rooted. The class Object is the parent of all the classes
in Java.

Packages The concept of packages is used, i.e., a large, hierarchical namespace is provided.
This prevents naming ambiguities in libraries.

In-source Documentation /n-source code documentation comments are provided. Documenta-
tion keywords are provided, e.g. @author, @version, etc.

All Codes Inside Class Unlike C++, all parts of a Java program reside inside the class. Global
data declaration outside the class is not allowed. However, static data within classes is supported.

Operator Overloading Operator overloading is not supported in Java but a few operators are
already overloaded by Java, e.g. “+’. Programmers do not have the option of overloading operators.

Explicit boolean Type boolean is an explicit type, different from int. Only two boolean literals
are provided, i.e. true and false. These cannot be compared with integers 0 and 1 as used in
some other languages.

Array Length Accessible All array objects in Java have a 1length variable associated with them
to determine the length of the array.

go to Instead of goto, break and continue are supported.
Pointers There are no pointers in Java.
Null Pointers Reasonably Caught Null pointers are caught by a NullPointerException.

Memory Management The use of garbage collection prevents memory leaks and referencing
freed memory.

Automatic Variable Initialization All variables are automatically initialized, except local
variables.

Runtime Checking of Container Bounds The bounds of containers (arrays, strings, etc.) are
checked at runtime and an IndexOutOfBoundsException is thrown if necessary.

Platform Independence C++ is not a platform-independent language whereas Java is.

Sizes of the Integer Types Defined The sizes of the integer types byte, short, int, and long
are defined to be 1, 2, 4, and 8 bytes.

Unicode Provided Unicode represents the characters in most of the languages, e.g. Japanese,
Latin, etc.

String Class An explicit predefined String class is provided along with StringBuffer and
new StringBuilder class.

Getting Started with Java 29

Extended Utility Class Libraries: Package java.util Supported among others, Enumeration
(an Iterator interface), Hashtable, Vector.

Default Access Specifier Added By default, all the variables, methods, and classes in Java
have default privileges that are different from private access specifier. Private is the default
access specifier in C++.

2.10 INSTALLATION OF JDK 1.7

Before writing a single line of code, the software application developer must first make sure
that the best tool for the job are at his or her disposal. Java was designed to be a cross-platform,
object-oriented programming language. Because of the huge amount of interest generated by
the introduction of Java, new tools are being introduced every now and then that provide the
developer with greater flexibility and ease of use.

2.10.1 Getting Started with the JDK

Sun (and now continued by Oracle) decided to give away a Java Developer’s Kit (JDK) that
would provide the basic tools needed for Java programming. The JDK provides the beginners
with all the tools needed to write powerful Java applications or applets. It contains a compiler,
an interpreter, a debugger, sample applications, applet viewer, and some other tools that you
can use to test your code.

A quick visit to Oracle Java website will allow you to download the JDK to your local machine.
Check for the latest version of JDK and download that from this site. The following operating
systems are supported for JDK:

(a) Oracle Solaris (b) Windows (c) Linux (d) Mac
Remember that the availability of JDK for these platforms simply means that Oracle has
implemented the JVM and development tools for these platforms.

2.10.2 JDK Installation Notes

When the Java SE Development Kit is installed, the Java SE Runtime Environment is installed
as well.

For the installation of JDK 1.7 on Solaris platform (both 32-bit and 64-bit), you can refer to the
installation documentation on Oracle official site:

http://docs.oracle.com/javase/7/docs/webnotes/install/solaris/solaris-jdk.html

Similarly, for installation of JDK 1.7 on Linux operating system (both 32 bit and 64 bit), visit:
http://docs.oracle.com/javase/7/docs/webnotes/install/linux/linux-jdk.html

For JDK installation on MAC OS visit:
http://docs.oracle.com/javase/7/docs/webnotes/install/mac/mac-jdk.html

The JDK for any OS can be downloaded from:
www.oracle.com/technetwork/javal/javase/downloads/jdk7u9-downloads-1859576.html.

Refer to www.oracle.com/technetwork/javal/javase/downloads/index.html for latest Java SE
releases.

30 Programming in Java

In this book, we intend to provide the details of installation of JDK 1.7 on Windows operating
system only.
JDK has two versions numbers—an external version number 7 and an internal version
number1.7.0_09, i.e., version 7 update 9.
The installation and configuration process can be broken down into the following steps:
1. Run the JDK installer.
2. Update the Path and Classpath variables.
3. Test the installation.

Step 1: Run the JDK Installer

If you have downloaded the JDK software file (JDK installer) instead of running the installer
from the Java website, you should check to see that the complete file is downloaded:

jdk-7u9-windows-i586.exe

The JDK documentation can be downloaded from the following URL: www.oracle.com/
technetwork/javal/javase/documentation/java-se-7-doc-download-435117.html.

Double-click on the icon of the JDK Installer.exe to run the installer and then follow the
instructions. Figures 2.8(a)—(h) show some of the snapshots of the installation process. The first
Welcome screen is displayed as soon as you double click on the installer.

ﬂ.irwd SE Development Kit 7 Update 9 - Setup

ORACLE

Welcome to the Installation Wizard for Java SE Development Kit 7 Update 9

This wizard will guide you through the installation process for the Java SE Development
Kit 7 Update 9.

The JavaFX SDK is now included as part of the JDK.

Fig. 2.8(a)

The welcome screen also tells you that Java FX SDK is now a part of Java 7. Click on Next>,
the installer prompts you to select what all you want to install and where to install them in your
system.

Getting Started with Java 31

1% Java SE Development Kit 7 Update 9 - Custom Setup @

ORACLE

Select optional features to install from the list below. You can change your choice of features after
installation by using the Add/Remove Programs utility in the Control Panel

Feature Description

Development Tools Java SE Development Kit 7
Source Code Update 9, including the JavaFx
- SDK, a private JRE and a private
Public JRE JavaF¥ runtime, This will require
300MB on your hard drive.,

Install to;

C:\Program Files\Javaljdk1.7.0_09\

[< Back " Next > I ’ Cancel]

Fig. 2.8(b)

By default, the JDK will be installed at the path mentioned in Install to. You can change
the default path by clicking the change.. button. As soon as you click on the Next> button, the

installation starts.

1 Java SE Development Kit 7 Update 9 - Progress ™= =%

ORACLE

Status: Copying new files

[_unmutn-nn-m-mmu-n--q-nnu—nnnkum--m]

Fig. 2.8(c)

32 Programming in Java

Figure 2.8(d) snapshot shows that JRE will be installed.

1) Java SE Development Kit 7 Update 9 - Progress @
ORACLE
Status: Installing Java Runtime Environment
[-ﬂmr‘ﬁkwr-mmirmnhmwm*hr'n(hl!'rl':lri-tﬁl-inhmnuﬁmﬁmnnmﬁhmhﬂﬂﬂl.ﬂﬂ
Fig. 2.8(d)

Figure 2.8(e) prompts you to make a selection for installing JRE. As soon as you click on Next>,
the installation of JRE starts.

1 Java Setup - Destination Folder
ORACLE
Install to:
C:\Program Files\Java\jre7\ Change...

Fig. 2.8(e)

Getting Started with Java 33

The following snapshot shows you that the JRE is getting registered.

_ﬁl Java Setup - Progress w— g — |

ORACLE

Status: Registering Java Runtime Environment

3 Billion Devices Run Java

ORACLE

Fig. 2.8(f)

Finally, Java is installed successfully as shown in the snapshot below.

15! Java SE Development Kit 7 Update 9 - Complete

ORACLE

Java SE Development Kit 7 Update 9 Successfully Installed

Register Java for FREE and get:

- Notification of new versions, patches, and updates

- Spedal offers on Orade products, services and training
- Access to early releases and documentation

When installation is complete, product and system data will be collected and the JDK
product registration form will be presented. If you do not register, this information will
not be saved.

oz]

Fig. 2.8(g)

Once you are finished with installation of Java, you get a ‘Thank You’ message (Fig. 2.8(h))
from Oracle Corporation and asking you to register so that you can get alerts, notifications,
special offers, and access to future releases and documentation.

[vww.ebook3000.con)

http://www.ebook3000.org

34 Programming in Java

(] Register your JOK

i -

Most Visited | ims | java || web marketing \' 15 scientific research p...

Java Development Kit (JDK) ORACLE'

Thank you for instaliing the Java Development Kit Version 7 Update 9 from Oracle Corporation.
Registering your product will give you the following benefits:

= Notification of new versions, patches, and updates

= Special offers on Oracle developer products, services and training

* Access to early releases and documentation

Product registration is FREE, quick and easy!

All you need is an Oracle.com account. If you don't already have one, you will be prompted to create one.

Register My JDK ‘You need to be connected to the Intemet to register this Oracle product.

Oracle Corporation respects your privacy. We will use your personal information for ¢ ications and g t of your Oracle.com
account, the senices and applications you access using your Oracle.com account, and the products and systems you register with your
Oracle.com account.

For more information on the data that will be collected as part of the registration process and how it will be managed
see http://java.sun.com/javase/registration/JDKRegistrationPrivacy. htmil.

Q@ & file///C:/Program Files/Java/jdk1.7.0_09/register.htmi

Installed Directory Structure

JDK 7 will be installed (by default) in c:\program files\java\jdk1.7.0_09 and will have the
following directory structure (Fig. 2.9):

Fig. 2.8(h)

jdk1.7.0
[Gre| [sre.zip] [@6] [Gnciude]
java.exe tools.jar
javac.exe dt.jar bin il
javap.exe oo
javah.exe I
javadoc. . ‘
exe [Plugin 2| [dtPlugin]| java.exe| |client]| | server | [ext]security|applet||fonts|
cc java.dll
awt.dll

[jvm.d11][jvm.d11]|||[localedata. jar |

rt.jar
charsets.jar

Fig. 2.9 Structure of JDK Software and Documentation Directories

Included in the directory structure is a file src.zip. Do not unzip the src.zip file as it contains
all the core class binaries, and is used by JDK in this form.

Getting Started with Java 35

e include\ The include directory contains a set of C and C++ header files for interacting
with C and C++.

e 1lib\ This directory contains non-core classes like dt.jar and fools.jar used by tools
and utilities in JDK.

e bin\ The bin directory contains the binary executables for Java. For example, Java
Compiler (Java), Java Interpreter (Java) ,rmicompiler (rmic) etc.

e jre\ It is the root directory for the Java runtime environment.

e db\ Contains Java database.

Step 2: Update Path and Classpath Variables

It is not possible to run a Java program without modifying system environment variables (such
as Path or Classpath) or modifying the autoexec.bat.

Why to Set Path Variable? The PATH environment variable needs to be set if you want to run
the executables (javac.exe, java.exe, javadoc.exe, etc.) from any directory. If you want to find
out the current value of your PATH, then type the following at the DOS prompt:

C:\>path

Windows NT/XP/Vista/7 It is preferable to make the following environment variable changes
in the Control Panel instead of the autoexec.bat file. Start the Control Panel, select System, and
then edit the environment variables. In case of other recent versions of Windows, right click
on the My Computer icon, and select Properties, click on Environment. The System Properties
window appears. Select Path from the list of system variables and append the following path to
existing path: C:\PROGRA~1\JAVA\JDK1.7\bin (complete path of \bin).

Do not erase the existing paths in the path system variable; only append the new path
separated by a semicolon.

Classpath—What it does? The Classpath tells the JVM and other Java applications where
to find the class libraries and user-defined classes. You need to set the classpath for locating
class libraries, user-defined classes, and packages.

Setting the Classpath

The same procedure (explained above) can be followed for setting the classpath environment
variable with the exception that now you will not look for the path variable but for the classpath
variable.

Step 3: Testing the Installation

Your computer system is now configured and ready to use the JDK. The Java tools do not have
a GUI, as they are all run from the DOS command line. For testing the installation, type the
following command at the command line:

C:\>javac and C:\>java
If the following screenshots are displayed on typing the command ‘java’ on the DOS prompt, it
means that Java is properly installed and the path is set (Figs 2.10(a) and (b)).

36 Programming in Java

B C:\WINDOWS\system 3 2\cmd. exe

—wersion
avac 1.7.8_89

Javac <options>
ible options

—g:{lines.vars.sourcel
O W
—verh:
—deprecation
T |
—c 1a ath <path?
ors
—cp <path>
Processors
arcepath
-las

fdirectoryl
—implicit

plicitly ref
—encoding {encoding?
source <release?

—target <releasel
—wersion

help
—“Akey[=valuel

—X

-JCF Lag>
e rro
BLFilename >

B C:WWINDOWS s ys e 3 2hvermed . eooe

™
e A Ll

all debus info
ing info

only some debugging

no warnin

Age ab what the mpiler is

ce locations where deprecated AP

info

Dutput sow are

Specify whe to fFind ar Files and notat

Specify where to Find user Files and annotati

e to Find input
pf bootstrap c
installed

of endo

ation
de location of
locat ion

standards
0C ing andso mpi

of the annotation processors
f . Find
ify w ylace
Specify where to place
Specify whether or not

generated
to g ate

encoding used by
11ty with

source Files
pecified release

character
source compati

Specify
Prouvide
Generate class Files for UH version

information

synopsis of

to pass to annotation
a synopsi of non andard
Flag> directly to the
Terminate compilation

specific
standard optio

opt ion:
untime systemn

hiaS 2

mixed m

e €

arf ile
File>

[ary

data model

wers ion

searc

-html For

Fig. 2.10(b)

Fx

Getting Started with Java 37

2.10.3 Exploring the JDK

It is important to know the complete structure of Java 7. The following diagrammatic
representation (Fig. 2.11) can give you an idea about the various constructs Java 7 is made up
of. It also shows the various components taken care by each construct.

It will be interesting to know, which part(s) of Java 7 will comprise the JDK, JRE, or Java
API? The following representation answers the question in contention. It is worth noting that
the Java API is a subset of JRE and the JRE is a subset of JDK.

The Java Standard Edition (J avaTMSE) Development Kit includes the JRE plus the command-
line development tools such as compilers and debuggers that are necessary for developing applets
and applications.

Tooés java javac | javadoc | jar | javap | JPDA |Java DB| jconsole
an

Tool i , Monito- Trouble- o Web
o Security| Int'l RM1 IDL |Deploy ring shoot Scripting [JvM T1 Services
Deploymen? Web Start Java Plug-in
Technologies

JavaFX
User Inter- AWT Swing Java 2D

face Tookits |accessibility|Drag and Drop|Input Methods| Image I/0 |Print Service| Sound

Integration DL IDBC INDI RMI RMI-IIOP | Scripting
Libraries
Beans Int’1 Support I/0 IMX INI Math

Ol R Override Serializ- Ext i
Libraries Networking ; Security érializ XTENSLON | yvi JAXP

Mechanism ation Mechanism
Lang . . Concurrency .
and util Lang & util [Collections Utilities JAR Logging Management
Base Preferences . . Regular .. .

Ref. Objects :

LilrEries APT J Reflection Expressions Versioning| Zip |[Instrument

Java Virtual Machine |

Fig. 2.11 Structure of Java 7
The JRE provides the JVM and other components necessary for you to run applets and
applications written in the Java programming language (see Fig. 2.12).

Tools in JDK

The tools available in JDK are split into the following categories:
e Basic tools (javac, java, javadoc, apt, appletviewer, jar, jdb, javah, javap, extcheck)
Security tools (keytool, jarsigner, policytool, kinit, klist, ktab)
¢ Internationalization tools (native2ascii)
e Remote Method Invocation (RMI) tools (rmic, rmiregistry, rmid, serialver)
e Java IDL and RMI-IIOP tools (tnameserv, idlj, orbd, servertool)

38 Programming in Java

e Java deployment tools (pack200, unpack200)

Java plug-in tools (html converter)

Java Web Start tools (javaws)

Java Monitoring and Management Console (jconsole)
Java Web Services tools (schemagen, wsgen, wsimport, xjc)

Basic Tools
Figures 2.12 and 2.13 show the structure of Java and the basic tools available in JDK, respectively.

javac Java complier is named javac. The Java compiler takes input source code files (these
files typically have the extension .java) and converts them into compiled bytecode files (these
files have the extension .class).

java The Java interpreter, known eponymously as java, can be used to execute Java applications.
The interpreter translates bytecodes directly into program actions.

javadoc As programmers, we have fought it in every way possible. Unfortunately, there is no
longer any excuse for not documenting our source code. Using the javadoc utility provided
with the JDK, you can easily generate documentation in the form of HTML files. To do this,
you embed special comments and tags in your source code and then process your code through
javadoc. All the online Java API documentation was created with javadoc.

apt It stands for Annotation Processing Tool, used for processing annotations.

-User Interface Toolkits
Java | -Integration Libraries
API |-Other Base Libraries
-Lang and util Base Libraries

-Java API

-Deployment Technologies
JR . .
-Java Virtual Machine

-Tools and Tool APIs

-Java Language Constructs
JDK
-JRE

Fig. 2.12 Java Structure

Basic Tools

extcheck

javac
javap
java

javadoc

appletviewer

apt

Fig. 2.13 Basic Tools Available in JDK

Getting Started with Java 39

appletviewer This small program provides a real Java environment for testing applets. It loads
the HTML file in which the applet has been embedded and displays the application in a browser-
like window.

jar Itis used for creating and managing jar (similar to WinZip file) files.

jdb The Java debugger, jdb, enables you to debug your Java classes. Unfortunately, the Java
debugger is a throwback to the pre-GUI debugger dark ages of programming. The Java debugger
is a command-line debugger. You can use the jdb to set breakpoints, inspect objects and variables,
and monitor threads.

javah Because Java is a new language and must fit in a world dominated by C and C++, it
includes the capability to use native C code within a Java class. One of the steps in doing this
is by using the Java header file generator, javah.

javap One of the basic tenets of object-oriented programming is that programmers unfamiliar
with a class need only concern themselves with the public interface of that class. If you want to
use a class, you shouldn’t be concerned with how this class has been written.

Because you should be interested only in the public interface of a class, the JDK includes a
disassembler,javap, that can be used to display the public interface, both methods and variables,
of'a class. Additionally, the Java disassembler includes options to display private members or to
display the actual bytecodes for the class’s methods. This last option can be particularly useful
if you want to achieve a greater understanding of the bytecodes used by the Java interpreter.

extcheck It is used for detecting Jar conflicts.

2.11 INTEGRATED DEVELOPMENT ENVIRONMENT

Integrated development environment (IDE) contains the tools specifically designed for writing
Java codes. These tools offer a GUI environment to compile and debug your Java program easily
from the editor environment as well as browse through your classes.

New Java IDEs are released every now and then, as Java is accepted as a viable programming
language. Some of these IDEs are listed below.

Eclipse It is an open source extensible IDE. At present, it is a Java IDE and includes Java
development tools. The requirement is that you should have the JRE installed on your machine.
The IDE supports Windows XP, Windows 2000, Windows 7, Vista, Linux, and Solaris.

Gel It is an IDE for Java that features syntax highlighting (Java, JSP, HTML, XML, C, C++,
Perl, Python, etc.), unlimited undo and redo, column selection mode, block indent and un-indent,
highlighting of matching braces, spell-checking, automatic positioning of closing braces, auto
indent, regular expression searches, find in files, code completion (Java and JSP), parameter hints,
identifier hints, context-sensitive help linked to Javadoc, class browser, project management,
integrated support for ANT and JUnit, differencing tool to compare files, etc. It works only on
Windows.

DrJava It is an integrated development environment for Java, released under the GNU GPL
that allows you to interactively evaluate Java expressions.

40 Programming in Java

JCreator The light edition of this IDE for Java has support for project management, a syntax
highlighting editor, wizards, class viewer, package viewer, tabbed documents, JDK profiles
(which allows you to work with multiple JDK), a customizable user interface, etc. JCreator runs

on Windows 95, 98, NT, and 2000.

NetBeans It is a cross-platform open source IDE for Java. It comes with a code editor that
supports code completion, annotations, macros, auto-indentation, etc. It integrates with compilers,

debuggers, JVMs, and other tools.

Java is a programming language invented by James
Gosling and others in 1994. Java was originally named
Oak and was developed as a part of the Green Project
at the Sun Company. Patrick Naughton, Mike Sheridan,
and James Gosling were trying to figure out the next
wave in computing and that wave came in 1995, when
Java started to be visualized as a language for Internet
applications.

It is conceived that Java is a pure object-oriented
language, meaning that the outermost level of data
structure in Java is the object. Java is designed to
be platform independent, so it can run on multiple
platforms. The same runtime code can be downloaded
on any platform and be executed there, if that platform
supports the Java runtime environment. For this,
Java incorporates elements of both interpretation and
compilation.

At the heart of Java Runtime Environment lies the
Java Virtual Machine or JVM. Most programming
languages compile source codes directly into machine
codes, suitable for execution on a particular micropro-
cessor architecture. But Java is somewhat different,

Objective Questions

1. What was the name of first version of Java?

(a) Oak (b) Mustang
(c) Tiger (d) Playground
2. What was the name of the team that developed
Java?
(a) Green Team (b) Star Seven
(c) Sun (d) Java team

3. What is the name of the tool that is used for
compiling a Java program?

SUMMARY

EXERCISES

as it uses bytecode—a special type of machine code.
Java bytecode executes on a special type of micro-
processor. As there was no hardware implementation
of this microprocessor available when Java was first
released, the complete processor architecture was
emulated by a software known as the virtual machine.

Java is a robust language, as its two properties, type
checking and interpretation makes Java programs
crash-proof. Java has several other features that
protect the integrity of the security system and
prevent several common attacks. Java is inherently
multithreaded, i.e., multiple threads developed in this
language can be executed concurrently.

Other features of Java include automatic memory
management, dynamic binding, optimal performance,
built-in networking capabilities, etc. The garbage col-
lector relieves the programmers from memory deal-
location. Java uses references instead of pointers.

Every Java program consists of one or more classes.
A class is nothing but a template for creating objects.
In Java, codes reside inside a class. The name of the
class must match with the name of the file.

(a) javap
(c) javah

(b) java

(d) javac

4. What is the name of the tool that is used for
interpreting a Java program?
(a) javap (b) java
(c) javah (d) javac

5. What process automatically removes objects that
are not being referenced?
(a) Multithreading (b) ObjectReclamation

(c) Garbage collection (d) Object collection

What is the name of the tool that is used for
running Applets?

(a) javap (b) javac
(c) java (d) appletviewer
. What is the extension of the source files in Java?
(a) .jav (b) .java
(c) .bytecode (d) .class

What is the extension of the bytecode files in
Java?

(a) Jjav (b) .java

Review Questions
1.

Why is Java known as a platform-independent
language?

Explain the security model of Java that makes it
more secured than other languages.

Why is Java known to be multithreading? How
does it help Java in its performance?

. C++ is an object-oriented language older than

Java, then why did Java replace C++ in most of
the application development?

Java had middle-tier capabilities. What does this
statement mean?

Programming Exercise
1.

10.

1.

Getting Started with Java 41

(c) .class (d) .bytecode
Which all are correct for main method?
(a) public static void main(String argsl])
(b) private static void main(String argsl])
(c) static void main(String argsl[])

(d) public static void main(String a[])
Which of the following are added in Java 77
(a) String in switch case

(b) meta data

(c) annotations

(d) automatic resource management

Java was used in Internet applications. Cite
reasons.

Explain the importance of JVM in JRE.

Explain the structure of a Java program.
Explain the steps for executing a Java program.
What is the importance of setting environment
variables such as Path and Classpath?
Discuss the tools available in JDK. How do they
help in application development?

Write a program to print ‘Welcome’ followed by your name and ‘How are you?’

Answers to Objective Questions

1.
5.
9.

(a) 2. (a)
(c) 6. (d)
(a) and (d) 10. (a) and (d)

4. (b)
8. (c)

Copyrighted Materials)

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

Java Programming
Constructs

1 often say . . . that when you can measure what you are speaking about, and express
it in numbers, you know something about it; but when you cannot measure it, when
you cannot express it in numbers, your knowledge is of a meager and unsatisfactory
kind; it may be the beginning of knowledge, but you have scarcely, in your thoughts,
advanced to the stage of science, whatever the matter may be. Lord Kelvin

~ After reading this chapter, the readers will be able to
¢ understand how variables are used in

know the basic data types

learn expressions and conditional statements

use all the available operations in Java

know the basics of conversion and casting

understand loops and branching statements

L 2R R R R 2

3.1 VARIABLES

Variable is a symbolic name refer to a memory location used to store values that can change
during the execution of a program. Java declares its variables in the following manner:

int noofwatts = 100; // variable declaration
Data type Identifier Literal

A variable declaration involves specifying the type (data type), name (identifier), and value
(literal) according to the type of the variable. Let us have a look at the three components in detail.

3.2 PRIMITIVE DATA TYPES

Primitive data types are the basic building blocks of any programming language. A primitive
data type can have only one value at a time and is the simplest built-in form of data within Java.

Java Programming Constructs 43

All variables in Java have to be declared before they can be used, that is why Java is termed as
a strongly typed language. There are eight primitive data types in Java, as follows:

byte

short
) —> For whole number
nt

long

float
double

—> For real numbers

char——— > Characters

boolean——> Boolean

Java is portable across computer platforms. C and C++ leave the size of data types to the machine
and the compiler, but Java specifies everything.

m All integer (byte, short, int, long) and floating-point types (float, double) are signed in Java.

byte

short

int

long

float

double

boolean

char

It is a 1-byte (8-bit) signed 2’s complement integer. It ranges from —128 to 127
(inclusive). The byte data type can be used where the memory savings actually matter.
Itis a 2-byte (16-bit) signed 2’s complement integer. It ranges from —32,768 to 32,767
(inclusive). As with byte, you can use a short to save memory.

It is a 4-byte (32-bit) signed 2’s complement integer. It ranges from —2,147,483,648
to 2,147,483,647 (inclusive). For integral values, this data type is the default choice.
It is an 8-byte (64-bit) signed 2’s complement integer. It ranges from
-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 (inclusive). This data
type should be used only when you need a range of values wider than int.

Floating point conforms to the IEEE 754-1985 binary floating point standard.

It is a single-precision 32-bit floating point. It ranges from 1.401298464324817e—45f
to 3.402823476638528860e+38f.

This data type is a double-precision 64-bit floating point. It ranges from
4.94065645841246544e-324 to 1.79769313486231570¢ (+) 308. For decimal
numbers, this data type is the default choice.

It has only two possible values: true and false. The size of this data type is not
precisely defined.

The unsigned char data type is a single 16-bit unicode character. It ranges from €\
u0000’ (or 0) to “\uffff’ (or 65,535 inclusive).

m Unlike C/C++, where handling of character sequences is tedious, Java provides a class
named “String” for handling character strings enclosed within double quotes. Although it is
not a primitive data type, Java string solves much of the complexity with ease.

44 Programming in Java

3.3 IDENTIFIER

Identifiers are names assigned to variables, constants, methods, classes, packages, and interfaces.
No limit has been specified for the length of a variable name. Identifiers can have letters, numbers,
underscores, and any currency symbol. However they may only begin with a letter, underscore,
or a dollar sign. Digits cannot be the first character in an identifier.

3.3.1 Rules for Naming

1. The first character of an identifier must be a letter, an underscore, or a dollar sign ($).
2. The subsequent characters can be a letter, an underscore, dollar sign, or a digit. Note

that white spaces are not allowed within identifiers.
3. Identifiers are case-sensitive. This means that Total_Price and total price are different

identifiers.

Do not use Java’s reserved keywords. A few examples of legal and illegal identifiers

are shown below.

Legal Identifiers
MyClass
$amount

_totalPay

total_Commission

Illegal Identifiers

My Class
23amount

-totalpay

total@commission

3.3.2 Naming Convention

Names should be kept according to their usage, as it is meaningful and easy to remember as

shown in Fig. 3.1.

package hello;

Y

import Java.lang.*;

public class HelloWorld

\J

Y

Y

public static void main(args[])

System.out.println("Hello How are You?");

Y

B — e

\J

>
>

Package declaration

Importing other packages

Class declaration

Beginning of the class

Main method declaration

Printstatement
End of main method

End of the class

Fig. 3.1 Naming Convention Used in Java

Java Programming Constructs 45

Class or Interface Identifiers These begin with a capital letter. The first alphabet of every
internal word is capitalized. All other letters are in lower case.
public class MyClass // class identifier: MyClass

interface Calculator; // interface identifier: Calculator

Variable or Method Identifiers These start with a lower-case letter. The first alphabet of every
internal word is capitalized. All other letters are in lower case.

int totalPay; // variable identifier: totalPay
MyClass.showResult();
// MyClass is the Class Name and showResult() is a method of MyClass.

Constant Identifiers These are specified in upper case. Underscores are used to separate
internal words.

final double TAX_RATE = 0.05; // constant identifier: TAX_RATE
Package Identifiers These consist of all lower-case letters.

package mypackage.subpackage.subpackage; //Package Declaration

3.3.3 Keywords

Keywords are predefined identifiers meant for a specific purpose and cannot be used for
identifying used defined classes, variables, methods, packages, and interfaces. All keywords
are in lower case. Table 3.1 lists the keywords in Java.

Table 3.1 Keywords in Java

abstract assert boolean break byte
case catch char class continue
default do double else enum
extends final finally float for

if implements import instanceof int
interface long native new package
private protected public return short
static strictfp super switch synchronized
this throw throws transient try

void volatile while const™® goto*
*const and goto are reserved keywords.

3.4 LITERALS

Aliteral is a value that can be passed to a variable or constant in a program. Literals can be numeric
(for byte, short, int, long, float, double), boolean, character, string notations or null literals.
Numeric Literals can be represented in binary, decimal, octal, or hexadecimal notations. These
literals can be assigned to all numeric types in Java including char (based on their respective
range and size).

Binary literals are a combination of 0’s and 1’s. Binary literals can be assigned to variables
in Java 7. Binary literals must be prefixed with Ob or OB (zerob or zeroB). For example,

46 Programming in Java

char binl = 0b1010000; // value in binl will be P
char bin2 = 0b1010001; // value in bin2 will be Q
float bin3 = 0b1010000; // value in bin3 will be 80.0
int bin4 = 0b1010001; // value in bin4 will be 81

In case octal literals have to be specified, the value must be prefixed with a zero and only
digits from 0 to 7 are allowed.
For example,

int x = 011; //value in x is 9
char y=0150; // value in y will be h
float z=0234; // value in z will be 156.0

Hexadecimal literals are prefixed with Ox or 0X; the digits 0 through 9 and a through f'(or 4
through F) are only allowed. For example,

int y = 0x0001; //value in y is 1
char x=0x45; // value in x will be E
float y=0xA3; // value in y will be 163.0

All integer literals are of type int, by default. To define them as long, we can place a suffix
of L or [after the number for instance:

long 1 = 2345678998L;

All floating literals are of type double, by default. To define them as float literals, we need to
attach the suffix F or f. For double literals, D or d are suffixed at the end; however, it is optional.
For instance,

float f = 23.6F;
double d = 23.6;

Java 7 onwards the readability of literals can be enhanced by using underscore with numeric
literals. As the number of zeroes increase in a literal, counting the number of zeroes becomes
tedious. In such big literals, underscores can be used as shown below:

int numlit=100_000_000; // value in numlit will be 100000000

Underscores can be used not only with decimal literals but also with hexa, binary, and octal
literals as shown below:

int numlit=0x100_000; // value in numlitl will be 1048576
int bin=0B1_000_000_000_000_001; // vale in bin will be 32769
float octlit=03_000; // value in octlit will be 1536.0

m Underscore can only be used with literal values.

The following examples show some valid and invalid use of underscores.

int i =_23; // illegal, cannot start a literal with underscore
long £ = 3.2 222 2 1; // invalid use of underscore between value and suffix
long f = 3_2_222 21; // legal

float e = 4_.2_3f; // illegal use of underscore with a dot

Java Programming Constructs 47

float d = 4_2.2_3f; // legal

float e = 4 2.2 3 f // illegal

int i = 0_x_A_E; // illegal use of underscore in prefix

int j = Ox_A_E; // illegal use of prefix between prefix and literal
int k = OxA_E; // legal

For char literals, a single character is enclosed in single quotes. You can also use the prefix
\u followed by four hexadecimal digits representing the 16-bit unicode character:

char c = '"\UOO4E'; char sample = 'A'; char example = 'a’;

A single quote, a backslash or a unprintable character (such as a horizontal tab) can be specified
as a character literal with the help of an escape sequence. An escape sequence represents a
character by using a special syntax that begins with a single backslash character. Unicode is a
type of escape sequence (refer Table 3.2). Furthermore, the syntax of unicode escape sequence
consists of \uxxxx (where each x represents a hexadecimal digit).

Table 3.3 Special Escape Sequences

Table 3.2 Unicode Escape Sequences to \\ Backslash
Represent Printable and Unprintable Characters \" Double quote
"\u0041' Capital letter A \' Single quote
"\u0030" Digit 0 \b Backspace
"\u0022' Double quote “ \f Form feed
"\u003b"’ Punctuation ; \n New line
"\u0020" Space \r Carriage return
"\u0009" Horizontal Tab \t Horizontal tab

For instance, char ¢ = *\t'; // creates a character that represents horizontal tab (Refer
Table 3.3).

Unicode characters can be assigned to strings in Java 7. Unicode 6, which has thousands
of characters, cannot be accommodated in a 16-bit char data type. Increasing the size of char
data type would lead to backward compatibility problems. To maintain compatibility with the
application and standards, the string (“U-+hex”) is used to express unicode characters in Java.

A boolean literal is specified as either true or false. By default, it takes the value false (Refer
Table 3.4). The following code fragment demonstrates a boolean literal:

boolean firstRoll = true;

String literals consist of zero or more characters within double quotes. For instance,

String s = "This is a String Literal”;

Null literals are assigned to object reference variables (see Chapter 4 for object references).
s = null;

Table 3.4 shows a summary of the data types along with their respective default values, size,
and range.

48 Programming in Java

Table 3.4 Data Types: Size, Default Value, and Range

Data Type Default Value Size Range
byte 0 8 —128 to 127 (inclusive)
short 0 16 —32,768 to 32,767 (inclusive)
int 0 32 —2,147,483,648 to 2,147,483,647 (inclusive)
long OL 64 —9,223,372,036,854,775,808 t0 9,223,372,036,854,775,807 (inclusive)
float 0.0F 32 1.401298464324817e—45f to 3.402823476638528860e+38f
double 0.0D 64 4.94065645841246544e-324 to 1.79769313486231570e+308
char “\u0000’ 16 0 to 65535
boolean false Not true or false
defined

Table 3.5 lists the reserved literals in Java.

Table 3.5 Reserved Literals.

| true false null |

3.5 OPERATORS

An operator performs an action on one or more operands. An operator that performs an action
on one operand is called a unary operator (+, —, ++, — —). An operator that performs an action
on two operands is called a binary operator (+,—,/, * , and more). An operator that performs an
action on three operands is called a ternary operator (? :). Java provides all the three operators.
Let us begin the discussion with binary operators.

3.5.1 Binary Operators

Java provides arithmetic, assignment, relational, shift, conditional, bitwise, and member access
operators.

Assignment Operators

It sets the value of a variable (or expression) to some new value. The simple ‘=’ operator sets
the left-hand operand to the value of the right-hand operand. The assignment operator has right
to left associativity (discussed in Section 3.7); so the statement a = b = 0; would assign 0 to
b then b to a. Java supports the following list of shortcut or compound assignment operators:

+= —= *= [= %= &= |= "= <<=>>= >>>=

These operators allow you to combine two operations into one: one fixed as assignment plus
another one. These operators will be explained shortly according to their counterparts.

Arithmetic Operators

Arithmetic operators are used for adding (+), subtracting (—), multiplying (*), dividing (/), and
finding the remainder (%).

Java does not support operator overloading. There are certain languages like C++ that allow
programmers to change the meaning of operators enabling them to act in more than one way
depending upon the operands. But there are certain operators which are overloaded by Java itself

Java Programming Constructs 49

like + operator which behaves differently when applied to different operands. For example, if
+ operator is used and one of the operands is a string, then the other operand is converted to a
String automatically and concatenated. It is evident in the following examples in the System.
out.println statement when the String in the quotes is concatenated with the values of the
result or individual primitives. In addition to these operators, arithmetic compound assignment

operators are also provided by Java: +=, — =, /=, *=, %=. For example,
a += b; // evaluated as a = a + b;
a -= b; // evaluated as a = a - b;
a *= b; // evaluated as a = a * b;
a /= b; // evaluated as a = a / b;
a% = Db; // evaluated as a a%b

Let us take an example to demonstrate the use of these operators in Java. A close look at the
program will show us that the + operator can be used for two purposes: concatenation and
addition in the print statements.

m Demonstration of Arithmetic Operators

class ArithmeticDemo{
public static void main(String args[]){

int a = 25, b = 10;
System.out.println("Sum "+ a +" +" + b +" =" + (a + b));
//adding two variables a and b

System.out.println("Subtraction "+ a +" - " + b +" =" + (a - b));

//multiplying a with b

System.out.println("Multiplication "+ a +" * " + b +" =" + (a * b));
// Division

System.out.println("Division "+ a +" / " + b +" =" + (a / b));

// Remainder Operator

System.out.println("Remainder "+ a +" % " + b +" =" + (a % b));

// a and b can be added and the result can be placed in a

// Let us see how?

a += b;

System.out.println("Added b to a and stored the result in a" + a);

}
Output

C:\Javaprg\>Java ArithmeticDemo

Sum 25 + 10 = 35

Subtraction 25 - 10 = 15

Multiplication 25 * 10 = 250

Division 25 / 10 = 2

Remainder 25 % 10 = 5

Added b to a and stored the result in a 35

50 Programming in Java

Figure 3.2 shows how the ‘+’ operator concatenates and adds the operands

System.out.println("Sum "+a+"and " +b+" ="+ (a+b));
[
Concatenation
Concatenation Adding
Concatenation
Concatenation

Concatenation

Fig. 3.2 The Operation of ‘+’ Operator

Relational Operators

Relational operators in Java return either t7ue or false as a boolean type. Table 3.6 shows a list
of all the relational operators in Java.

Relational operators in C++ returns an integer where the integer value of zero may be interpreted
as false and any non-zero value may be interpreted as true.

Table 3.6 Relational Operators

equal to ==
Not equal to I=
less than <
greater than >
less than or equal to &=
greater than or equal to >=

m Demonstration of Relational Operators

class RelationalOperatorDemo
{

public static void main(String args[])

{

int a = 10,b = 20;

System.out.println("Equality Operator: a == c\t\t\t" +(a == b));
System.out.println("Not Equal To Operator: a != b : \t\t" +(a != b));
System.out.println("Less Than Operator: a == b : \t\t\t" +(a < b));
System.out.println("Greater Than Operator: a == b : \t\t" +(a > b));
System.out.println("Less than or equal to Operator: a == b : \t" +(a <= b));
System.out.println("Greater than or equal to Operator: a == b : \t" +(a >= b));

¥

Java Programming Constructs 51

Output

C:\Javaprg\>Java RelationalOperatorDemo

Equality Operator: a == : false
Not Equal To Operator: a !=b : true
Less Than Operator: a == b : true
Greater Than Operator: a == : false
Less than or equal to Operator: a == : true
Greater than or equal to Operator: a == : false

Boolean Logical Operators

Boolean logical operators are: conditional OR (||), conditional AND (&&), logical OR (]), logical
AND (&), logical XOR ("), unary logical NOT (!). Boolean logical operators are applied to
boolean operands or expressions (Section 3.6) and return a boolean value. The bitwise logical
AND (&), logical OR (|), logical XOR (") and logical NOT (~) operators are applied to integers
to perform bitwise logical operations discussed later.
Logical OR results in true if one of the operands is true. Logical AND results in false if one
of the operands is false. Logical XOR works like OR with an exception, that is, in case if both
the operands of an XOR operator are true then the answer is false. Logical NOT is just the
compliment of the boolean operand.
Conditional OR (||) and AND (&&) operators also known as short-circuit operators
conditionally evaluate the second operand or expression. In case of OR, if the first operand
is true, no matter what the second operand is, the answer is true. In case of AND, if the first
operand is false, no matter what the second operand is, the answer is false. So there is no need
to evaluate the second operand.

In addition to these operators, boolean compound assignment operators are also provided by
Java: &=, |-, "=. For example,

a &= b; // evaluated as a = a & b;
a |= b; // evaluated as a = a | b;
a ~= b; // evaluated as a = a ~ b;

m Demonstration of Boolean Operators

class

{

BooleanLogicalOperatorDemo

public static void main(String args[])

{
boolean a = true,b = false;
System.out.println("Logical OR: "+ a +" | "+b+": " +(a|b));

System.out.println("Logical XOR: "+ a +" ~ "+b+": "+(a”b));
System.out.println("Logical AND: "+ a +" & "+b+": "+(a&b));
System.out.println("Logical NOT: !a : "+(!a));
System.out.println("Conditional OR: "+ a +" || "+b+": "+(a||b));
System.out.println("Conditional AND: "+ a +" && "+b+": "+(a&&b));
// shortcut operator

a |=b;
System.out.println("Shortcut OR: "+ a +" | "+b+" = "+(a));
}

52 Programming in Java

Output

Logical OR: true | false: true
Logical XOR: true ”~ false: true
Logical AND: true & false: false
Logical NOT: !a : false

Conditional OR: true || false: true
Conditional AND: true && false: false
Shortcut OR: true | false = true

Bitwise Operators

Bitwise operators include and, or, xor, not, right shift, left shift, and unsigned right shift. In Java,
bitwise operators operate on int and long values. If any of the operand is shorter than an int, it
is automatically promoted to int before the operations are performed (see Section 3.8). Table
3.7 lists the bitwise operators and how they function.

Itis important to understand how integers are represented in binary. For example, the decimal
number 4 is represented as 100 in binary and 5 is represented as 101. Negative integers are
always represented in 2's complement form. For example, —4 is 1111 1111 1111 1111 1111
1111 1111 1100.

Bitwise shortcut operators are used in the same way as boolean operators. Bitwise shortcut

operators include the following:

AND: &=
OR: |=
XOR: "=
Shift Operator: >>=,<<=,>>>=

Table 3.7 Bitwise Operators

a&b
al|b
a™b
~a

ac<<b
a> b

a>>b

1 if both bits are 1

1 if either of the bits is 1

1 if both bits are different

Complement the bits.

Shift the bits left by b positions. Zero bits are added from the LSB side. Bits are discarded from the MSB side.
Shift the bits right by b positions. Sign bits are copied from the MSB side. Bits discarded from the LSB side.
Shift the bits right by b positions. Zero bits are added from the MSB side. Bits are discarded from the LSB side.

21 RS Demonstration of Bitwise Operators

class

{

BitwiseOperatorDemo

public static void main(String args[])
{
int x = 2,y = 3;
System.out.println("Bitwise AND: " +x+ "&" +y+ " = " +(x&y));

Java Programming Constructs 53

System.out.println("Bitwise OR :" +x+ "|" +y+ " = " +(x|y));
System.out.println("Bitwise XOR:" +x+ """ +y+ " = " +(xy));
System.out.println("Bitwise NOT: ~" +4x+ "=" +(~x));
}
}
Output

Bitwise AND: 2&3
Bitwise OR : 2|3
Bitwise XOR: 273 =1
Bitwise NOT: ~2=-3

2
3

Shift operators shift the bits depending upon the type of operator. The left shift operator shifts
the numbers of bits specified towards the left. Bits are discarded from the left and added from
the right with the value of bits being zero. The right shift operator shifts the numbers of bits
specified towards right. Bits are discarded from the right and added from the left side with the
value of bits being that of the sign bit. The unsigned right shift shifts the numbers of bits specified
towards right. Bits are discarded from the right and added from the left side with the value of bits
being zero. For example, let us assume x = 4 and this x is to be shifted by the shift distance of 1.

inty = x > 1;
//y has the value 2, value is halved in each successive right shift
= 00000000 00000000 00000000 00000100 >> 1
= 00000000 00000000 00000000 00000010 (which is 2)
inty = x << 1;
// y has the value 8, value is doubled in each successive left shift

inty = x > 1; // same as right shift for positive numbers.

If we provide a negative number to be left or right shifted, then the negative numbers are
represented in 2’s compliment arithmetic and then shifted. If we provide an int negative shift
distance as shown in the following example, first the negative shift distance is ANDed with the
mask 11111 (i.e., 31) and the result is the new shift distance. If we provide a long negative shift
distance as shown in the following example, first the negative shift distance is ANDed with the
mask 111111 (i.e., 63), and the result is the new shift distance.

m Shift Operators

class ShiftOperatorDemo
{
public static void main(String args[])
{
int x = 5,y = 1;
System.out.println("Left shift: "+x+"<<"+y+"="+(x<<y));
System.out.println("Right shift: "+x+" >> "+y+"="+(x >> y));
System.out.println("Unsigned Right Shift:

+X+" 55> "Hy+"="+(X >>> y));

//negative numbers

54 Programming in Java

}
Output
Left

System.out.println("Right Shift: -"+x+" >> "+y+"=
System.out.println("Unsigned Right Shift: -"+x+" >>> "+y+"=
System.out.println("Left shift: -"+x+" << "+y+"=

(=X >> y));
"="4(=X >>> y));
+(-x << y));

//negative shift distance of -31 actually means shifting 1 bit
System.out.println("Left shift: "+x+"<<-31 ="+(x << -31));

}

shift: 5 << 1 = 10

Right shift: 5 >> 1 = 2

Unsigned Right Shift: 5 >>> 1 = 2

Right Shift: -5 >> 1 = -3

Unsigned Right Shift: -5 >>> 1 = 2147483645

Left
Left

shift: -5 << 1 = -10
shift: 5 << -31 = 10

Bitwise operators are particularly used where bit-level or low-level programming is required
such as writing device drivers, working with embedded systems, compression of data,
encryption and decryption of data, setting mask and flags, and creating networking protocols

for communication.

3.5.2 Unary Operators

Unary operators, as the name suggest, are applied to only one operand. They are as follows:
++, - -, !, and ~. The unary boolean logical not (!) and bitwise logical not (~) have already been

discussed.

Increment and Decrement Operators

Increment and decrement operators can be applied to all integers and floating-point types. They

can be used either in prefix (— —x, ++x) or postfix (x——, x++) mode.

Prefix Increment/Decrement Operation

int x = 2;
inty = ++x; // x =3,y =3
intz=--x; // x=1, z=1

Postfix Increment/Decrement Operation

int x = 2;
inty = x++; // x == 3,y =

=2
int z = x--; // x=1, z =2

We will discuss these operators in Example 3.6.

3.5.3 Ternary Operators

Ternary operators are applied to three operands. This conditional operator (? :) decides, on the

basis of the first expression, which of the two expressions to be evaluated.

operandl ? operand2 : operand3

Java Programming Constructs 55

operandl must be of boolean type or an expression producing a boolean result. If operandi
is true, then operand2 is returned. If operandi is false, then operand3 is returned. This operator
is similar to an if conditional statement. For example,

String greater = x < y ? "Y is greater" : X is greater";

If the value of x is less than y, “Y is greater” string is retuned and stored in the variable: greater,
else “X is greater” is retuned and stored in the variable: greater.

3.6 EXPRESSIONS

An expression is a combination of operators and/or operands. Java expressions are used to create
objects, arrays, pass values to methods and call them, assigning values to variables, and so on.
Expressions may contain identifiers, types, literals, variables, separators, and operators (we have
already discussed all these topics). For example,

intm=2,n= 3,0 = 4;
inty =m* n * o;

m=2 is an expression which assigns the value 2 to variable m. Similarly, n=3 and o=4 are expressions
where n and o are being assigned values 3 and 4. m * n * o is also an expression wherein the
values of m, n, and o are multiplied and the result is stored in the variable y.

3.7 PRECEDENCE RULES AND ASSOCIATIVITY

Precedence rules are used to determine the order of evaluation priority in case there are two
operators with different precedence. Associativity rules are used to determine the order of
evaluation if the precedence of operators is same. Associativity is of two types: Left and Right.
Left associativity means operators are evaluated from left to right and vice versa for right
associativity. Precedence and associativity can be overridden with the help of parentheses.

Table 3.8 Precedence Rule and Associativity

Operators Associativity
., [1, (args), i++, i-- LR
++i, --i, +i, -i, ~, ! RL
new, (type) RL
* /s % LR
+, = LR
<<, >, >>> LR
<, >, <=, >=, instanceof Non Associative
==, I = LR
LR
n LR
| LR
&& LR
|| LR
? o RL
=, +=, -=, *=, [=, %=, <<=, >>=, >>>=, &=, "=, |= RL

Table 3.8 lists the operators in Java according to their precedence (from highest to lowest) and
their respective associativity’s. Operators in a row have same precedence.

56 Programming in Java

Here L — R indicates associativity from left to right and R — L indicates associativity from
right to left.

Sl ENN Precedence Rules

class AssociativityAndPrecedenceTest

{

public static void main(String[] args)

{
//precedence of * is more than that of +
L1 System.out.println(" 2 + 3 * 2 =\t " + (2 + 3 * 2));
//Associativity applies in case of operators with equal
//Precedence. below is a case of Left Associativity

L2 System.out.println(" 2 * 5 /3 =\t "+ (2 *5/ 3));

// Precedence overridden with help of parentheses

L3 System.out.println("(2 + 3) * 2 =\t " + ((2 + 3) * 2));
int x;
int y = 3;

int z = 1;
//Assignment associates from right to left

L4 X=y=z;
LS System.out.println(" x =y = z: \t" + x);

//+ and - have left associativity
L6 System.out.println(" 3 - 2 +1 =\t " + (3 -2+ 1));

//evaluating long expressions to check Precedence and Associativity
int i = 10;

int j = 0O;

int result = 0;

L7 result = i-- + 1 / 2 - ++1 + j++ + ++J;
System.out.println("i: "

+i+ Jj +j+

result: "+result);

// + operator has a left to right associativity
L8 System.out.println("Hello "+1+2);

// First two numbers are added and the added result is concatenated with
// String "Hello"

L9 System.out.println(1+2+" Hello");

}
}

Output

C:\Javabook\programs\chap3>Java AssociativityAndPrecedenceTest
2 +3*2=28

2 *5 =
(2 +3 2
X =Yy z: 1
3-2+1=2

i: 10 j 2 result: 6
Hello 12

3 Hello

* W
n w

10

I~ ~

Java Programming Constructs 57

Explanation

L1 Shows the precedence of * is more than +, that
is why 3 is first multiplied with 2 and the result (6)
is added with 2 and then printed.

L2 Shows two operators with equal precedence, *
and /. In this case, associativity plays a role instead of
precedence. As is evident from Table 3.9, * and / have
left associativity, so the operators will be evaluated
from the left side. That is why 2 is multiplied with 5
first and then the result (10) is divided by 3 to give
the integer quotient 3, which is then printed.

L3 Shows the precedence of (nudge) is more than
* and + (or any other operator, refer Table 3.9). In
this case, operation within parentheses is performed
first, that is, 2 is added to 3 and then the result (5) is
multiplied with 2 to give 10 which is then printed.
Also note that when no parentheses were used in L1,
the answer was 8.

L4 Shows the assignment operator which is right
associative, so first the value of z is assigned to y
and then the value of y is assigned to x.

L6 Portrays the case of same precedence, so
associativity is used for expression evaluation. Table
3.9 shows + and — have left associativity, so 2 is
subtracted from 3 first and then the result (1) is added
to 1 to output 2, which is then printed on the screen.

L7 In this expression, i-- + i / 2 - ++i + j++
+ ++j, the decremented value of i will be reflected
while evaluating the sub-expression i/2,i.e., i--+i/2
will be evaluated as 10 + 9/2 (result of sub-expression
is 14). At this point i will have the value 9. While
evaluating ++i, the value of i is incremented first
and then added, so the value of i becomes 10 again
(result of expression at this point is 14 —10 =4). The
value of j (i.e. 0) is added to the expression first and
then incremented in the sub-expression j++. Now j
has the value 1 (result of expression at this point i- -
+ 1i/2 - ++i + j++is 4). In the last sub-expression
++j, the value of j (which is 1 now) is incremented
first and then added to the expression (value of j is
now 2 which is added to 4 to produce 6 as the result).
L8 & 9 Show the usage of + operator between
different operands. The important point to note is
that associativity and not precedence will be used
for evaluating expression. The associativity of +
operator is from left to right, so the String “Hello”
is concatenated to 1 first and then String “Hello
1” is concatenated to the second number 2. In L9,
the numbers are added first and then the sum is
concatenated with the String.

3.8 PRIMITIVE TYPE CONVERSION AND CASTING

In Java, type conversions are performed automatically when the type of the expression on the
right-hand-side of an assignment operation can be safely promoted to the type of the variable

on the left-hand-side of the assignment.
char

byte —> short —> int —> long —> float —> double Widening

> Cconversion

Conversions that are implicit in nature are termed as widening conversions. In an assignment
statement, the types of the left-hand-side and right-hand-side must be compatible. If the right-

58 Programming in Java

hand-side can fit inside the left-hand-side, the assignment is completed. For example, a smaller
box can be placed in a bigger box and so on. A byte value can be placed in short, short in an
int, int in long,and so on (see widening conversion). Any value can be assigned to a double.
Any value except a double can be assigned to a float. Any whole number value can be assigned
to a long; and int, short, byte, and char can all fit inside int. For example,

byte b = 10; // byte variable
int 1 = b; // implicit widening byte to int

Type conversion or promotion also takes place while evaluating the expressions involving
arithmetic operators. For example,

int i = 10; //int variable
double d = 20; //int literal assigned to a double variable
d =1+ d; //automatic conversion int to double

In the previous statement, the int value 7 is promoted to double and then the two double values
(i & d) are added to produce a double result. The basic rule is that if either of the variables in a
binary operation (involving arithmetic, relational, equality) is double, then Java treats both values
as double. If neither value is a double but one is a float, then Java treats both values as float.
If neither is a float or a double but one is a long, then Java treats both values as long. Finally,
if there are no double, float, or long, then Java treats both values as an int, even if there are no
int in the expression. Therefore, the result will be a double, float, long or int depending on
the types of the operands. For example, consider the following declarations:

byte b = 10;
short s = 30;

The following statement is invalid because while evaluating the expression, byte and short
are automatically promoted to int, so the result is an int and short is used to store the result
which is smaller than int.

short z = b*s; //invalid
int i = b*s; //valid

In case of bitwise and, or, xor, if one of the operand is broader than int, then both operands
are converted to long; else both are converted to int. If bitwise not operator is applied to an
operand shorter than int, it is promoted to int automatically. In case of shift operators, if a single
operand has a type narrower than int then it is also promoted to int, otherwise not.

Let us take an interesting case

float f=3; // legal; int literal assigned to a float variable

The last declaration of a float variable shows that suffix ¥ of F was not used while assigning
value and yet it was considered a legal statement. The reason is because 3 is an int and an int
value can be directly assigned to a float. But if the declaration would have been

float f = 3.0; // illegal;

Java Programming Constructs 59

m Java treats all real numbers as double so 3.0 is treated as double, which cannot be assigned
directly to a float, as float is smaller than double. There are two possible solutions which can
be applied to the above statement: (a) suffix F or f with the literal i.e. 3.0f (b) cast it.

float f = 3.0f; // legal;

Casting is also known as narrowing conversion (reverse of widening conversion).
char

N\

byte «— short «— int «— long «— float «— double Narrowing
conversion

<
<

If you want to assign long values to int variables or double values to float variables, then the
compiler will not allow you to do so unless you explicitly tell it that you really want to do so with
the help of a cast. When it is necessary to put a bigger value into a particular smaller type, use a
cast. For example, consider the reverse of the box example. A bigger box has to be placed in a
small box. Then the bigger box has to be chopped so that the bigger box (which has now become
smaller) can be placed in the small box. Casting is not implicit in nature. It has to be explicitly
mentioned by preceding it with the destination type specified in the parentheses. For instance,

int i = (int)(8.0/3.0);

A cast lets the compiler know that you are serious about the conversion you plan to make.
When a value is cast before assignment, the right hand side is chopped down to fit into the left
hand side. For casting a floating-point number to an int or a long, the fractional part is truncated
resulting in an integer. If the resulting integer is small enough to fit in the left hand side, the
assignment is completed. But if the number is too large, then the integer is set to the largest
possible value of its left-hand-side type. If the real number is too small, the integer is set to the
smallest possible value of its left-hand-side type. For byte and short, if the value is small enough
to fit in the byte and short destination, the assignment is completed. The dark side of casting is
that it may result in the loss of sign, magnitude, and precision.

One more point worth mentioning is that if you try to put a long value into float variable,
Java treats this as a legal statement. For example,

long x = 321;
float y = x; // legal statement

The point worth pondering is that how can a long value, which is of 64 bits, be assigned to a
float variable which is of 32 bits? To understand why this is a legal statement we need to know
how floating point numbers are represented. A float or double value is represented using IEEE
754 binary floating point standard. A floating point number is represented in four components—
sign, mantissa, radix, and exponent. A sign bit is used to denote a positive number or a negative
number. A value of zero in sign bit indicates positive number and 1 in sign bit indicates a negative
number. Mantissa holds the significant digits of the floating point number and exponent is used
for indicating the power (positive or negative) of the radix. The first bit of the exponent indicates
its sign. The format of a floating point number is shown below:

60 Programming in Java

sign bit * mantissa * 2exponent

Java uses a radix of 2. A float variable has 23 bits for mantissa and 8§ bits for exponent. A
double variable uses 52 bits for mantissa and 11 bits for exponent. The bit representation of
these variables is shown below:

Sign bit 8 exponent bits 23 mantissa bits
float variable
Sign bit 11 exponent bits 52 mantissa bits

So you can easily imagine that a float variable can accommodate a lot more values that what
a long variable can because of its representation and format. For a more detailed discussion on

double variable

floating point standard refer to IEEE 754 floating point standard.)

Let us take an example to understand the concepts.

S¢S WA Conversion and Casting

class CastingAndConversionExample

L1

L2

L3

L4

LS

L6

L7

{

public static void main(String args[])

{

//casting

int i = (int)(8.0/3.0);
// j will have the largest value of its type as 2147483648.0f is too large
int j = (int)2147483648.0f;
System.out.println("i = " +i+

jo="+3);

//casting: answer will contain 8 low order bits of the int value of 257
byte b = (byte)257;

//casting: answer will contain 16 low order bits of the int value of 65537
short s = (short)65537;
System.out.println("b =" +b+

s ="+s);

//casting int to char
System.out.println("Converting int to char " +(char)75);

//conversion: int * byte * short * double is double
double d =i * b * s * 2,0;
System.out.println("Conversion to double result is : "+d);

//implicit conversion to int in case of shift operator
i=0>b<< 2;

System.out.println("i = "+i);

// compound operator automatically perform casting
byte c = 0;

Java Programming Constructs 61

L8 //c = c + b; does not compile
L9 Cc += b; // complies
System.out.println("Result: "+c);
}
}
Output
i =2 3j = 2147483647
b=1s=1

Converting int to char K

Conversion to double result is : 4.0
i=4
Result: 1

Explanation

L1 It shows the casting of a double expression
into an int. The result of dividing a double value by
a double value is a double, which is then casted into
an int.

L2 It shows the casting of a float literal into an
int, which is larger than the maximum value an int
variable can hold. So j is set to the maximum value
an int can hold.

L3 It shows the casting of an int literal into a
byte. It is again larger than the maximum a byte
can hold. In this case, byte variable will contain the
value which is present in the 8 low order bit of the
int literal 257. The int literal 257 has the binary
value 00000000 00000000 00000001 00000001.
After casting, byte will have the low order 8 bits
(00000001), which is the decimal value 1.

L4 It shows the casting of an int literal into a
short, which is larger than the maximum a short can
hold. In this case, the short variable will contain the
value that is present in the 16 low order bits of the
int literal 65537. int literal 65537 has the binary
value 00000000 00000001 0000000 00000001.
After casting, short will have the low order 16 bits
(00000000 00000001) which is the decimal value 1.
L5 It shows the casting of an integer into a char.
Characters are represented by integral ASCII values,

which can be casted back to character. An integer
variable can hold a character, e.g. int x ='K'. This
is a case of automatic promotion; here x will have
the value 75 which is the ASCII value of 'K".

L6 Itshows the multiplication automatic promotion.
The expression involves multiplication that is left
associative. First, byte variable b is automatically
promoted to int and multiplied with i givingan int
result (i.e., 2*1 = 2). Then short is automatically
promoted to an int and multiplied with the previous
int result to give a new int result (i.e., 2*1 = 2).
Now this int result is automatically promoted to
double because it has to be multiplied to a double
literal (i.e., 2.0) giving a double result of 4.0.

L7 Itshows the left shifting of bits in the expression
b << 2. Before shifting, there is an automatic promo-
tion of byte variable b to an int and then the 32 bits
are shifted towards left by two places.

L8 It is commented, as it will not compile.
During evaluation of this expression ¢ and b are
automatically promoted to int and added to produce
an int result. This result cannot be stored directly in
a byte variable.

L9 It complies because the operator used in this
case is a compound operator that automatically casts
the result into the destination type.

3.9 FLOW OF CONTROL

Control flow statements help programmers make decisions about which statements to execute
and to change the flow of execution in a program. The four categories of control flow statements
available in Java are conditional statement, loops, exception, and branch.

62 Programming in Java

3.9.1 Conditional Statements

Java programs accomplish their tasks by manipulating the program data using operators and
making decisions by testing the state of program data. When a program makes a decision, it
determines, based on the state of the program data whether certain lines of code should be
executed. For example, a program may examine a variable called flag to determine if it should
execute a block of code that saves data into a file on to the disk. If flag is true, the data is saved;
else the data is not saved. The two conditional statements provided by Java are: if .. else and
switch-case

if..else
The syntax of if statement is as follows:

if (x = = 0)

{// Lines of code}
else if(x = = 1)

{// Lines of code}

{// Lines of code}

The arguments to a conditional statement like if must be a boolean value, which is something
that evaluates to true or false. You can have n number of else if (){} statements in your
program, as per your requirement. The if...else condition can also be nested as shown.

if (condition)

{

if (condition)
{//do something based on the condition}

}

The following example shows how if...else conditional statements can be used in Java.

Example 3.8 K MY EY]

class IFElseExample

{
public static void main(String args[])
{
int x=20,y=18,z=22;

L1 if (x < y) // x comes before y
L2 {
L3 if (z < x) // z comes first
L4 System.out.println(z + " " + x + " " +y);
L5 else if (z > y) // z comes last
L6 System.out.println(x + " " +y + " " + 2);
L7 else // z is in the middle
L8 System.out.println(x + " " + z + " " +y);
L9 }

L10 else

L11 {
L12 if (z < y)
L13 System.out.println(z + " "

L14 else if (z > x)
L15 System.out.println(y + " "
L16 else
L17 System.out.println(y + " "
}
}
}
Output
C:\>Java IFElseExample
18 20 22

+y +

+ X +

+z +

Java Programming Constructs 63

// y comes before x
// z comes first

+ X);

// z comes last

+2);

// z is in the middle

+ X);

Explanation

L1 Itshows if statement comparing x withy. If
x is less than y, then control passes into the enclosing
curly brackets starting from L2. But in our example,
x is greater than y, so the control passes to the else
statement in L10.

L3 Ituses the nested if statement. This if clause
is within the if statement on L1. If condition in
L1 returns true, then the condition on this line is
checked. The condition checks whether z is less than
x, which is already less than y from L1. If (z < x)
is true, then z is the smallest of the three, y is the
largest, and x lies in between.

L4 It prints the facts of L3.

L5 If condition on L3 returns false, the control
passes on to L5, which means z is not less than x
and in L5, z is compared with y. If z is greater than
y, it means z is the largest, x is smallest, and y lies
in between. (We already know the fact from L1 that
x 1s less than y).

L6 It prints the facts of LS5.

L7 Ifcondition on L5 returns false, then the control
passes on to the else on L7, which means that x is
less than y (L1) and z is not less than x (L3) and
is not greater than y (L5). So x is the smallest, y is
the largest, and z lies in between.

L8 It prints the facts of L7.

L10 Theelse of if on L1. The control passes on
to this else if L1 returns false, which means x is
not less than y.

L11 The starting curly bracket of else.

L12 It checks if z is less than y. If true, z comes
first, then y, and x is the largest.

L13 It prints the facts of L12.

L14 [Itchecksifz is greater than x. Iftrue, y comes
first, then x, and z is the largest. In our example,
this case is executed as the value of x is 20, y is 18,
and z is 22.

L15 It prints the facts of L14.

L16 Ifz isnotlessthany (L12)and z isnot greater
than x, i.e., z is in the middle, y is the smallest, and
x is the largest.

L17 It prints the facts of L16.

Switch-case

Java has a shorthand for multiple if statement—the switch-case statement. Here is how we can
write the above program using a switch-case:

switch (x) {

case 0O:
// Lines of code

[vww.ebook3000.con)

http://www.ebook3000.org

64 Programming in Java

doSomething0();
break;

case 1:
// Lines of code
doSomethingl();
break;

case n:
// Lines of code
doSomethingN();
break;

default:
doSomethingElse();
}

switch-case works with byte, short, char, and int primitive type. It can also be an enum type
(see Chapter 6) or one of the four special wrapper classes (see Chapter 6) namely: Byte for byte,
Short for short, Character for char, Integer for int. We can use strings also with the switch-case
from Java 7 onwards. It means that x must be one of these int, byte, short, char, enum type,
String or (one of the four) wrapper classes. It can also be an expression that returns an int,
byte, short, char or String. The value in x is compared with the value of each case statement
until one matches. If no matching case is found, the default case is executed.

Once a case is matched, all subsequent statements are executed till the end of the switch
block or you break out of the block. Therefore, it is common to include the break statement at
the end of each case block, unless you explicitly want all subsequent statements to be executed.
The following example shows how switch-case can be used in Java. A switch-case is more
efficient than an if-then-else statement, as it produces a much efficient byte code.

Sl RN switch-case

class SwitchCaseDemo

{
public static void main(String args[])
{
L1 char c='B"';
L2 switch(c)
L3 {
L4 case 'A':
L5 System.out.println("You entered Sunday");
L6 break;
L7 case 'B':
System.out.println("You entered Monday");
break;
L8 case 'C':
System.out.println("You entered Tuesday");
break;

L9 case 'D':

Java Programming Constructs 65

System.out.println("You entered Wednesday");
break;

L10 case 'E':
System.out.println("You entered Thursday");
break;

L11 case 'F':
System.out.println("You entered Friday");
break;

L12 case 'G':
System.out.println("You entered Saturday");
break;

L13 default:

L14 System.out.println("Wrong choice");

L15 }

L16 }

}
Output

You entered Monday

Explanation

L1 It declares a character variable ¢ with the
value ‘B’. \

L2 It switches the control the case where a match
was found. In our case, the control passes to L7.
L3 Itis the start of switch statement.

L4-6 These show the first case, that is, case ‘A’.
If the value in the character variable is ‘A’, then this
case is executed, and the output will be You entered
Sunday. L6 shows the break statement, to break out
of'the switch-case statement. Ifthe break statement
is not included in the code, then subsequent cases
will also be executed.

L7 It shows the second case similar to L4. In our
example, the value of the char wvariable is ‘B’, so
L2 switches control to this line and the output will
be You entered Monday. After printing the output,
the control moves out of the switch-case because
a break statement is included in the case.

L8-12 These are similar to L7 but will only be
executed in case the value of the char variable is
‘C’ (L8), ‘D’ (L9), ‘E’ (L10), ‘F’ (L11), and ‘G’
(L12), respectively.

L13 Itshows the default case. It is executed in case
the char variable takes a value other than A to G.

The value of character ‘c’ is fixed as ‘B’ in

our example. This value should be set based on

the user’s input. But taking user’s input is not yet discussed; so we have fixed the value of
character ‘c’. We will discuss it in Chapter 9.

3.9.2 Loops

The purpose of loop statements is to execute Java statements many times. There are three types

of loops in Java—+for, while, and do-while.

for Loop

The for loop groups the following three common parts together into one statement:

(a) Initialization
(b) Condition
(c) Increment or decrement

66 Programming in Java

To execute a code for a known number of times, for loop is the right choice. The syntax of
for loop is

for (inti=0; i<5; i++)

L 1

L

Declaration and initialization Condition next iteration

S JERKMINE for loop

class ForDemo

{
public static void main(String args[])
{
L1 for(int i = 1;i <= 5;i++)
L2 System.out.println("Square of "+i+" is "+ (i*i));
}
}

Output

Square of 1 is 1
Square of 2 is 4
Square of 3 is 9
Square of 4 is 16
Square of 5 is 25

Explanation

L1 It shows the for loop with its three parts:
initialization (i is initialized to 1), condition (i is less
than or equal to 5) and the third is increment (i++).

for which the print statement in L2 will be executed
and likewise fori =2, 3, 4, and 5.
L2 It prints the square of i (i.e., i*i). This line

The loop will be executed five times. This loop has

ill b ted five times, fi h value of i.
only one statement. Initially the value of i will be 1, W be excetied Hve Himes, onee ot eachi valie o1

while Loop

The while loop is used to repeatedly execute a block of statements based on a condition. The
condition will be evaluated before the iteration starts. A for loop is useful when you know the
exact number of iterations. If you want to execute some statements for an indefinite number
of times (i.e., number of iterations is unknown), a while loop may be the better choice. For
example, if you execute a query to fetch data from a database, you will not know the exact
numbers of records (rows or columns) returned by the query. A for loop cannot be used to iterate
the returned records in this case.

Java Programming Constructs 67

The while statement has the following syntax:

while (condition)

{

Statements to execute while the condition is true

}

The program in Example 3.10 can also be written using a while loop.

[EZLETERI white Loop

class WhileDemo

{
public static void main(String args[])
{
L1 int i = 1;
L2 while(i <= 5)
L3 {
L4 System.out.println("Square of " +i+ "is" +(i*i));
L5 i++;
L6 }
}
}
Output
Square of 1 is 1
Square of 2 is 4
Square of 3 is 9
Square of 4 is 16
Square of 5 is 25

Explanation

L1 TItinitializes an int variableito 1.

L2 It demonstrates the while loop. In this loop,
the value of i is checked to be less than or equal
to 5, which in the first iteration is 1 (less than 5),
so the control passes into the loop. After executing
the statements within the enclosing curly brackets
of the while loop, again the condition of the while

loop is checked. It goes on until the condition in the
while returns false (i.e., when value of i becomes
6), in which case the control comes out of the loop.
L3 Curly bracket to denote the start of while loop.
L4 It prints the square of i.

L5 It increments the value of i.

L6 Curly bracket denoting the end of while loop.

do-while Loop

A do-while loop is also used to repeatedly execute (iterate) a block of statements. But, in a
do-while loop the condition is evaluated at the end of the iteration. So the do-while loop (unlike
the while loop) will execute at least once and after that depending upon the condition.

The general form of a do-while loop is

do
{

Statements to execute once and thereafter while the condition is true

} while (test);
Next-statement;

68 Programming in Java

[EZLTTERFY do-while Loop

class DowWhileDemo

{

public static void main(String args[])
L1 { int 1 = 1;
L2 do
L3 {
L4 System.out.println("Square of" +i+ "is" + (i*i));
L5 i++;
L6 }while(i <= 5);

}
}
Output

Square of 1 is
Square of 2 is
Square of 3 is
Square of 4 is
Square of 5 is 25

B O DR

Explanation
L1 It initializes an int variable i to 1. executed at least once and later it depends on the
L2 It shows the starting do statement of the do- condition specified in the while loop on L6. In this
while loop. case, the statements on L4 and L5 will be executed

L4 to 6 The statement on L4 and LS5 will be not only once, but five times (value of i loops from
1 to 5 inclusive).

for-each Loop

Java 5 introduced what is sometimes called a for-each statement that accesses each successive
element of an array, list, or set without being associated with iterators or indexing. This new
for statement is called the enhanced for or for-each. This loop is used to access each value
successively in a collection of values (like array). It is commonly used to iterate over an array
or a collections class (e.g., ArrayList). Like for loops, these loops perform a fixed number of
iterations. But unlike them, the for-each loop determines its number of steps from the size of
the collection.
The general form of for-each loop is

for (type var : arr)

// Statements to repeat
¥

We will return to for-each loop when we discuss arrays and collections in Java.

3.9.3 Branching Mechanism

Java does not offer a go to type of statement as in some older languages, because it leads to
unreadable code. However, Java supports other ways to jump from one statement to another.
Two types of branching statements are available in Java—break and continue.

Java Programming Constructs 69

break Statement

break statement is used in case the user needs to jump out of a loop, while the continue statement
is used where the user wants to go back to the top of the loop. A break statement is used to jump
out of a loop when a particular condition occurs, as shown below:

while (i < 5) {
//do Something;
if(i < 0) break; // jump out of the loop

}

The break will result in the program flow moving out of the loop to the next statement following
the loop statement. The following example is a program statement to choose prime numbers
within a given range.

m Usage of break

class PrimeDemo{
public static void main(String[] args){

int j,k;
System.out.print("Prime numbers between 1 to 30 : ");
L1 for (j = 1; j < 30; j++){
L2 for (k = 2; k < j; k++){
L3 if(j % k == 0) break;
}
L4 if(J == k) {
L5 System.out.print(j+ " ");
}
¥
3}
Output

C:\Javabook\programs\chap3>Java PrimeDemo

Prime numbers between 1 to 30 :

L1

It creates a for loop which ranges from 1 to

23571113 17 19 23 29
Explanation

by any number in this range (i.e., remainder is 0),

30 (as we need to find primes between 1 and 30).
L2 It creates an inner for loop which starts from
2 (as 1 is not a prime number) to j.

L3-5 Condition to check whether j is divisible
by any number in the range 2 to j-1. If it is divisible

break out of the inner for loop and check (in L4)
whether the numerator (j) and denominator (k) are
same. (Prime numbers are divisible by 1 and itself).
If both are same, it is a prime number.

If, instead, you want the flow to jump out of both the loops, use the labeled break as shown

in the next example.

Sl JERMEN Labeled break

class LabeledBreakDemo{

public static void main(String args[])

70 Programming in Java

{
L1 Outer : for(int i = 0; i < 4; i++){
L2 for(int j = 1; j < 4; j++){
L3 System.out.println("i:" + i + " j:" + j);
L4 if(i == 2) break Outer;
3}
Output
C:\Javabook\programs\chap3>Java LabeledBreakDemo
i:0 j:1
i:0 j:2
i:0 j:3
i:1 j:1
i:1 j:2
i:1 j:3
i:2 j:1
Explanation

L1 Alabel named outer is placed on the outer for

loop with a colon after the label name.
L2 An inner for loop is created.

L3 Prints the value of i and j.
L4 Ifthevalueofi isequal to 2, the control comes
out of both the loops and the program terminates.

Continue Statement

Situations can occur where you do not want to jump out of a loop, but simply stop the current
iteration and go back to the top and continue with the next iteration, as shown in the following

code.

m Code Snippet for continue

while (i < 5){

L2 //doSomethingl;
L3 if(i < 4) continue;
L4 //doSomething2;

}

Explanation

L1 Beginning of while loop.

L2 Inside the loop, there are some statements
shown in comments (//do somethingl).

L3 If1i is less than 4, continue to the top of the
loop for next iteration.

L4 The doSomething2 statement will not execute
until i equals 4 because the continue statement

keeps sending the program flow back to the next
iteration of the loop.

Sometimes you may want to jump out of not only the
inner loop but the outer loop as well. In that case, you
can put a label (similar to label in break) on the outer
loop and jump to it and continue its next iteration, as
in the following example.

SEnJERMN Code Snippet for Labeled continue

L1 jmp0: while (i < 5){

L2 for (int i = 0; i < 4; i++){

L3 if(i = = 2) continue jmpO; //do something;
}

}

Java Programming Constructs 71

Explanation

L1 Labelled continue (i.e., jmp0) on the beginning
of while loop.
L2 Inner for loop.

L3 The if statement inside the inner for loop
states to jump to the outer while loop if i is equal
to 2, else execute the statements (do something).

Java is an object-oriented programming language that
can be used to solve problems. All the Java keywords
have a fixed meaning and form the building block for
program statements.

Variables hold data at memory locations allocated to
them. There are eight basic data types in Java, namely
byte, short, int, long, float, double, boolean, and char.
Java is portable across computer platforms. Java does
not leave the size of data types to the machine and
the compiler, but specifies everything. All integer (byte,
short, int, long) and floating-point types (float, double)
are signed in Java. Java 7 introduced binary literals
to be assigned to numeric variables and underscores

Objective Questions

1. In the following class definition, which is the first
line (if any) that causes a compilation error?
Select the correct answer.

public class CastTest {
public static void main(String args[]){

char a;
int j;
a="A"; //1
j=a; //2
a=7j+1; //3
at+t; //4
}
}

(a) The line labelled 1.
(b) The line labelled 2.
(c) The line labelled 3.
(d) The line labelled 4.

2. Which of these assignments are valid?
(a) shorts =48; (b) floatf=4.3;
(c) doubled =4.3; (d) intl="1;

SUMMARY

EXERCISES

to be used with literals. Apart from this, Java 7 added
strings to be used with switch case statements.

There are several operators in Java that can be
classified as arithmetic, relational, logical, assignment,
increment and decrement, conditional, bit-wise, and
special. Expressions are formed with variables and
operators. Operators in Java have certain precedence
and associativity rules that are followed while
evaluating expressions. Automatic-type conversion
takes place according to a set of rules in expressions
with mixed types. Explicit type conversion (casting) is
also possible in Java.

3. What is the output when the following program
is compiled and run?

class test {
public static void main(String args[]){

int i,j,k,1=0;
k = 1++;
j = ++k;
i= j++;

System.out.println(i);
Yy
(@0 (b) 1 (c) 2 (d) 3
4. What gets printed on the standard output when

the following class is compiled and executed?
Select the correct answer.

public class SCkt {
public static void main(String args[]) {
int i = 0;
boolean t = true;
boolean f = false, b;
b = (t & ((i++) == 0));

72

Programming in Java

b = (f & ((i+=2) > 0));
System.out.println(i);
}

}

(@) 0 (b) 1 (c) 2 (d) 3

Which operator is used to perform bitwise

inversion in Java?

@@ .~ (b) ! (c) & (d) |

Which of the following statement(s) are correct?

(a) Java provides two operators to do left shift
— << and <<<,.

(b) >>is the zero fill right shift operator.

(c) >>>is the signed right shift operator.

(d) For positive numbers, results of operators
>> and >>> are same.

. What is the result of compiling and running the

following program?

public class test {
public static void main(String args[]){

int i = -1;
i=1>1;
System.out.println(i);
}
}
(a) 63 (b) —1 (c) O (d) 1

What is the output when the following class gets
compiled and run?

public class example{
public static void main(String args[]){
int x = 0;
if(x > 0) x = 1;
switch(x){
case 1:
System.out.println(1);
case O:
System.out.println(0);
case 2:

Review Questions

1.

What are the rules for naming an identifier in
Java?

Explain conversion. How is it different from
casting?

10.

System.out.println(2);
break;
case 3:
System.out.println(3);
default:
System.out.println(4);
break;

13}
(@) 0 (b) 1 (c) 2 (d) 3
Select the lines that form a part of the output
when the following code is compiled and run.

public class test{
public static void main(String args[]){
for(int 1 = 0; i < 3; i++)

{
for(int j = 3; j >= 0; j--)
{
if(i == j) continue;
System.out.println(i + " " + j);
}
}
1}
(@) 00 (b) 01 (c) 02 (d) 03

Select the lines that form a part of the output
when the following code is compiled and run.

public class test {
public static void main(String args[]){
for(int 1 = 0; 1 < 3; i++)

{
for(int j = 3; j »>= 0; j--)
{
if(i == j) break;
System.out.println(i + " " + j);
}
}
1}
(a) 00 (b) 01 (c) 02 (d) 03

What are shift operators? How many types of
shift operators are available in Java?

What are the differences between for, while
and do...while loops?

5.

6.

What is the difference between right shift and
unsigned right shift operator?

What is precedence? Explain how precedence
and associativity are useful in evaluating
expressions.

Explain the following:

(a) variable

(b) literal

(c) keywords in Java

(d) data types in Java

Programming Exercises

1.

Write a program Pattern.Java that takes an
integer, N and prints out a two-dimensional
N-by-N pattern with alternating spaces and
asterisks, like the following 4-by-4 pattern.

* k * %
* k Kk K
* Kk ok k

* Kk ok Kk

. Write a program that does binary-to-decimal and

decimal-to-binary conversions. (Do not use the
predefined methods.)

Write a program that takes a price and prints out
the appropriate tax along with the total purchase
price assuming the sales tax in your city is
12.35%.

Write a program that takes the number of hours
worked by an employee and the basic hourly pay,
and outputs the total pay due.

. Write a program that takes an integer n and

calculates n!.

Answers to Objective Questions

. (c), integer cannot be assigned to a character without a cast.

(b)

6.
10.

. (@)
- (b), (c), (d)

(d)
(b), (c), (d)

10.

10.

7. (b)

Java Programming Constructs 73

(e) break
(f) continue

What are binary literals and how are they used
in Java?

Explain how underscores are used with literals
along with their purpose.

Explain why long having 64 bits gets automatically
converted to a float, which is only 32 bits in size,
when we try to assign a long value to a float
variable.

Write a program that converts inches to centime-
tres.

Write a program that converts acres to hectares
and vice versa.

Write a program that accepts resistances and
outputs the equivalent resistance when they are
connected in series. (Assuming the Resistance
R1=12, R2=14, R3=15).

Write a program that calculates the equivalent
resistance arranged in parallel. The formula for
calculating the equivalent resistance arranged in
parallel is

B

1.1

R1 R2

Write a program that calculates how much a
$10,000 investment would be worth if it increased
in value by 20% during the first year, lost $500
in value in the second year, and increased 16%
in the third year.

Re quiv =

(a), (c), (d), the value 4.3 is of type double, so it cannot be assigned to a float without a cast.

(b), in the second assignment to variable b, the expression (i += 2) does not get evaluated.

8. (a). (c)

Copyrighted Materials)

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

Classes and Objects

Space is big. You just won't believe how vastly, hugely, mind-bogglingly big it is.
1 mean, you may think it’s a long way down the road to the chemists, but that’s just
peanuts to space. Douglas Adams

~ After reading this chapter, the readers will be able to
¢ know how classes and objects are created and applied in Java
know how methods are created and used
understand the concepts of polymorphism and overloading
understand what is a constructor
establish familiarity with static keyword
know about arrays and command-line arguments
understand inner classes
understand and use arrays

L 2R 2BE 2R JER K JER 4

4.1 CLASSES

Java is an object-oriented language. In the first chapter, we have learnt the concepts of object-
oriented programming (OOP). Before applying these concepts in Java, we must understand the
basic building blocks of OOP, i.e., classes and objects.

In the real physical world, everyday we come across various objects of the same kind. One
of the many things we come across are motorbikes. In terms of object-oriented language, we
can say that the bike object is one instance of a class of objects known as ‘motorbikes.’ Bikes
have gears, brakes, wheels, etc. They also follow certain behaviors, when functions are applied
on them, e.g., bikes slow down when brakes are applied, they accelerate when geared up and
acceleration is applied, and so on.

Manufacturers produce many bikes from the same blueprint by taking advantage of the fact
that bikes share similar characteristics. It would be very inefficient to produce a new blueprint
for every individual bike they manufactured.

In the object-oriented software, there are many objects of the same kind, i.e., belonging to
the same classes that share certain characteristics. Like the bike manufacturer, we can take
advantage of the fact that objects of the same kind are similar and a blueprint for those objects

can be created. Software ‘blueprints’ for objects are called classes.

Bike
boolean kickStart

boolean buttonStart
int gears

accelerate()
applyBrake()
changeGear()

Fig. 4.1 Bike Class

4.2 OBJECTS

Classes and Objects 75

Let us come back to our bike class, which would also declare and provide
implementations for the instance methods or functions that allow the rider to
change gears, apply brakes, and accelerate. Figure. 4.1 shows the bike class.

m A class is a blueprint or prototype that defines the variables and
methods common to all objects of a certain kind. In other words, a
class can be thought of as a user-defined data type and an object as
a variable of that data type that can contain data and methods, i.e.,
functions working on that data.

The object-oriented technology revolves around objects. We see many objects around us
such as table, chair, dog, fan, computer, pen, and car. These objects need not be tangible
ones only, but can be intangible also, e.g., bank accounts, marks, fees, etc. All these real-
world objects have different states and behaviors. The state of an object is defined by the
values of the attributes at any instant. Bikes have attributes (speed, engine capacity, number
of wheels, number of gears, brakes), behaviors (braking, accelerating, slowing down, and
changing gears) and on application of this behavior on attributes, the state of the object will
change. Bike object can be in various states, it can be stationary, moving etc. For example,
when we apply brakes, the speed will reduce and when we accelerate speed increases. A
state will change over time and at any instant a state would be somewhat like current speed
= 60 km/hr and current gear = 4th. Similarly, the state of a fan would be either off or on.

We can conceptualize these real-time objects as software objects. They are similar natured
in the sense they too have states and behaviors. The state in software objects is maintained in
variables and the behavior can be implemented using methods. It is interesting to know that
these real-world objects can be represented using software objects.

An object is a software bundle that encapsulates variables and methods operating on those
variables.

You might want to represent a real-world bike as a software object in a gaming application.
Abstract objects representing abstract concepts can also be modeled using

:Bike software objects. For example, a bank account is a common object used in banking

kickStart = false
buttonStart = true
gear=4

accelerate()
applyBrake()
changeGear()

Fig. 4.2 Bike Object

solutions to represent the details of bank accounts of various customers of a bank.

Figure. 4.2 shows a common visual representation of a software object.

It would be correct to say that everything the software object knows (state) and
can do (behavior) is expressed by the variables and methods within that object.
A software object that models the real-world bike would have variables that
indicate the bike’s current state: its speed is 10 mph, its acceleration in terms of
revolutions per minute is 5000 rpm, and its current gear is 4th. These variables
are known as instance variables.

76 Programming in Java

The object bike would also have methods to brake, accelerate, and change gears. These are
known as instance methods. Only relevant fields and behaviors are added into a class. For
example, a bike does not have a surname, and it cannot speak or sleep. A bike class can be
created that declares several instance variables to contain the gears, the brakes, and so on, for
each bike object and every bike will have its own brakes, gears, etc.

It is worth noting here that all object instances have their own copies of instance variables.
This means that if there are five object instances of a bike class, there are five copies of each
instance variable defined in that class. Each object has its own copy of instance variables which
is different from other objects created out of the same class.

The values of the instance variables are provided by each instance of the class. So, after you
have created the bike class, you must instantiate it (create an object of it) before you can use it.
When an instance of a class is created, an object of that type is created and memory is allocated
by the system for the instance variables declared by the class. Then the object’s instance methods
can be invoked to perform operations.

m Instances of the same class share the instance method implementations (method
implementations are not duplicated on a per object basis).

In addition to instance variables and methods, classes can define their own class variables
and methods. Every object will have its own instance variables but class variables will be shared
by all the objects of the class. You can access class variables and methods using an instance
of the class or using the class name. You need not instantiate a class to use its class variables
and methods. Class methods can only access the class variables directly. They don’t have direct
access to instance variables or methods. A single copy of all class variables is created and all
instances of that class share it. For example, suppose all cars had the same number of gears. In
such a situation, a class variable can be created that defines the number of gears. All instances
of the class will share this variable. If any object manipulates the class variable, then it changes
for all objects of that class.

4.2.1 Difference Between Objects and Classes

Both objects and classes look the same. Yes, it is a fact that the difference between classes and
objects is often the source of some confusion. In the real world, it is obvious that classes are
not themselves the objects that they describe—a blueprint of a bike is not a bike. However, it is
difficult to differentiate between classes and objects in programming. This is partially because
objects in programming are merely the electronic models of real-world objects or abstract
concepts. Classes have logical existence, whereas objects have physical existence, e.g., furniture
itself does not have any physical existence, but chairs, tables, etc. do have.

4.2.2 Why Should we Use Objects and Classes?

Modularity, information hiding, i.e., data encapsulation, can be incorporated using objects.
Classes, being blueprints, also provide the benefit of reusability along with the ease of changing
and debugging code. For example, bike manufacturers reuse the same blueprint over and over
again to build lots of bikes. Programmers use the same class repeatedly to create many objects.

Classes and Objects 717

4.3 CLASS DECLARATION IN JAVA

Declaring a class is simple. A class can be declared using the keyword class followed by the
name of the class that you want to define. Giving a name to a class is something which is totally
in the hands of the programmer. But while doing so, he must take care of the relevance of the
class name, the legality of Java identifiers used as the class name, and the naming convention
used in Java. Thus, the simplest class declaration looks as follows:

class Bike

{

//Variables declaration
//Methods declaration
}

SN Class Declaration

class GoodbyeWorld

{

public static void main (String args[])
{
System.out.println("Goodbye World!");
b

b

Here the name of the class is GoodbyeWorld. The class just contains the main() method, which
is responsible for displaying GoodbyeWorld on the screen.

To sum up, all the action in a Java program takes place inside the class. Methods and variables
are defined inside the classes. The class is the fundamental unit of programming in Java. The
class declaration can specify more about the class, like you can:

o declare the superclass of a class

o list the interfaces implemented by the class

o declare whether the class is public, abstract, or final
For each of the cases above, the class declaration will differ accordingly. We will talk about that
as and when we cover the related concepts. Taking all the possibilities of class declaration in
Java, we can summarize the class declaration syntax as

[modifiers] class ClassName [extends SuperClassName] [implements InterfaceNames]

...}
The items enclosed inside [| are optional. A class declaration defines the following aspects
of the class:

e modifiers declare whether the class is public, protected, default, abstract or final
e ClassName sets the name of the class you are declaring
e SuperClassName is the name of the ClassName's superclass

e InterfaceNames is a comma-delimited list of the interfaces implemented by ClassName
Only the class keyword and the class name are mandatory. Other parameters are optional.

78 Programming in Java

m The Java compiler assumes the class to be non-final, non-public, non-abstract, subclass of objects

(discussed in Chapter 6) that implements no interfaces if no explicit declaration is specified.

Certain terms in the above syntax such as modifiers, extending superclasses, and
implementing interfaces, which are presently unfamiliar, will be discussed in the later chapters.

4.3.1 Class Body

The class contains two different sections: variable declarations and method declarations. The
variables of a class describe its state, and methods describe its behavior. All the member variables
and methods are declared within the class. There are three types of variables in Java: local
variables, instance variables, and class variables. Local variables are defined inside a method.
Instance variable is defined inside the class but outside the methods, and class variables are
declared with the static modifier inside the class and outside the methods. For now, we will
concentrate on instance variables.

Instance Variables

It is important to understand that a class can have many instances (i.e., objects) and each instance
will have its own set of instance variables. Any change made in a variable of one particular
instance will not have any effect on the variables of another instance. For more details on class
variables, local variables, and instance variables, see Section 4.7.

Normally, you declare the member variables first followed by the method declarations and
implementations.

classDeclaration

{

memberVariableDeclarations
methodDeclarations

Let us see how you can declare instance variables in a class. Example 4.2 shows a sample class
declaration with two instance variables. We will return to the discussion of instance variables
later in the chapter. Please note that if you try to run this example it won’t show any output
because it is not fully functional and there are certain statements/methods that we need to add
so that this program can display any output, which will follow later in the chapter.

D€)XW Class Declaration

L1
L2
L3
L4

class SalesTaxCalculator {

float amount = 100.0f; // instance variable
float taxRate = 10.2f; // instance variable
}
Explanation

L1 Class declared with the keyword class followed L3 Declares another float instance variable taxRate

by the name of the class SalesTaxCalculator. to denote the rate Oftax on the Sale amount.
L2 Ainstance variable amount is declared todenote [4 End of the class.

the amount on which sales tax has to be calculated.

Classes and Objects 79

The above example shows a class with two instance variables. Instance variables are part of
the instance of the class (object). These instance variables will be created when the instance
is created. In order to be able to access/manipulate these instance variables, we need to create
objects of this class. We have already seen what objects are. Let us see how objects are created
and used in Java.

4.4 CREATING OBJECTS

In Java, you create an object by creating an instance of a class or, in other words, instantiating a
class. A Java object is defined as an instance of a class. The type of the object is the class itself.
Often, you will see a Java object created with a statement like

SalesTaxCalculator objl = new SalesTaxCalculator();

This statement creates a new SalesTaxCalculator object. This single statement declares,
instantiates, and initializes the object. SalesTaxCalculator obj1l is areference variable declaration
which simply declares to the compiler that the variable obj1 will be used to refer to an object
whose type is SalesTaxCalculator. The new operator instantiates the SalesTaxCalculator
class (thereby allocating memory and creating a new SalesTaxCalculator object), and
SalesTaxCalculator() initializes the object.

4.4.1 Declaring an Object

Object declarations are same as variable declarations. For example,
SalesTaxCalculator objil;

Generally, the declaration is as follows:
type name

where type is the type of the object (i.c., class name) and name is the name of the reference
variable used to refer the object. Classes are like new data types. So type can be any class such
as the SalesTaxCalculator class or the name of an interface.

m A variable holds a single type of literal, i.e., 1, bat, 345, etc. An object is defined as an instance
of a class with a set of instance variables and methods that perform certain tasks depending
on what methods have been defined for. A reference variable is used to refer/access an object.
A reference variable is of a specific type name of the class is its type. Unlike normal variable,
reference variables can be static, instance or local variables as well as they can be passed to
or returned from the method.

The above declaration won’t create an object. It will create a variable with a name and specify
its type. For example, SalesTaxCalculator is the type and obj1 is the reference variable.

4.4.2 Instantiating an Object

After declaring a variable to refer to an object, an actual, physical copy of the object must be
acquired and assigned to that variable. This can be achieved by the new operator. The new operator
instantiates a class by dynamically allocating (i.e., at runtime) memory for an object of the class

80 Programming in Java

type and returns a reference to it. This reference is nothing but the address in the memory of the
object allocated by new. This reference or memory address is then stored in the variable declared.
The new operator requires a single argument, i.e., a constructor call. The new operator creates
the object or instantiates an object and the constructor initializes it.

SalesTaxCalculator objl = new SalesTaxCalculator()

The above statement just creates an instance of a class, SalesTaxCalculator. In other words, the
new operator creates an object obj1 by allocating memory for its member variables, i.e., amount
and taxRate (Example 4.2) and few other items.

4.4.3 Initializing an Object

By initializing an object, we mean the instance variables are assigned initial values. The instance
variables of a particular object will have different values during the lifetime of an object. But to
start with, initial values are required. If no value is specified for the instance variables, then the
default values will be assigned to those variables based on their respective types. Initial values
can be provided by instance variable initializers and constructors.

Instance variable initializers are values directly assigned to the instance variable outside any
method/constructor but within the class. [As shown in L2 and L3 of Example 4.2(a)].

The best and convenient approach is to create your own constructor. Constructors should be
provided within classes to initialize objects. Constructors have the same name as that of the class.
Constructors are invoked as soon as the object is created. In case you do not create a constructor
for your class, Java compiler provides a default constructor for your class automatically. The
default constructor is a zero argument constructor with an empty body. The implicitly created
default constructor is invoked as soon as the object is instantiated with new keyword as shown
below.

new SalesTaxCalculator()

We will come back to the concepts of constructors along with the examples explaining them in

Section 4.6.
SalesTaxCalculator obji; /I Object declaration is done
obj1 » Null
objl = new SalesTaxCalculator();
obj1 ———»{ amount = 100.0 obj1 stores a
reference to the
SalesTaxCalculator
taxRate = 10.2 .
object.

Fig. 4.3 Steps in Object Creation

Classes and Objects 81

To sum up, the final object creation can be said as complete, when the objects are initialized,
either with an implicit constructor or an explicit constructor. This object creation can be used in
a programming code in two ways:

SalesTaxCalculator objl=new SalesTaxCalculator();

Here all the three operations, object declaration, object instantiation, and object initialization are
done by a single statement. The above process takes place in the following way:

Now that we know how to create a class and objects for that class, we can rewrite Example
4.2 where we can do these things in one program only. The following program displays a class
SalesTaxCalculator, with two instance variable (initialized to some values) and two objects of
the class SalesTaxCalculator, objl and obj2 (created inside the main method). Instance variable
initializers are used in this example to initialize objects: obj1 and obj2 (Fig. 4.3).

S E I PAEIN Object and Classes

L1 class SalesTaxCalculator {
// instance variable initializer
L2 float amount = 100.0f;
// instance variable initializer
L3 float taxRate = 10.2f; //instance variable
// instance method
L4 public static void main (String args[])
{
L5 SalesTaxCalculator objl = new SalesTaxCalculator();
L6 SalesTaxCalculator obj2 = new SalesTaxCalculator();
L7 System.out.println("Amount in Object 1: "+ objl.amount);
L8 System.out.println("Tax Rate in Object 1: "+ objl.taxRate);
L9 System.out.println("Amount in Object 2: "+ obj2.amount);
L10 System.out.println("Tax Rate in Object 2: "+ obj2.taxRate);
3
Output

D:\javabook\programs\chap4\java SalesTaxCalculator
Amount in Object 1: 100.0
Tax Rate in Object 1: 10.2
Amount in Object 2: 100.0
Tax Rate in Object 2: 10.2

Explanation
L1 Class declaration. allocates memory to these objects according to the size
L2 & L3 Instance variable have been declared with of instance variables (plus a few more bits for some
their initializer. more items). Note that no constructor has been created
L4 Main method declared. in this class, so the Java compiler will automatically

L5 & L6 Two objects of this class are created in provide a default constructor for this class which
these lines. As already discussed, the new keyword is being invoked while creating object in these

82 Programming in Java

statements. The default constructor is empty, so it is
the responsibility of the Java compiler to ensure that
the instance variable are initialized to their respective
values (amount = 100.0f and taxRate = 10.2f)
according to their initializer (mentioned in L2 and
L3) by the JVM at runtime. (How does it ensure
this? We will discuss it later in the chapter). For
instance, we will consider that the instance variable
initializers are used by the Java compiler to initialize
these instance variables.

L7 Is a print statement that prints the value of
the instance variable present in obj1. The variable
can be accessed through the object followed by the
dot operator from main method or outside the class
(depends on access and scope of the object).obj1.
amount will return the value of amount stored in
the instance obji1. The value of the variable can be
changed by using the following syntax:
objl.amount=200.0f;

L8,9 & 10 Similar to L7.

m Setter methods can also be used for assigning or modifying values of instance variables (i.e.,
set X() orset Y() where x and y are the names of the instance variables) They are declared
inside a class, as shown in Examples 4.3 and 4.5 (methods will be discussed in the next section).

The above program has a limitation that all objects created will have the same value for amount
and taxRate. Later on it can be changed using object references. But it would be wiser to let all
objects have their own different amount and tax rates as soon as they are created. This problem
will be solved using constructors (Section 4.6).

4.5 METHODS

The word method is commonly used in object-oriented programming. It is similar to a function
in any other programming language. Many programmers use different terms, especially function,
but we will stick to the term methods. None of the methods can be declared outside the class.
All methods have a name that starts with a lowercase character.

4.5.1 Why Use Methods?

e To Make the Code Reusable If you need to do the same thing or almost the same
thing, many times, write a method to do it and then call the method each time you have

to do that task.

o To Parameterize the Code You will often use parameters to change the way the method

behaves.

o For Top-down Programming You can easily solve a bigger problem or a complex one
(the ‘top’) by breaking it into smaller parts. For the same purpose, we write methods.
The entire complex problem (functionality) can be broken down into methods.

o To Simplify the Code Because the complex code inside a method is hidden from other
parts of the program, it prevents accidental errors or confusion.

4.5.2 Method Type

There are two types of methods in Java: instance methods and class methods. Instance methods
are used to access/manipulate the instance variables but can also access class variables. Class

Classes and Objects 83

methods can access/manipulate class variables but cannot access the instance variables unless
and until they use an object for that purpose.

4.5.3 Method Declaration

The combined name and parameter list for each method in a class must be unique. The
uniqueness of a parameter is decided based on the number of parameters as well as the order
of the parameters. So,

int methodOne (int x, String y)
is unique from
int methodOne (String y, int x).

Let us take a look at the general syntax of a method declaration:

[modifiers] return_typemethod_name (parameter_list)
[throws_clause] {
[statement_list]
}

The parameters enclosed within square brackets [] are optional. The square brackets are
not a part of the code; they are included here to indicate optional items. We will discuss only
those parts that are required at the moment and leave the rest for the later chapters. The method
declaration includes

e Modifiers Ifyou see the syntax of the method declaration carefully, there is an optional part

of'it, modifiers. There are a number of modifiers (optional) that can be used with a method
declaration. They are listed in Table 4.1.

Table 4.1 Optional Modifiers used While Declaring Methods

Modifier Description

public, protected, Can be one of these values. Defines the scope—what class can invoke

default or private which method?

static Used for declaring class methods and variables. The method can be invoked
on the class without creating an instance of the class.

abstract The class must be extended and the abstract method must be overridden
in the subclass.

final The method cannot be overridden in a subclass.

native The method is implemented in another language (out of the scope of this
book).

synchronized The method requires that a monitor (lock) be obtained by calling the code
before the method is executed.

throws A list of exceptions is thrown from this method.

84 Programming in Java

e Return Type It can be either void (if no value is returned) or if a value is returned, it can
be either a primitive type or a class. If the method declares a return type, then before it exits,
it must have a return statement.

o Method Name The method name must be a valid Java identifier. We have already discussed
Java identifiers in Section 3.3.

o Parameter List Zero or more type/identifier pairs make up a parameter list. Each parameter
in the parameter list is separated by a comma.

e Curly Braces The method body is contained in a set of curly braces. Methods contain a
sequence of statements that are executed sequentially. The method body can also be empty.

In Example 4.2(a), we have stored data: amount and taxRate but we have not calculated the
tax amount based on the rate. We need to calculate the tax amount. This operation would require
some calculation (operations) to be performed on the data variables. These operations will be
performed inside a method so we need to add a method to that class and revise the class. The
method added is calculateTax() (L4) which calculates the taxed amount. This method is invoked
in L10 and 11 by the two objects using the dot operator. Note that the answer in both cases is the
same because the data in both cases is same, i.e., amount and tax rate are same for both objects
so the taxed amount is same.

S EJEE AN Added Instance Method

L1
L2
L3
L4
LS
L6
L7
L8
L9

L10
L11

Output

class SalesTaxCalculator {
// instance variable initializer
float amount = 100.0f;
// instance variable initializer
float taxRate = 10.2f; //instance variable
// instance method
void calculateTax() {
float taxAmt = amount*taxRate/100;
System.out.println("The Taxed Amount is: "+taxAmt);

}

public static void main (String args[1)

{
SalesTaxCalculator objl = new SalesTaxCalculator();
SalesTaxCalculator obj2 = new SalesTaxCalculator();
objl.calculateTax();
obj2.calculateTax();

1}

The Taxed Amount is: 10.2
The Taxed Amount is: 10.2

Let us take a different example to explain the concepts in more detail. The following example
has a couple of instance methods, setRadius() and calculateArea(), declared inside the class,
Circle. The word instance has been particularly used to distinguish between instance and
class methods. The modifier static has not been used while declaring methods so the methods
become instance methods.

S JE N Instance Method Declaration

Classes and Objects 85

radius

L1 class Circle
L2 {
L3 float pi = 3.14f;
L4 float radius;
//setter method to change the instance variable:
L5 void setRadius(float rad)
L6 {
L7 radius = rad;}
L8 float calculateArea()
L9 {
L10 float area = pi * radius * radius;

L1 return (area);
L12 } }

Explanation

L1 Class declaration.

L3 & 4 Instance variable declaration.

L5 Declares an instance method popularly known
as setter or mutator methods (note that static
modifier is not used in this declaration). They are
known as setter or mutator methods because they set
or change (mutate) the values of instance variables.
The data type void indicates that this method will not
return any value. The name of the instance method
is setRadius()and it accepts a float parameter
rad. This method is used to assign a value to the
instance variableradius. The method argument
rad is assigned to the instance variable radius
in this method on L7. It also shows that instance
methods can access instance variables directly.
Instance methods are invoked using objects, so data
residing in objects can be easily accessed (set or get)
by instance methods.

L6 The body of the method starts with the left
brace, “{”.

L7 rad is assigned to an instance variable radius
of type float. The right brace “}” signifies the end
of the method.

L8 Declares another instance method. The instance
method calculateArea() has been declared to return
a value of type float.

L9 «{” signifies the start of the method body.
L10 Instance variables pi and radius are multiplied
to calculate the area of the circle. As shown, instance
variables can be used by instance methods directly
to produce result. An important point to note is that
different Circle objects will have different values
of radius and obviously the calculated area will
be different but the instance methods remains the
same. In other words, instance methods are not
implemented on a per object basis as is the case with
instance variables. The area of the circle is stored in
the local variable, area, declared as float.

L11 The value stored in the variable area is returned
by the return statement.

L12 The first right brace “}” signifies the end of
method, calculateArea(), and the second brace “}”
signifies the end of class, Circle.

m The responsibility of providing initial values is that of constructors, and constructors are called
only once, i.e., during object creation. If the value of instance variables has to be changed,
setter methods should be used and that too can be invoked any number of times.

86 Programming in Java

4.5.4 Instance Method Invocation

If you run Examples 4.2, 4.2(a), and even Example 4.3, you won’t see any output for a very
simple reason that we have created methods but we have not invoked (called) them. Methods
(instance or class methods) cannot run on their own, they need to be invoked. Instance methods
will be invoked by the objects of the class they are a part of. Class methods invocation will be

discussed later in this chapter.

When an object calls a method, it can pass on certain values to the methods (if methods accept
them) and the methods can also return values from themselves if they wish to. Data that are
passed to a method are known as arguments or parameters; the required arguments for a method
are defined by a method’s parameter list (method signature). Let us take an example and see

how invoking is done.

D€ J N Instance Method Invocation

L1 class CallMethod
L2 {
L3 public static void main (String args[])
L4 {
L5 float areal;
L6 Circle circleobj = new Circle();
L7 circleobj.setRadius(3.0f);
L8 areal = circleobj.calculateArea();
L9 System.out.println("Area of Circle = " + areal);
L10 1}

Output

Area of Circle = 28.26

Explanation

L6 Creates an object of Circle class. setRadius()
and calculateArea() are instance methods of the
class, Circle. So an instance is required to invoke
these instance methods and that instance must be
of the class the methods are a part of, i.e., Circle
(Example 4.3). That’s why an object of the Circle
class named circleobj is created.

L7 & 8 Using the instance created in L6, we call

the methods setData() and calculateArea() with

the help of a dot operator. A value 3.0f (f to
indicate float value) is passed as an argument in the
setRadius() method invocation. This value 3.0f
is assigned to the local float variable rad, which is
actually an argument in the method declaration (see
Example 4.3, LS5). The calculateArea()method
calculates the area and returns the value which is
captured in a float variable areal.

The following definitions are useful in the above context.

Formal Parameter The identifier used in a method to stand for the value that is passed into
the method by a caller. For example, the parameter defined for setRadius(), i.e., rad in L5 of
Example 4.3 is a formal parameter, as it will be bound to the actual value sent by the caller
method. These formal parameters come in the category of local variables which can be used in

their respective methods only.

Actual Parameter The actual value that is passed into the method by a caller. For example, in
L7 of Example 4.4, 3.0f, passed to setRadius(), is the actual parameter.

Classes and Objects 87

The number and type of the actual and formal parameters should be same for a method. Also
note that the class having the main() method is to be executed first by the Java interpreter.

In Example 4.3, we have created a class (Circle) and two methods in that class.
Example 4.4 shows how the methods of circle class (Example 4.3) are called from another
class, i.e., CallMethod. The methods can also be called from within the class, as shown in

Example 4.5.

S e JEV N Adding Instance Variable(s) and Instance Method(s)

L1 class Circle

L2 { float pi=3.14f;

L3 float radius;

L4 void setRadius(float rad){

L5 radius = rad;

L6 }

L7 float calculateArea(){

L8 float area = pi* radius*radius;
L9 return (area);

L10 }

L11 public static void main (String args[]) {

+ circleobj.calculateArea());

// System.out.println(circleobj.setRadius(3.0f).calculateArea());

L12 Circle circleobj = new Circle();
L13 circleobj.setRadius(3.0f);
L14 System.out.println("Area of Circle =
// The above two lines can be compressed to one, i.e.
L15 13}

Explanation

The example is entirely same as that of Example 4.3
up to L10. (The output is entirely same as that of the
previous program.)

L11 The execution begins at main(). Because
main() is defined in this class, it can execute on
its own and there is no need of a separate class like
CallMethod (Example 4.4) for invoking the methods
ofthe Circle class. The main method from that class

has been squeezed out and inserted in the class Circle
as shown in the lines 11-15.

L12 An object of the Circle class, named
circleobj, is created using the new operator.

L13 setRadius()is called with the help of an
object of the Circle class and a float argument is
passed to it.

L14 calculateArea()is called using the object
created in L12.

m In Java, all values are passed by value. This is unlike some other programming languages that
allow pointers to memory addresses to be passed into methods. When a primitive type value
is passed to a method, the value is copied. The copied value, if changed inside the method,
does not affect the original value. When an object is passed, only the reference is copied.
There is just one object that has two references now on it. The changes made to the object
through one reference will be reflected when the object is accessed through other references.

4.5.5 Method Overloading

Method overloading is one way of achieving polymorphism in Java. Each method in a class is
uniquely identified by its name and parameter list. What it means is that you can have two or

88 Programming in Java

more methods with the same name, but each with a different parameter list. This is a powerful
feature of the Java language called method overloading. Overloading allows you to perform
the same action on different types of inputs. In Java whenever a method is being called, first
the name of the method is matched and then, the number and type of arguments passed to that
method are matched.

In method overloading, two methods can have the same name but different signatures, i.e.,
different number or type of parameters. The concept is advantageous where similar activities
are to be performed but with different input parameters. Example 4.6 shows an example of
overloading a method max() in order to calculate the maximum value for different combinations
of inputs.

S EJEY NN Method Overloading

class OverloadDemo

L1
L2
L3
L4
LS
L6

L7

L8

L9
L10

L11
L12
L13
L14
L15
L16
L17
L18

{
void max(float a, float b)
{
System.out.println("max method with float argument invoked");
if(a > b)
System.out.println(a + " is greater");
else
System.out.println(b + " is greater");
}
void max(double a, double b)
{
System.out.println("max method with double argument invoked");
if(a>b)
System.out.println(a + " is greater");
else
System.out.println(b + " is greater");
}
void max(long a, long b)
{
System.out.println("max method with long argument invoked");
if(a>b)
System.out.println(a + " is greater");
else
System.out.println(b + " is greater");
}
public static void main(String args[])
{

OverloadDemo o = new OverloadDemo();
o.max(23L,12L);

o.max(2,3);

0.max(54.0,35f);

o.max(43f,35f);

1}

Output

C:\javabook\programs\chap4>java OverloadDemo
max method with long argument invoked

23 is greater

max method with long argument invoked

3 is greater

max method with double argument invoked

54.0 is greater

max method with float argument invoked

43.0 is greater

Classes and Objects 89

Explanation

L1 Method max is defined inside class OverloadDemo
with two arguments of type float.

L2 Marks the beginning of the method.

L3 Shows a print statement describing the method
that has been invoked.

L4 if statement is used to check whether the float
argument a is greater than b. If a is greater, then L5
prints a is greater, else L7 prints b is greater.

L8 &9 Overloaded method max is defined in these
lines. This overloaded version of the method accepts
two arguments of type double. This is different
from the max method defined in L1. The processing
inside this method is entirely similar to the previous
method with the exception that now the maximum
will be chosen from two double values instead of
float values.

L10 & 11 Another version of overloaded method
max is defined in these lines. This overloaded version
of the method accepts two arguments of type long.
This is different from the max method defined in
lines L1 and L8. The processing inside this method
is entirely similar to the previous method with the
exception that now the maximum will be chosen from
two double values instead of float values.

L12 main method has been defined. Execution
starts from main method.

L13 Marks the beginning of the main method.
L14 An object of the class is created to invoke the
instance methods.

L15 Shows the invocation of the method, max, and
two arguments that are passed to it. The question
arises, which version of the max method will be
invoked? (Remember: The invocation will be based

upon the number and type of arguments). In our case,
we have only two arguments in all the overloaded
methods. So the decision is taken according to the
type of arguments. In this particular statement, two
long arguments are passed. First of all, Java tries to
find an exact match, i.e., a method named max in class
OverloadDemo which accepts two long arguments.
Java finds the method in L10. The method is called. If
an exact match could not be found (say for example,
the method max with long arguments is not present
in the OverloadDemo class), then Java looks for a
method named max which has the arguments to
accommodate these long values (Remember: long
values can be accommodated implicitly only in float
and double). This example has max methods with
both float and double arguments. So which method
will be called? The max method with float arguments
will be called (1ong values are promoted to float and
passed). And in case the max with float arguments
is also not available, then the method with double
arguments will be called (1ong values are promoted
to double and passed).

L16 max method is called with two int arguments
passed to it. In OverloadDemo class, Java does not find
a method which accepts two int arguments, but it
finds a method max that accepts two long arguments.
These two int arguments are automatically promoted
to long and passed to the method with the name
max accepting two long arguments (automatic type
promotion has taken place here).

L17 Shows the invocation of max method with a
double argument and a float argument. In this case,
Java does not find an exact match, as there is no such

90 Programming in Java

method named max that accepts a double argument
and a float argument. So, automatic promotion takes
place in this case also. The question arises that which
overloaded method will be called? The max method
with both float arguments cannot be called, as
the first argument that is being passed is a double.
Similarly, the max method with both 1ong arguments

cannot be called, as both the arguments are bigger
than long. So, the max method with both double
arguments will be called, as the first argument is a
perfect match and the second will be automatically
promoted to double (see output).

L18 The max method with both float arguments
will be called in this case.

m As a general rule, automatic type promotion takes place while passing parameter values to

methods. In overloading, the decision of choosing which method to invoke is resolved by the
Java compiler at compile time (early-binding) rather than delaying it till runtime because

(a) Java is a strongly typed language.

(b) Resolving all these issues at compile time will avoid unnecessary exceptions at runtime.
(c) Enhanced performance.

4.6 CONSTRUCTORS

Whenever an object is created for a class, the instance variables of the class needs to be initialized,
i.e., they need to be given initial values. It can be done through instance variable initializers
(asshownin L2 and L3 [Examples 4.2 and 4.2(a)], L3 (Example 4.3) and L2 (Example 4.5)) and
instance initialization blocks. An instance initialization block is a block of statement enclosed
in parenthesis with initialization placed in it as shown below:

class Rectangle

{
// Instance initialization blocks
{
length=10;
width=10;
}
b

But Java has a simple and concise method of doing it. It has a mechanism for automatically
initializing the values for an object, as soon as the object is created. The mechanism is to use
constructors.

Constructors have the same name as the class they reside in and they are syntactically similar
to a method. Constructors are automatically called immediately after the object for the class is
created by a new operator. Constructors have no return type, not even void, as the implicit return
type of a constructor is the class type itself.

In Section 4.4.3, we discussed a little about constructors, promising that we would come
back to this topic. Now it is time to recall that section on object creation. An implicit or default
constructor is used as a parameter to the new operator, just as shown below.

SalesTaxCalculator rl = new SalesTaxCalculator ();

Here, the new operator is calling the SalesTaxCalculator() constructor. If the constructor is
explicitly defined within the class just as shown in Example 4.7, it is known as explicit constructor,
otherwise Java automatically creates a default constructor as soon as the object is instantiated
by the new operator. They are known as implicit or default or no-argument constructors. In

Classes and Objects 91

earlier examples, no constructor was explicitly provided, so Java provided them with a default
constructor. But in case you define your own constructor within the class (Example 4.7), the
default constructor will not be provided by Java. In that case, the constructor defined within the
class will be called.

The default constructor, provided by Java compiler, is a no-argument constructor with empty
body. The only question that would arise now is that if the default constructor is an empty
constructor, then how are the variables initialized to the user specific values or default values
and who does it? For example in case of Examples 4.2, 4.2(a), and 4.2(b), when instance variable
initializers are used and no constructors has been defined in the SalesTaxCalculator class, how
are the objects obj1 and obj2 initialized with the values specified in instance variable initializers
as the default constructor is an empty constructor. What happens in the background is that Java
compiler creates a special method known as <init> method for each of the constructors specified
in the class. The code explicitly written in the constructors is placed within the <init> method
after some operations like calling the superclass constructor, instance variable initializers and
instance initialization blocks in the order in which they appear in the source code. When no
constructors have been specified, the Java compiler creates a default constructor and an <init>
method for the default constructor. This method will also include a call to superclass constructor
as well as the instance variable initializers and instance initialization block (if any mentioned in
the class and in the order mentioned in the source code). When no constructors and no instance
variable initializer or block have been specified, the Java compiler creates a default constructor
and <init> method for the default constructor, which initializes the instance variables with their
respective default values.

m <init> is a special method, meant for the JVM (to initialize objects) and not the programmer.

So you cannot create a method by this name in your program. Also note that the arguments of
this method would be same as that of the constructors and the return type would be void. This
init mechanism was created in Java to ensure that memory allocated is initialized properly
and any bugs should not arise due to garbage values in memory as in the case of other
languages like C and C++.

Table 4.2 provides a summary on constructors versus methods.

Table 4.2 Constructors vs Methods

Constructor Methods

Will have the same name as that of class

Invoked as soon as the object is created
and not thereafter

Constructors cannot be inherited
Constructors can be overloaded

Constructors can be private, protected,
default or public

Role of constructor is to initialize object

Constructors cannot be abstract, final,
static or synchronized

Do not have any return type not even void Will have a return type

Can have any name even the name of class (although should not
be used)

Invoked after the object is created (instance methods) and can be
called any number of times thereafter

Methods can be inherited
Methods can also be overloaded
Methods can also be private, protected, default or public

Role of method is to perform operations
Methods can be abstract, final, static or synchronized

92 Programming in Java

Let us take an example to illustrate the usage of constructor. L3 of Example 4.7 defines an
explicit default constructor that does not accept any argument but initializes the instance variables
to the specified values.

S €A Constructor

L1 class Room{

L2 double length, breadth, height, volume;
No Argument Constructor
L3 Room(){
L1 length = 14;
L5 breadth = 12;
L6 height = 10;
L7 }
L8 // Computation of volume of the room
L9 double volComp(){
L10 volume = length * breadth * height;
L1 return volume;
L12 }
L13 public static void main (String args[1){
L14 Room rl = new Room();
L15 Room r2 = new Room();
L16 System.out.println("The volume of the room is " +ril.volComp());
L17 System.out.println("The volume of the room is " +r2.volComp());
L18 }
L19 }
Output

D:\javabook\programs\chap 4>java Room
The volume of the room is 1680.0
The volume of the room is 1680.0

Explanation

L3 A constructor with the name of the class, Room,
is defined. It should be noted that the constructor
declaration is very much like a method declaration
but does not have a return type.

L4 & 6 Various instance variables are initialized
with certain values.

L9 & 12 Instance method volComp()is defined
and implemented for calculating and returning the
volume of the room to the caller. The return type of
the method is specified as double. Return values
are expected from methods when you would like to
perform more operations on the returned values or
want to pass them further. Here volume is returned
specifically to denote how values are returned from
methods. The volume calculated is stored in the
instance variable volume, which is returned at the

end of the method with the help of return keyword.
Please note that if a method specifies a return type
then it must return a value of that type using a return
keyword.

L14 & 15 Two objects, r1 and r2, are created
or instantiated using new operator. As soon as
this is done, the constructor Room()on L3 is called
automatically, which in turn initializes all the
variables that it is defined for. The default constructor
will not be provided by Java because we have defined
a constructor for our class. So when we create object
our defined constructors will be invoked which would
initialize the objects. Obviously, in the background
this task will be achieved using <init> method.
L16 & 17 The volume of both the objects of the
room class is printed. Note that, volComp()is called

Classes and Objects 93

by their respective objects, in order to return the value for the volume calculation. It is so because both the
of volume. Here, the volume for both the instances objects are initialized with the same set of values,
will be same, because both the objects call the method while being instantiated by the new operator.
volComp(), which uses the same set of dimensions

m Instance method, volComp(), directly uses the instance variable: length, breadth, height,

and volume. A very common mistake that many novice OOP programmers make, is to pass
arguments to methods, multiply them and return the result. Although this might produce
correct result but would not be correct OOPs approach as you are working with local variable
rather than instance variables. Suppose if you create the volcomp() method as shown below:

double volComp (double length, double breadth, double height){
volume = length * breadth * height;
return volume;

}
In this case, you are using local variables for calculating volume. The purpose is to calculate
the volume of the room whose dimensions are already encapsulated in the Room object. So
for that we need to access the instance variables as shown in Example 4.7 and not local vari-
ables. The usage of local variables defeats our purpose.

4.6.1 Parameterized Constructors

Just like methods, arguments can be passed to the constructors, in order to initialize the instance
variables of an object. The above example had a limitation. Each Room has its own length, breadth,
and height and it is very unlikely that each room is of the same size. In the previous example,
all objects of Room class will have the same volume because the values for length, breadth and
height are fixed for all objects. You can explicitly change them using an object instance, e.g.,

rl.length = 30

and then invoke the method volComp for calculating volume of the Room. But there should be a
mechanism for specifying different values of instance variables for different objects of a class,
as soon as the object is created. For example, if different dimensions can be specified for a Room
then each Room will have its own volume. For this, the instance variables should be assigned a
different set of values for different objects of the class. Hence we need to create a parameterized
constructor that accepts arguments to initialize the instance variables with the arguments. Let us
take an example to see how parameterized constructors can be used.

S I RN Parameterized Constructor

L1
L2
L3
L4
L5
L6
L7
L8
L9

class Room2 {
double length, breadth, height, volume;
Room2(double 1, double b, double h) {

length = 1;
breadth = b;
height = h;

}

// Computation of volume of the room
double volComp(){

94 Programming in Java

+rl.volComp());
+r2.volComp());

L10 volume = length * breadth * height;
L11 return volume;
L12 }
L13 public static void main (String args[]) {
L14 Room2 rl = new Room2(14, 12, 10);
L15 Room2 r2 = new Room2(16, 15, 11);
L16 System.out.println("The volume of the room is
L17 System.out.println("The volume of the room is
L18
L19 }
Output

The volume of the room is 1680.0
The volume of the room is 2640.0

Explanation

Here we will explain only the relevant lines of the
above example.

L.3—7 The constructor Room2 is defined, which has
three arguments: 1, b, and h, of type double. These
are assigned to instance variables, length, breadth
and height, respectively.

L13 Instance rl of class Room2 is created. The values
for the parameters are passed to the constructor in L3,
with the invocation of the explicit constructor.

L14 Second instance r2 of class Room2 is created.
Another set of values for the parameters is passed
to the constructor in L3, with the invocation of the
explicit constructor.

L15 & 16 The volumes for both the instances of
Room are printed. You can see in the output that both
the volumes are different, because different sets of
parameters are used to calculate the volumes.

m In the above program, we have created a parameterized constructor. If we create an object

as shown below:
Room2 r3 = new Room2();

Instead of

Room2 rl = new Room2(14, 12, 10);

The compiler will not compile this program. The obvious reason is that we have created a
parameterized constructor in this class and we are trying to call the default constructor. Java states
that if you provide a constructor for your class, the (automatically created) default constructor
will not be provided to your class. And here we are invoking a no argument constructor which
is neither explicitly created in our class nor will it be implicitly provided by Java.

4.6.2 Constructor Overloading

Just like methods, constructors can also be overloaded. Constructors are declared just as we
declare methods, except that the constructors don’t have any return type. Constructors for a class
have the same name as that of the class, but they can have different signatures, i.e., different
types of arguments or different number of arguments.

Such constructors can be termed as overloaded constructors. Constructors are differentiated

on the basis of arguments passed to them.

In the example below, we have used two overloaded constructors, each having a different
number of arguments, so that the JVM can differentiate between the various constructors.

Classes and Objects 95

Here we have two different classes, Rectangle and ConstOverloading. The Rectangle class
has two constructors, both with the same name but different signatures. Each constructor is used
for the initialization of instance variables.

S el JEN- RN Rectangle Class Depicting Constructor Overloading

L1 Class Rectangle{
L2 int 1, b;

L3 Rectangle(){

L4 1 = 10;

L5 b = 20;

L6 }

L7 Rectangle(int x, int y){
L8 1 =x;

L9 b=y;

L10 }

L11 int area()

L12 {

L13 return 1 * b;
L14 }

L15 }

Explanation

L3-5 Explicit default constructor is defined for the Rectangle class, which accepts two integer
the Rectangle class. This constructor initializes the values for initializing two instance variables.
instance variables with integer values. L11-14 An instance method area() is defined to
L7-10 An overloaded constructor is defined for return the area of the rectangel.

Example 4.10 shows the second class ConstOverloading, which has the main()method inside it. While
creating different instances of the Rectangle class, different overloaded constructors of the class are in-
voked with different number of parameters passed through the constructors. The values passed through
the various constructors are used to initialize different instances of the Rectangle class.

S e IEE NN Testing the Overloaded Constructors

L1 class ConstOverloading {
L2 public static void main(String args[]) {
L3 Rectangle rectanglel = new Rectangle();

L4 System.out.println("Area using first constructor:’
L5 Rectangle rectangle2 = new Rectangle(4,5);
L6 System.out.println("Area using second constructor:’

3}

+rectanglel.area());

+rectangle2.area());

Output

Area using first constructor: 200
Area using second constructor: 20

Explanation

L3 TheRectangle objectis created and the default L5 Another Rectangle object is created and the
constructor (i.e., no argument constructor, explicitly —parameterized constructor is invoked. If there are a
provided) is called. number of parameterized constructors in the class,

96 Programming in Java

then which constructor will be invoked will depend integer arguments are passed, so a constructor is
upon the exact matching of the number of argument searched which accepts two integer arguments which
and the type of arguments in order. In our case, two is already defined in L7, Example 4.9.

The above example shows a case of overloaded constructors with differing number of arguments.
Another case would be where different type of arguments can also be passed into the overloaded
constructors.

4.7 CLEANING UP UNUSED OBJECTS

Many other object-oriented languages require that you keep a track of all the objects you create
and that you destroy them when they are no longer needed. Objects are allocated memory from
the heap memory and when they are not needed their allocated memory should be reclaimed.
The clean-up code is tedious and often error-prone. Java allows programmer to create as many
objects as they want, but frees them from worrying about destroying (deallocating memory)
objects. The Java runtime environment deletes objects when it determines that they are no longer
required. It has its own set of algorithms for deciding when the memory allocated to an object
must be reclaimed. This automated process is known as garbage collection.

An object is eligible for garbage collection when no references exist on that object. References
can be either implicitly dropped when it goes out of scope or explicitly dropped by assigning
null to an object reference.

4.7.1 Garbage Collector

The Java runtime environment has a garbage collector that periodically frees the memory used by
objects that are no longer needed. Two basic approaches used by garbage collectors are Reference
counting and tracing. Reference counting maintains a reference count for every object. A newly
created object will have count as 1. Throughout its lifetime, the object will be referred to by many
other object thus incrementing the reference count and as the referencing object move to other
objects, the reference count for that particular object is decremented. When reference count for
a particular object is 0, the object can be garbage collected.

Tracing technique traces the entire set of objects (starting from root) and all objects having
reference on them are marked in some way. Tracing garbage collector algorithm popularly
known as is mark and sweep garbage collector scans Java’s dynamic memory areas for objects,
marking those objects that are referenced. After all the objects are investigated, the objects that
are not marked (not referenced) are assumed to be garbage and their memory is reclaimed. Mark
and sweep collectors further use the techniques of Compaction and Copying for fragmentation
problems (refer to memory management in operating system for details) that may arise once
you sweep the unreferenced objects. Compaction moves all the live objects towards one end
making the other end a large free space and copying techniques copies all live objects besides
each other into a new space and the old space is considered free now.

The garbage collector runs either synchronously or asynchronously in a low priority daemon
thread. The garbage collector executes synchronously when the system runs out of memory or
asynchronously when the system is idle. The garbage collector can be invoked to run at any
time by calling System.gc() or Runtime.gc(). But asking the garbage collector to run does not
guarantee that your objects will be garbage collected.

Classes and Objects 97

4.7.2 Finalization

Before an object gets garbage collected, the garbage collector gives the object an opportunity to clean
up itself through a call to the object’s finalize() method. This process is known as finalization.

All occupied resources (sockets, files, etc.) can be freed in this method. The finalize()
method is a member function of the predefined java.lang.0bject class. A class must override
the finalize()method to perform any clean up if required by the object.

4.7.3 Advantages and Disadvantages

There are many advantages of using garbage collection apart from freeing the programmer from
worrying about deallocation of memory. It also helps in ensuring integrity of programs. There
is no way by which Java programmers can knowingly or unknowingly free memory incorrectly.

The disadvantage of garbage collection is the overhead to keep track of which objects are being
referenced by the executing program and which are not being referenced. The overhead is also
incurred on finalization and freeing memory of the unreferenced objects. These activities will
incur more CPU time than would have been incurred if the programmers would have explicitly
deallocated memory.

4.8 CLASS VARIABLES AND METHODS—static KEYWORD

When we create an object, a primitive type variable, or call a method, some amount of memory
is set aside for the said object, variable, or method. Different objects, variables, and methods
will occupy different areas of memory when created/called. Sometimes we would like to have
multiple objects, shared variables, or methods. The static keyword effectively does this for us.
It is possible to have static methods and variables.

Before going further, we must discuss the kind of variables Java supports. These include: local
variables, instance variables, and class/static variables.

Local Variables Local variables are declared inside a method, constructor, or a block of code.
When a method is entered, its contents (values of local variables) are pushed onto the call stack.
When the method exits, its contents are popped off the stack and the memory in stack is now
available for the next method. Parameters passed to the method are also local variables which
are initialized from the actual parameters. The scope of local variables is limited to the method
in which they have been defined. They have to be declared and initialized before they are used.
Access specifiers like private, public, and protected cannot be used with local variables.

Instance Variables Instance variables are declared inside a class, but outside a method. They
are also called data member, field, or attributes. An object is allotted memory for all its instance
variables on the heap memory. As objects instance variables remain live as long as the object is
active. They are accessible directly in all the instance methods and constructors of the class in
which they have been defined. By default, they are initialized to their default values according
to their respective types.

Class/static Variables Class/static variables declaration is preceded with the keyword static.
They are also declared inside a class, but outside a method. The most important point about
static variables is that there exists only a single copy of static variables per class. All objects of
the class share this variable. Static variables are normally used for constants. By default, static

variables are initialized to their default values according to their respective types.

98 Programming in Java

No variable can have an undefined value. Instance or class variables are implicitly initialized
to their respective default values, whereas local variables are not implicitly initialized to a
default value and must be explicitly initialized in Java.

4.8.1 Static Variables

Java does not allow global variables. The closest thing we can get to a global variable in Java
is to make the instance variable in the class static. The effect of doing this is that when we
create multiple objects of that class, every object shares the static variable, i.e. there is only one
copy of the variable declared as static. To make an instance variable static we simply precede
the declaration with the keyword static.

static int var = 0;

In effect, what we are really doing is that this instance variable, var, no matter how many
objects are created, should always reside in the same memory location, regardless of the object.
This then simulates like a ‘global variable.” We usually declare a variable as final and static as
well, since it makes sense to have only one instance of a constant. It is worthwhile to note that
people refer to static instance variables as ‘class variables.” Before proceeding further, let us
take an example to depict how static variables are declared.

m Instance Variables vs Class Variables

Class variables can be declared with the ‘static’ keyword. For example,
static int y = 0;

All instances of the class share the static variables of the class. A class variable can be
accessed directly with the class name, without the need to create an instance.

Without the ‘static’ keyword, it is called an ‘instance variable’ and each instance of the class
has its own copy of the variable.

S e JEVREN Instance and Class Variables

L1
L2
L3

L4
LS

L6
L7

In the following code, the class Test1 has two variables, x and y.
class Testl {
int x = 0; // instance variable
static int y = O; // class variable

//setter methods
void setX (int n) {x =
void setY (int n) {y

S5 S

//getter methods
int getX() { return x;}
int getY() { return y;}

}

We could have another class Test2 having the main()function where the use of static variable
declared in the class Test1 can be shown:

Classes and Objects 99

Sl RPA A Class Showing the Use of Class (Static) Variables

L1 class Test2 {
L2 public static void main(String[] arg){
L3 Testl t1 = new Testl();

L4 Testl t2 = new Testl();
L5 t1l.setX(9);
L6 t2.setX(10); // object tl1 and t2 have separate copies of x

L7 System.out.println("Instance variable of object t1 :
L8 System.out.println("Instance variable of object t2 :

" +tl.getX());
" +t2.getX());

// class variable can be accessed directly through Class Name
// (if changed to Test2.x, it won't compile)

L9 System.out.println("Value of y accessed through class Name: " +Testl.y);
L10 Testl.y = 7;
L1 System.out.println("Changed value of y accessed through class Name: " +Testl.y);

// class variable can be manipulated thru methods as usual

L12 tl.setY(Testl.y+1);
// class variable can be accessed through objects also
L13 System.out.println("Value of y accessed through object t2:" +t2.getY());
L14 }
L15 }
Output

Instance variable of object t1 : 9
Instance variable of object t2 : 10
Value of y accessed through class Name: O
Changed value of y accessed

Value of y accessed through object t2: 8

through class Name: 7

Explanation

L7 Output printed is 9, i.e., the instance variable is
printed with the help of the object.

L8 Output printed is 10, i.e., another instance
variable is printed with the help of the object.

L9 Output printed is 0. It is important to note that
here, we need not have an object for class Test 1 to
access the static variable of Test 1 (refer to L3 of
class Test 1).

L10 Static variable is assigned a value 7 using the
class name itself.

L11 Output printed is 7.

L12 Instance method setY() is invoked using the
object t1, where the value of static variable, y (i.e., 7),
accessed through class name Test1 is incremented
by I and passed as argument.

L13 Output printed is 8, as t2.getY()returns the
value set by t1.setY()in L12. This is done to show
that the value of y is being shared by all the objects
of the class, as it is a static variable.

4.8.2 Static Methods

Like static variables, we do not need to create an object to call our static method. Simply using
the class name will suffice. Static methods however can only access static variables directly.
Variables that have not been declared static cannot be accessed by the static method directly,
i.e., the reason why we create an object of the class within the main (which is static) method to
access instance variables and call instance methods. To make a method static, we simply precede
the method declaration with the keyword static.

100 Programming in Java
static void a Method(int paraml) { }

m Instance Method vs Class Method

static methods can be accessed through the class name itself. Methods declared without the
static keyword (instance methods) can be accessed using the object/instance of the residing
class. static methods are also known as class methods.

static methods can call other static methods directly. If a static method to be invoked is
within the same class, then only the static method name can be mentioned to invoke it. Else
if the static method is outside the class, then the class name has to be prefixed with the
static method name to invoke it. But invoking non-static methods (instance methods) from
static methods requires an instance of the class. Also note that methods declared as static
cannot access the variables declared without the static keyword. It is quite evident in the

following example where it gives a compilation error, un less x is also static.

class Test {
int x = 3;
static int returnX(){

return Xx;

}

public static void main(String args[])

{
System.out.println(returnX()); // static method invoked directly

1}

Let us take an example to show the use of static methods.

Sl JEENEN A Class Having Static Members

L1 class Area {

L2 static int area; // class variable

L3 static int computeArea (int width, int height){
L4 area = width * height;

L5 return area;

L6 }

L7 }

The above class Area has a class variable declared in L2 and a static method, computeArea()
with two arguments in L3.

e NS Calling Static Method from Another Class

L1 class CallArea{

L2 public static void main(String args[]){

L3 System.out.println(Area.computeArea(4,3));
L4 }

L5 }

Classes and Objects 101

Output
12

Explanation

L3 The method computeArea() of class Area this method has been declared as static in L3 of class
is being called without referencing it through any Area. The return value of the method is printed using
object/ instance. Instead, it can be invoked using that System.out.println().

class name only, which it belongs to. It is so because

4.8.3 Static Initialization Block

A block of statements can be enclosed in parenthesis with static keyword applied to it.
This block of statement is used for initializing static or class variables. If the initialization
logic is simple, the class variables can be assigned values directly but in case some logic is
used for assigning values to the variables, static blocks can be used. The syntax for static
block is as follows:

static

{

}

The static executes as soon as the class loads even before the JVM executes the main method.
There can be any number of static blocks within the class and they will be executed in the
order in which they have appeared in the source code.

m In case the static keyword is dropped from this block, it becomes an instance initialization
block and all code placed inside this block is placed inside the constructors before the source
code written in the constructor by the Java compiler. Actually the code of instance initialization
block is placed in the <init> method, which is created for every constructor by the compiler,
before the source code mentioned by programmer in the constructor.

Let us take an example to see how static block, instance initialization block, instance variable
initializes and constructor executes. The program clearly shows that static block executes even
before main method. This program also includes an instance variable instance initialization
blocks with a constructor. Both the instance block and the constructor code gets invoked as
soon as the object of the class is created. How? As already stated, the code of initializer instance
initialization block is placed within the constructor, before the constructors own code, by Java
compiler. This is evident by seeing the output, the print statement in the instance initialization
block executes before statement mentioned in the constructor. The static block also shows
declaration of a variable which is local to the block.

Sl J R EN Static Initialization Block, Instance Initialization Block and Constructor

class StaticBlockDemo

{

102 Programming in Java

int x=10; // instance variable initializer
/* static initialization block */
static

{

int z=10; // local variable
System.out.println(“In static block”);

}

// Instance initialization block

{
System.out.println(“In Instance Initialization block”);
System.out.println(“Printing Instance variable Initializer
value through Block: “ +x);

}

// Constructor
StaticBlockDemo(int y)
{
System.out.println(“Within Constructor”);
System.out.println(“Instance variable printed using constructor: “+x);
X=Y;
System.out.println(“Instance variable initialized using constructor: “+x);

/* To see whether the code of instance variable initializer
and block is copied within every constructor we create another
constructor and see the output. The following constructor when
invoked also prints the contents of instance variable intializer
and block. So the contents of instance variable initializer and
block are copied in every constructor by the compiler. In other
word, they are copied in every <init> method created for every
constructor before the constructors own code.*/

StaticBlockDemo()
{
System.out.println(“Within Constructor”);
System.out.println(“Instance variable printed using constructor: “+x);
}
public static void main(String[] args)
{
System.out.println(“In main”);
StaticBlockDemo st = new StaticBlockDemo(100);
System.out.println(®“--------------------e e)
StaticBlockDemo stl = new StaticBlockDemo();

Output

Classes and Objects 103

D:\javaprg>java StaticBlockDemo
In static block
In main

In Instance Initialization block

Printing Instance variable Initializer value through Block: 10

Within Constructor

Instance variable printed using constructor: 10

Instance variable initialized using constructor: 100

In Instance Initialization block

Printing Instance variable Initializer value through Block: 10

Within Constructor

Instance variable printed using constructor: 10

4.9 this KEYWORD

L3
L4
L5
L6
L7

The keyword this is used in an instance method to refer to the object that contains the method,
i.e., itrefers to the current object. Whenever and wherever a reference to an object of the current
class type is required, this can be used.

It can also differentiate between instance variables and local variables. Let us revisit the code
segment of Example 4.8. Here the use of this will make you understand its use.

Room2(double 1, double b, double h){
this.length = 1;

this.breadth = b;

this.height = h;

}

Here, the use of this does not do anything differently than the earlier code in Example 4.8. It
is perfectly legitimate to use it in the way it has been done. Inside Room2, this will always refer
to the current object, of Room2. The obvious question that would arise is when and why should
we use this in an application?

The exact purpose of this is to remove ambiguity between local and instance variables. In
Example 4.8, we had three instance variables declared in L2. Look carefully. The formal (local
variables) parameters of Room() in L3 have different names, (1, b, and h) from the instance
variables (length, breadth, and height).The values of these formal parameters are passed to the
instance variables. If a like names are provided for both the parameters (formal and instance
variables) then the instance variables will be hidden (or shadowed) by the local variables.
Suppose the formal parameters had been named as length, breadth, and height, which are also
the names of the instance variables used in the class, then it is difficult to distinguish between
local variable and instance variable as shown below:

104 Programming in Java

Room2 (double length, double breadth, double height){
length = length;
breadth = breadth;
height = height;
}

It is an ambiguous situation for the JVM as it does not understand what has to be done;
whether instance variables have to be initialized with formal parameters or vice versa. The
problem arises because JVM cannot clearly distinguish which is a local variable and which is
an instance variable. In this case the local variables shadow or hide the instance variables. If
you try to access or print the length variables in the constructor Room2, the local variable length
will be printed and not the instance variable: length, this allows you to solve the problem of
a variable’s scope, because it lets you refer to the object directly. this keyword makes a clear
cut distinction between local and instance variable. this.length refers to the length instance
variable of the current object. The above block of code can be re-written as follows.

Room2 (double length, double breadth, double height){
this.length = length;
this.breadth = breadth;
this.height = height;
}

In the above code it is clearly evident local variable length value should be assigned to the
instance variable length of the current object and soon for other variables.

Hence, the names of instance variables and the formal parameters can be kept similar because
this has made it possible for the JVM to differentiate between instance and local variables.
Still, one can argue that a programmer can very well use different variable names for instance
and local variables.

Constructor Chaining It means a constructor can be called from another constructor. Let us
revisit Example 4.8.

/* First Constructor */
Room2()

{

// constructor chained
this(14,12,10);
}
/* Second Constructor */
Room2 (double 1, double b, double h)

{
length = 1;
breadth = b;
height = h;
}

In the above code, two constructors have been created: one without arguments and another with
three arguments. In the first constructor, we have used this keyword to call the second constructor
and passed the required arguments in the call to second constructor.

Classes and Objects 105

Whenever we create an object of the class Room2 as,

Room2 rl = new Room2();

the first constructor will be invoked which is chained to the second constructor.

4.10 ARRAYS

Till now, we have discussed how to declare variables of a particular data type, which can store
a single value of that data type. The allocation of memory space, when a variable is declared,
cannot further be sub-divided to store more than one value. There are situations where we might
wish to store a group of similar type of values in a variable. It can be achieved by a special kind
of data structure known as arrays.

An array is amemory space allocated that can store multiple values of same data type in contiguous
locations. This memory space, which can be perceived to have many logical contiguous locations,
can be accessed with a common name. For example, we can define an array as ‘marks’ to represent
a set of marks of a group of students. Now the next question is how to access a particular value from
a particular location? A specific element in an array is accessed by the use of a subscript or an index
used inside the brackets, along with the name of the array. For example, marks[5] would store the
marks of the fifth student. While the complete set of values is called an array, the individual values
are known as elements. Arrays can be two types:

e one dimensional array

e multi-dimensional array

4.10.1 One-dimensional Arrays

In a one-dimensional array, a single subscript or index is used, where each index value refers to
an individual array element. The indexation will start from 0 and will go up to n—1, i.e., the first
value of the array will have an index of 0 and the last value will have an index of n —1, where n
is the number of elements in the array. So, if an array named marks has been declared to store
the marks of five students, the computer reserves five contiguous locations in the memory, as
shown in Fig. 4.4.

marks[0] marks[1] marks[2] marks[3] marks[4]
Fig. 4.4 Marks Array

Suppose, the five marks to be assigned to each array element are 60, 58, 50, 78, and 89. It
will be done as follows:

Marks[0] = 60;
Marks[1] = 58;
Marks[2] = 50;
Marks[3] = 78;
Marks[4] = 89;

106 Programming in Java

Figure 4.5 shows the marks array with data elements.

60 58 50 78 89

marks[0] marks[1] marks[2] marks[3] marks[4]
Fig. 4.5 Marks Array Having Data Elements

Creation of Array

Creating an array, similar to an object creation, can inherently involve three steps:

e Declaring an array

e (Creating memory locations

o Initializing/assigning values to an array
Declaring an Array Declaring an array is same as declaring a normal variable except that you
must use a set of square brackets with the variable type. There can be two ways in which an
array can be declared.

® type arrayname[];

e type[] arrayname;

So the above marks array having elements of integer type can be declared either as

int marks[];
or
int[] marks;

Creating Memory Locations An array is more complex than a normal variable, so we have to
assign memory to the array when we declare it. You assign memory to an array by specifying
its size. Interestingly, our same old new operator helps in doing the job, just as shown below:

Arrayname = new type [size];
So, allocating space and size for the array named as marks can be done as,
marks = new int[5];

Both (declaration of array and creation of memory location), help in the creation of an array.
These can be combined as one statement, for example,

type arrayname[] = new type[];

or
type[] arrayname

new type[];

It is interesting to know what the JVM actually does while executing the above syntax.
During the declaration phase, int marks[];

marks ————

Figure 4.6 shows the marks array after memory is allocated to the array on execution of the
following statement:
marks = new int[5];
Here is an example to show how to create an array that has 5 marks of integer type.

Classes and Objects 107

A -
y

class Array{ Refers to marks array of int type
public static void main(String[]
args){
int[] marks = new int[5];
}
}

Initializing/assigning Values to an
Array Assignment of values to an
array, which can also be termed as
initialization of array, can be done as
follows:

Arrayname[index] = value;

We have just discussed how to create a list of parameters to be assigned in an array.

Fig. 4.6 Creation of Arrays

4.16 shows how to set the values for an array of 5 marks (Fig. 4.6).

SeElnJEV RGN Setting Values in an Array

L1 class Array {

L2 public static void main(String[] args){
L3 int[] marks = new int[5];

L4 marks[0] = 60;

L5 marks[1] = 58;

L6 marks[2] = 50;

L7 marks[3] = 78;

L8 marks[4] = 89;

L9 }

L10 }

marks[0]
marks[1]
marks[2]
marks[3]

marks[4]

Example

SN NVA Creation and Initialization of an Array

Arrays can alternately be assigned values or initialized in the same way as the variables, i.e.,
at the time of declaration itself. The syntax for the same can be,

type arrayname[] = {list of values};

For example, int marks[] = {60, 58, 50, 78, 89}

Here, the marks array is initialized at the time of creation of array itself. The above statement
does the same thing as the code between L3 to 8 of Example 4.16. An example of array creation

and initialization is given below.

class Array

{

public static void main(String[] args){
int[] marks = {60, 58, 50, 78, 89};

}

¥

108 Programming in Java

How to Use for Loops with Arrays?

The for loops can be used to assign as well as access values from an array. To obtain the number
of values in an array, i.e., the length of the array, we use the name of the array followed by the
dot operator and the variable length. This length property is associated with all the arrays in
Java. For example,

"

System.out.println("There are " + marks.length + "in the array");

will print the number of elements in the marks array, i.e., 5. Example 4.18 shows how to use a
for loop to set all the values of an array to 0 which, you will see, is much easier than setting all
the values to 0 separately.

S el JENEN Setting Values in an Array Using for Loop

L1 class Array {

L2 public static void main(String[] args){
L3 int[] marks = new int[5];

L4 for (int i = 0; i<marks.length; i++)
L5 marks[i] = O;

L6 }

L7 }

Explanation

L3 Creates an array marks, having five locations and iterates by 1 up to the last location of the array,
to store five elements. which is returned by marks.length.

Various operations can also be performed on the
values of an array, which can again be assigned to the
array. For example, the following code increments

all the marks in the class by 5.

L4 i signifies the subscript of the array, which is
always an integer type. The for loop starts with the
first location of the array;, it stands at the Oth subscript

S JEENEN Incrementing the Values of Data Elements in an Array

for (inti = 0; i<grades.length; i++){

grades[i] = marks[i] + 5;

To access a particular value in the array, we use the name of the array, followed by an open bracket,
followed by an expression that gives the index, followed by a close bracket. For example, here
is a simple code to print all the marks in the array of marks declared above.

S EJE IR Printing the Values of Data Elements of an Array

for (inti = 0; i<marks.length; i++){

System.out.println(marks[i]);

Classes and Objects 109

Sorting an Array Let us take an example where we apply all the concepts of array that we
have learnt until now. If we have been given a set of marks and we have to sort the marks in
ascending order.

S el JEY AN Sorting an Array

class SortArray{

public static void main(String[] args)

{
int[] marks = {3, 5, 1, 2, 4};
int temp, n;
n = marks.length;
System.out.print("The list of marks is: ");
for(int i = 0; i< n; i++){
System.out.print(marks[i]+ " ");

}

for (int i = 0; i< n; i++){
for (int j = i+1; j < n; J++){
if (marks[i] < marks[j])

{
temp = marks[i];
marks[i] = marks[j];
marks[j] = temp;

}

}

}

System.out.print("\nList of marks sorted in descending order is: ");
for (int i = 0; i< n; i++)
{
System.out.print(marks[i]+" ");
}
}
}

Output

c:\javabook\programs\chap4>java SortArray
The list of marks is: 351 2 4
List of marks sorted in descending order is: 54 3 2 1

Explanation

L1 Class SortArray declared. L7-9 for loop is used to print the values of the
L2 main()declared and its body starts with left {. original list, i.e., marks.
L3 Array named marks created with initialized L10 Defines for loop which iterates from 0 to

values. length of the array —1.
L4 Instance variables, temp and n declared to be L11 A nested for loop is declared which iterates
integer type. fromi+ 1ton—1.L12-16 are part of the inner for

L5 Length of the array is stored in n. loop, and these statements are executed for each

110 Programming in Java

value of i from 0 to n —1 and j from 1 to n—1 as
shown in Fig. 4.7 below.

L12-16 In the first iteration, value of i is 0 and j
is 1. The marks at the Oth index are compared with
the marks at the first index. If marks at Oth index are
less than marks at the 1st index they are swapped.
For swapping, a temporary variable named temp is
created (L13). Marks at ith index (first iteration value
of i is 0) are assigned to temp (L14). The marks at
jth (first iteration value of j is 1) index are assigned

to marks at marks at ith index (L15) and marks in
temporary variable are assigned to marks at the jth
position. Thus the value of jth position is swapped
with the value at ith position. Figure 4.7 illustrates
how the outer and inner loops execute for each value
of i and j. It also shows when the values of the array
are swapped.

L20-22 Display the sorted array. The array has
been sorted in descending order.

When i = 0
j=1 marks[0] < marks[1] Yes, so they are swapped
(3) (5) New Array is 5,3, 1,2, 4
j=2 marks[0] < marks[2] No, not swapped
(5) (1) New Array is 5, 3, 1, 2, 4
j=3 marks[0] < marks[3] No, not swapped
(5) (2) New Array is 5, 3, 1,2, 4
j=4 marks[0] < marks[4] No, not swapped
(5) (4) New Array is 5, 3, 1, 2, 4
When i = 1
j=2 marks[1] < marks[2] No, not swapped
(3) (1) New Array is 5, 3, 1, 2, 4
j=3 marks[1] < marks[3] No, not swapped
(3) (2) New Array is 5, 3, 1,2, 4
j=4 marks[1] < marks[4] Yes, swapped
(3) < (4) New Array is 5, 4, 1,2, 3
When i = 2
j=3 marks[2] < marks[3] Yes, swapped
(1) < (2) New Array is 5, 4,2, 1,3
j =4 marks[2] < marks[4] Yes, swapped
(2) < (3) New Array is 5,4, 3, 1,2
When i = 3
j=4 marks[3] < marks[4] Yes, swapped
(1) < (2) New Array is 5,4, 3,2, 1
When i = 4
j=5 Inner for loop does not execute.

When i = 5, Outer for loop exits

Fig. 4.7 Execution of Loops in SortArray Example

4.10.2 Two-dimensional Arrays

Sometimes values can be conceptualized in the form of a table that is in the form of rows and
columns. Suppose we want to store the marks of different subjects. We can store it in a one-
dimensional array.

Classes and Objects 111

Now if we want to add a second dimension in the form of roll no of the student. This is possible
only if we follow a tabular approach of storing data, as shown in Table 4.4.

You can easily notice that Table 4.3 can store only subject names and the marks obtained by
one student, while Table 4.4 can store the details of multiple students. There can be enumerable
such situations where we can use a two-dimensional structure. Java provides a solution for the
storage of such a structure in the form of two-dimensional arrays.

If you want a multidimensional array, the additional index has to be specified using another
set of square brackets. The following statements create a two-dimensional array, named as marks,
which would have 4 rows and 5 columns, as shown in Table 4.4.

Table 4.3 One-dimensional Marks Array

Subjects Marks
Physics 60
Chemistry 58
Mathematics 50
English 78
Biology 89

Table 4.4 Two-dimensional Marks Array

Roll NS(l)l‘bjeCt Physics Chemistry Mathematics English Biology

01 60 67 47 74 78

02 54 47 67 70 67

03 74 87 76 69 88

04 39 45 56 55 67

int marks[][] //declaration of a two-dimensional array
marks = new int[4][5]; //reference to the array allocated, stored in marks

variable

This is done in the same way as it has already been explained while discussing one-dimensional
arrays. The two statements, used for array creation, can be merged into one as,

int marks[][] = new int[4][5];

Another way of representing the above statement can be,
int[][] marks = new[4][5];

This statement just allocates a 4 x 5 array and assigns the reference to the array variable marks.
The first subscript inside the square bracket signifies the number of rows in the table or matrix
and the second subscript stands for the number of columns. This 4 X 5 table can store 20 values
altogether. Its values might be stored in contiguous locations in the memory, but logically, the
stored values would be treated as if they are stored in a 4 x 5 matrix. Table 4.5 shows how the
marks array is conceptually placed in the memory by the above statement.

112 Programming in Java

Table 4.5 4 x 5 Marks Array

60 67 47 74 77
(marks[0][0]) (marks[0][1]) (marks[0][2]) (marks[0][3]) (marks[0][4])
54 47 67 70 67
(marks[1][0]) (marks[1][1]) (marks[1][2]) (marks[1][3]) (marks[1][4])
74 87 76 69 88
(marks[2][0]) (marks[2][1]) (marks[2][2]) (marks[2][3]) (marks[2][4])
39 45 56 55 67
(marks[3][0]) (marks[3][1]) (marks[3][2]) (marks[3][3]) (marks[3][4])

Like a one-dimensional array, two-dimensional arrays may be initialized with values at the time
of their creation. For example,

int marks[2][4] = {2, 3, 6, 0, 9, 3, 3, 2};

This declaration shows that the first two rows of a 2 x 4 matrix have been initialized by the
values shown in the list above. It can also be written as,

int marks[][] = {(2) 3, 6, 0), (9, 3, 3, 2)};

In the above declaration, subscripts need not be shown, as it is evident from the manner in
which the list of values have been presented. Here, the list of values has two different sets of
values, separated by a comma, each standing for a row.

It is important to understand how Java treats 2-D arrays. 2-D arrays are treated as 1-D array.
For example, the above declaration of 2 x 4 array will create three 1-D array. One for storing the
number of row arrays (i.e. 2) and the other two arrays will be used for storing the contents of the
rows. The size of these two arrays will be 4. As shown in Fig. 4.7, the size of row array is the
number of rows and each field in the row array points to a 1-D array that contains the column
values for the rows. So marks[0][0]will have the value 2, marks [0][1] will have 3, marks[1]
[0] with 9, and so on.

Assigning and accessing the values in a two-dimensional array is done in the same way, as was
done in a one-dimensional array. The only difference is that, here you have to take care of the
positional values of the array using two subscripts (shown in square brackets), while in a one-
dimensional array, only one subscript was used for the purpose. Table 4.5 shows the positional
values of a two-dimensional array.

(2nd array)

marks[0] » 2 3 6 0
marks[1] [0] 11 [2] [3]
Row array
(1st array)

(3rd array)
9 3 3 2
[0] (1] [2] [3]

Contents of the row array

Fig. 4.8 2-D Array

Classes and Objects 113

All that you need to do to create and use a 2-D array is to use two square brackets instead of

one.

S EJERWPA Setting Values in a Two-dimensional Array

L1 class DemoArrayl {
L2 public static void main(String[] args) {
L3 int a[][] = new int [2][];
L4 /* int al[][] = new int [][2]; */
L5 int m[]1[] = {{2,3,6,0},{9, 3, 3, 2}};
L6 for(int i=0;i<m.length;i++)

{
L7 for(int j=0;j<m[i].length;j++)
L8 System.out.print(m[i][j] +" ");
L9 System.out.println();

}

1}
Output

C:\javabook\programs\chap4>java DemoArrayl
2360
9332

Explanation

L3-4 Shows the declaration of a 2-D integer
array having two rows. The number of columns is
not specified but the reverse declaration is illegal as
shown in L4.

L5 Shows a declaration of a 2-D array with values
assigned to it. No number has been specified in the
row and column square brackets of array m. The
rows and columns are decided on the basis of how
the values are passed to the array. m is having 2 rows
and 4 columns. The number of inner curly bracket
(opening and closing) determines the number of rows
(row array) and the number of individual values in
a particular curly bracket (opening and closing) will

determine the columns in a row (separate 1D array
will be created for each row). Each index in a row
array will point to a column array.

L6 A for loop is created. This for loop is used
for iterating through the row array and that is why it
iterates from O to the length of the array m.

L7 An inner for loop is created for iterating the
columns in a row array. The inner for loop iterates
from 0 to the length of the 1D array pointed by the
individual fields in the row array. That is why the
loop iterates up tom[i].1length.

L8 Prints the individual items of the array at all
row and column combinations.

Let us take a more complex but useful example of matrix multiplication. Two matrices are
to be multiplied, so two arrays capable of holding the same number of rows and columns as

matrices are required.

114 Programming in Java

S I WEN Matrix Multiplication

L1 class MatrixMul {
L2 public static void main(String args[]) {

L3
L4
L5
L6
L7
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17

L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32
L33
L34
L35
L36
L37 }

Output

Matrix 1:

37
6 9

Matrix 2:

54
36

int array[][] = {{3,7},{6,9}};

int arrayl[][] = {{5,4},{3,6}};

int array2[][] = new int[2][2];

int x = array.length;

System.out.println("Matrix 1: ");

for (int i=0; i<array.length; i++) {

for (int j=0; j<array[i].length; j++) {
System.out.print(" "+array[i][j]);

}

System.out.println();

}

int y = arrayl.length;

System.out.println("Matrix 2: ");

for (int i=0; i<arrayl.length; i++) {

for (int j=0; j<arrayl[i].length; Jj++)

{
System.out.print(" "+arrayl[i][j]);
}
System.out.println();
}

for (int i=0; i<x; i++) {
for (int j=0; j<y; j++) {
for(int k=0; k<y; k++) {
array2[i][j] += array[i][k]*arrayl[k][7j];
}
b
b

System.out.println("Multiplication of both matrices: ");

for (int i=0; i<x; i++) {

for (int j=0; j<y; j++) {
System.out.print(

+array2[i][j]);
}
System.out.println();

Multiplication of both matrices:

36 54
57 78

Classes and Objects 115

Like 2-D arrays, we can define any multidimensional array having n» dimensions. While declaring
an n-dimensional array, n number of square brackets will be used. All the operations in any type
of multidimensional array will be similar to that of a one-dimensional or two-dimensional array.

4.10.3 Using for-each with Arrays

The enhanced for loop, i.e., for-each was introduced in Java 5 to provide a simpler way to
iterate through all the elements of an array or a collection. The format of for-each is as follows:

for (type var : arr){
// Body of loop
}

For example, we can use for-each loop to calculate the sum of elements of an array as follows:
int[] arr = {2,3,4,5,6};
int sum = 0;

for(int a : arr) // a gets successively each value in arr

{

sum += a;
}
The disadvantage of for-each approach is that it is possible to iterate in forward direction only
by single steps.
4.10.4 Passing Arrays to Methods

Arrays can be passed to methods as well. The following example shows a two-dimensional array
being passed to a method. The static method displays the contents of that array.

S EJEE LN Arrays as Arguments to Methods

L1
L2
L3
L4
L5
L6
L7
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19

class PassingArray

{
static void show(int[][] a)
{
for(int i=0j;i<a.length;i++)
{
for(int j=0;3j<2;j++)
{
System.out.print(" " +a[i][j]);
}
System.out.println();
}
}
public static void main(String args[])
{
int a[][]1={{1,2},{2,3}};
show(a);
}

116 Programming in Java

Output

D:\javabook\programs\chap4\PassingArray
12
23

Explanation

L1 Class declaration.

L3 Declares a static method “show’ that accepts
an argument i.e., a two-dimensional array.

L5 Shows a for loop that would loop from 0 to the
length of array. This for loop is basically used to
refer to the first dimension of the 2D array.

L6 Marks the beginning of for loop defined in L5.
L7 Shows another for loop that would represent
the second dimension. Our 2D array has only
two elements as each array item. So the index for
referencing any individual element would be a[0][0]
or a[0][1] for the first row of the Array. Subsequently
The next row items can be referenced as a [1][0]
and a [1][1] and so on (a [2][0], a [2][1] etc.). As is
evident, the second index does not go beyond 1, so
we have declared a for loop, in this statement, that
iterates for less than 2 times.

L9 Prints the individual elements of the array based
on the values of indexes set by the values of i and j.
L10 Marks the closure of the inner for loop.

L11 Isasimple print statement used for formatting
the output. This will move the cursor to new line.
Basically it is used to show the individual elements
of the array on a new line.

L12 Marks the closure of the outer for loop.

L13 Ends the method show.

L14 Main method declaration.

L16 An int array is defined and initialized with
values.

L17 Static method show is invoked and array is
passed as an argument to it. As show is a static method
it can be invoked directly.

L18 & 19 Ends the main method and the class.

4.10.5 Returning Arrays from Methods

Arrays can not only be passed to methods but we can use arrays as return value from methods.
If you are faced with a situation where you want to return multiple values from a method, all
the values can be encapsulated in an array and returned. The following example shows a two
dimensional array being returned from a method. The main method displays the contents of that

array.

S €A WER Returing Multiple Values

class ReturningAnArray

{

// static method declared to return a 2D Array

static int[][] show(){
int a[1[1={{1,2},{2,3}};

return a;

}

public static void main(String args[])

{
int a[][]=show();
for(int i=0;i<a.length;i++)
{
for(int j=0;j<2;j++)
{
System.out.print(" "

// return value is captured in a 2D Array

+a[i][3]);

Classes and Objects 117

}
System.out.println();
}
}
}

Output
D:\javabook\programs\chap4\ReturningAnArray
12
23

Explanation

This program is almost the same as that of previous iterate the two-dimensional array is same as that of
program. The difference is that the show method now previous program with a change i.e., now they belong
returns a two-dimensional array. The logical steps to to main method instead of show method.

4.10.6 Variable Arguments

Variable arguments can be used when the number of arguments that you want to pass to a method
are not fixed. The method can accept different number of arguments of same type whenever they
are called. The generic syntax for this notation is:

returntype methodName(datatype...arrayname)

Let us take an example to show how it can be implemented.

S €y JE LN Variable Arguments

class VarArgs
{
// integer variable argument used in add method
static void add(int...a)
{
int sum=0;
for(int i=0;i<a.length;i++)
sum=sum+a[i];
System.out.println("SUM = "+sum);

// variable arguments syntax used in main method
public static void main(String...args)

{

// four arguments are passed to the add method
add(2,3,4,5);
// Three arguments are passed to the same add method
add(2,3,4);

118 Programming in Java

Output

D:\javabook\programs\chap 4\java VarArgs

SUM =
SUM =

14
9

4.11 COMMAND-LINE ARGUMENTS

You must be aware of the basic DOS commands. Have you ever used the command to move a
file from one location to another, say abc.txt from C:\to D:\, Move C:\abc.txt D:\

Here, Move is the program or application responsible for moving the file, while C:\abc.txt
and D:\ can be termed as command-line arguments, which are passed to the Move program at
the time of invocation of the program. As the application is invoked from the command line
and the arguments are also passed to the application at the command line itself, these are called
command-line arguments. Just like C++, programs can be written in Java to accept command-
line arguments.

public static void main (String args[]){

} // end of the main() method

In this case, each of the elements in the array named args (including the elements at position
zero) is a reference to one of the command-line arguments, each of which is a string object.

Suppose, you have a Java application, called sort, that sorts the lines in a file named Sort.
text. You would invoke the Sort application as, java Sort Example.txt.

When the application is invoked, the runtime system passes the command-line arguments to
the application’s main()method via an array of strings. In the statement above, the command-line
argument passed to the Sort application contains a single string, i.e., Example.txt. This String
array is passed to the main() method and it is copied in args.

You must be wondering how many arguments you can supply through a command line. As
we have discussed in Section 4.10, the number of elements in an array can be obtained from
the length property of the array. Therefore, in the signature of main(), it is not necessary in
Java to pass a parameter specifying the number of arguments. Example 4.27 explains the use of
command-line arguments.

D€ JE-WAM Echo Application

L1
L2
L3
L4
LS
L6
L7

class Echo {

public static void main(String args[]){
int x = args.length;
for (int i = 0; i< x; i++)
System.out.println(args[i]);
}

}

After compiling the program, when it is executed, you can pass the command-line arguments
as follows:
C>java Echo A B C

Output

Output

Classes and Objects 119

Note that there is one space between each of the three arguments passed to the Echo application
through the command line. If you have to pass a string of characters as an argument, then you
must use quotes (" ") to mark that string. For example,

C>java Echo "A is first alphabet” "B is second"” "C is third"

A is first alphabet
B is second

C is third
Explanation
L2 main()is declared, with an array variable, args, the length of the array.
referring to an array of strings, passed as command line L4-5 for loop is iterated from O to the length of
arguments to the program. the array and the value obtained from each iteration

L3 An integer-type variable, x is declared to hold is printed in a separate line.

4.12 NESTED CLASSES

Nested class is a class within a class. Nested classes are of the following types:
o Non-static inner classes

o Static nested classes

o Local classes

¢ Anonymous classes

4.12.1 Inner Class

A non-static inner class is a member of the outer class declared outside the functions within a
class. The non-static inner class is bound to the instance of the enclosing class and has access to
all the members of the enclosing class even the parent’s this reference and private members. An
inner class can be defined as private, default, protected, public, final and even abstract.
Each instance of an inner class has a reference to an enclosing outer instance. A reference to the
outer class instance can be explicitly obtained through outerClassName.this. You cannot have
static variables or methods in an inner class except for compile-time constant variables, i.e., static
constant. Inner class’s objects can be created within instance methods, constructors of the outer
class or through an instance of outer class as they must have a reference to the instance of the
outer class. This would be evident from the following example as well. Let us take an example
to show how non-static inner classes can be created and used.

SN WER Inner Classes

L1

class InnerClassTest

{

120 Programming in Java

L2 int y=20; // instance variable of outer class
L3 static int a=30; // class variable of outer class
L4 class InnerClass // inner class begins
{
L5 int x=10;
// cannot have static variable but only static constants
L6 final static int z=50;
L7 void show()
{
L8 System.out.println("Within Non static Inner Class");
L9 System.out.println("Can Access Inner class variable "+x);
L10 System.out.println("Can Access Outer class variables "+y);
L1 System.out.println("Can Access Outer class static variables "+a);
L12 System.out.println("Inner class instance accessed using this:"+this);
L13 System.out.println("Outer class referred from inner class using
InnerClassTest.this: "+ InnerClassTest.this);
L14 outerInstanceMethod();
L15 // or InnerClassTest.this.outerClassMethod can also be used
L16 outerClassMethod();
}
L17 //static void staticInner(){}
}
L18 void outerInstanceMethod()
{
System.out.println("Outerclass Instance method called from Inner class");
}
L19 static void outerClassMethod()
{
System.out.println("Outerclass static method Called from Inner class");
}
L20 void createInnerObject()
{
L21 new InnerClass().show();
}
L22 public static void main(String args[])
{
L23 InnerClassTest object = new InnerClassTest();
L24 object.createInnerObject();

//Another way of invoking the show method of inner class
L25 //object.newInnerClass().show();
}
}

Output
Compilation

D:\javabook\programs\chap 4>javac InnerClassTest.java
D:\javabook\programs\chap 4>dir

InnerClassTest.java

InnerClassTest$InnerClass.class

InnerClassTest.class

Execution

Classes and Objects 121

D:\javabook\programs\chap 4>java InnerClassTest

Within Non static Inner Class
Can Access Inner class variable 10
Can Access Outer class variables 20

Can Access Outer class static variables 30

Inner class instance accessed using this: InnerClassTest$InnerClass@f72617
Outer class referred from inner class using InnerClassTest.this:

InnerClassTest@le5e2c3

Outerclass Instance method Called from Inner class
Outerclass static method Called from Inner class

Explanation

L1 Class declaration (outer).

L2 Declares an instance variable of the outer
class.

L3 Declares a static (class) variable of the outer
class.

L4 Shows the declaration of inner class.

L5 An instance variable of the inner class is
defined here.

L6 Shows the declaration of class constants.
Constant in Java can be created by applying final
keyword to the variable declaration. Non-static
inner classes can have static constants but not
static variables because inner classes operate within
the context of its enclosing (outer class) instance
therefore allowing static variables or methods will
be contradictory as static members apply to class
(or all objects of class) rather than be constrained
within a single object.

L7 Declares the instance method named show of
the inner class.

L8 Print statement which gets executed as and
when the instance method show of the inner class
is called.

L9 Prints the value of the instance variable of the
inner class. Since show is an instance method of
the inner class, it can directly access the instance
variables of the inner class

L10 Prints the value of the instance variable of
the outer class. A non-static inner class instance is
closely associated with an instance of the outer class
that is reason why inner class methods can directly
access any of the members (fields or methods) of'its
enclosing outer class. It is a part of the outer class

and therefore it has access to other parts of the outer
class. But this being a special part, the outer class
members (e.g., methods) cannot directly access the
inner class members. For example, the show method
can access the variable y of the outer class directly.
L11 Similar to the previous statement. The inner
class can access any members of the outer enclosing
class. This line shows a print statement which prints
the static variables of the outer class.

L12 Shows the use of this keyword within inner
class to refer to an instance of inner class. It can also
be verified from the output. this keyword is used as
an argument to the println method of System.out
object. The result printed on screen shows the class
of the instance (object) @ followed by a number, i.c.,
InnerClassTest$InnerClass@ £72617. Javainternally
uses the following notation for referring to inner classes
instance i.e., OuterclassName$InnerclassName as is
evident from the output. As soon as the Java file (i.e.,
InnerClassTest.java in our case) is compiled, the
Java compiler generates two class file; one for the
outer class (InnerClassTest.class) and one for the
inner class (InnerClassTest$InnerClass.class)
using the above notation. This number is an unsigned
hexadecimal representation of the hash code of the
object. The hash code returns the internal memory
address of the object in hexadecimal.

L13 Outer class instance can be accessed from within
inner class using this keyword as outerclassname.
this. Please note that notation should be used from
the method of an inner class.

L14 Shows outer class instance methods (on L18)
can be called from within inner class.

122 Programming in Java

L15 This, ifused, in show method of inner class would
refer to an instance of inner class. InnerClassTest.
this refers to an instance of outer class. So L14 shows
another way of invoking outer class methods. This line
is commented deliberately as it shows another way of
achieving the same output as in L13.

L16 Shows outer class static methods can be called
(on L19) from within inner class.

L17 Inner classes cannot have static methods
similar to static variables. The reasons are same
as that of static variables that inner class instances
operate within the context of a particular outer class
instance. So creating static methods does not make
any sense which applies to all instances of the class.
L18 Instance method of outer class has been
defined.

L19 Class method of outer class has been defined.
L20 Another instance method named createln-
nerObject of the outer class is created.

L21 Object of inner class is created within this
instance method (L20) and show method of the inner
class is invoked. Note that an object of inner class can
be created only from within the instance method (L20)
of the outer class or through an instance of the outer
class as shown in L.24. Because, as already explained,
every instance of a non-static inner class exists (or is
encapsulated) within the outer class instance. Also
note that, a single outer class instance can have many
inner class instances associated with it.

L22 main method declaration.

L23 An object of outer class InnerClassTest is
created.

L24 Using the outer class instance, method
createInnerObject (L20) of outer class is called.
L25 Shows another way of creating an instance
of inner class using new keyword on the outer class
instance and invoking the method of inner class
simultaneously.

4.12.2 Static Nested Class

A static nested class is a static member of a class just like normal static members of any class.
They have access to all static methods of the enclosing parent class. The static nested classes
cannot directly refer to instance variables and method of the outer class, similar to static parts
of any class. They can only do it through an object of the outer class. Unlike the inner classes,
the static nested classes can have static members.

m The static classes defined in a class are termed as static nested class and not inner classes
as inner classes do have an instance scope and static nested classes have class scope.

S €A WLN Static Nested Classes

L1 class StaticNestedClassTest
{
L2 int y; // instance variable
L3 static int z=100; // class variable
// static inner class begins here
L4 static class StaticNestedClass

{
L5 int x;
L6 static int staticinner=200;
L7 void nestedClassNonStaticMethod()
{
L8 // y cannot be referenced here
L9 System.out.println("Accessing static variable of outer class within Static

Inner Class "+z);
//outerClassInstanceMethod();
outerClassStaticMethod();

L10
L11

Classes and Objects

}
L12 static void nestedClassStaticMethod()
{
L13 System.out.println("Within Static method of Inner Class ");
L14 //outerClassInstanceMethod();
L15 outerClassStaticMethod();
}
} // static nested class ends here
L16 static void outerClassStaticMethod()
{
L17 System.out.println("Outer Class Static method");
}
L18 void outerClassInstanceMethod()
{
L19 System.out.println("Outer Class Instance method");
}
L20 public static void main(String args[])
{
L21 StaticNestedClassTest.StaticNestedClass object = new
StaticNestedClassTest.StaticNestedClass();
L22 object.nestedClassNonStaticMethod();
L23 object.nestedClassStaticMethod();
}
}
Output
Compilation

D:\javabook\programs\chap 4>javac StaticNestedClassTest.java
D:\javabook\programs\chap 4>dir

StaticNestedClassTest.java

StaticNestedClassTest.class
StaticNestedClassTest$StaticNestedClass.class

Execution

D:\javabook\programs\chap 4>java StaticNestedClassTest

Accessing static variable of outer class within Static Inner Class 100
Outer Class Static method

Within Static method of Inner Class

Outer Class Static method

Explanation

L1 Outer class declaration. named StaticNestedClass.
L2 Defines the instance variable y of the outer L5 Declares an instance variable of the static

class.

L3 Defines the class variable z of the outer class.
L4 Shows the declaration of the static nested class

nested class.

123

L6 Shows the declaration of static variable within
the static nested class. Static variables, unlike inner

124 Programming in Java

classes, can be created in static nested classes.

L7 Declares non-static method of the nested class.
L8 Comment that states instance variables of the
enclosing class cannot be accessed inside the static
nested class directly. However, it can be accessed by
creating an object of the outer class.

L9 Prints the static variables of the outer class.
Static nested classes can directly access the static
members of its enclosing class.

L10 Commented because instance methods cannot
be directly invoked from a static nested class.

L11 Invokes the static method on L16 of outer
class directly.

L12-15 Shows the declaration of a static method
in the static nested class. L14 is commented because
instance methods of outer class cannot be called from
within the static nested class. L15 executes because
static method of the outer class (on L16) can be

invoked from within the static nested class.
L16-17 Shows the declaration of static method of
the outer class with a print statement within itself.
L18-19 Shows the declaration of instance method
of the outer class with a print statement within itself.
L20 Main method begins.
L21 The object of static nested is created as shown
below:
StaticNestedClassTest.StaticNestedClass
object = new
StaticNestedClassTest.StaticNested-
Class();

The generic notation for creating object is

<OuterClass.StaticNestedClassName>
<reference variable name> = new
<OuterClass.StaticNestedClassName>();

L.22-23 Invokes the different methods of static nested
class using object created in previous line, L21.

m Unlike inner classes, an instance of outer class is not needed for creating an object of static nested
class. Moreover, creating an instance of outer class does not create an instance of static nested
class. Also note that a static nested class can be private, default, protected, public, final and even
abstract. (We will discuss these keywords in detail in the chapters to follow)

Local inner classes are declared within a block of code and are visible only within that block,
just as any other method variable. These classes are declared within a function. They can use
only final (constant) local variables and parameters of the function

An anonymous inner class is a local class that has no name.

4.12.3 Why do we Create Nested Classes?

Nested classes let you turn logic into their own classes which normally you would not turn into
thus allowing even more object orientation into your programming as nested classes lets you
encapsulate logic into classes. Inner classes provide a structured hierarchy.

Inner member classes and anonymous classes allow callbacks to be defined conveniently.
Callback allows an object to call back the originating object at a later point in time. Nested
classes are very effective in implementing event handling in Java.

Another advantage of nested classes would be to group classes that would be required at one
place only. If you are certain that a class will be useful to only one class then it is better to embed
a class into another.

The obvious advantages would be ease of readability and ease of maintaining the code.

4.13 PRACTICAL PROBLEM: COMPLEX NUMBER PROGRAM

We will take a practical problem to summarize most of the concepts that we have learnt in
this chapter by creating a Complex Number program. But let us first understand, what is a

Classes and Objects 125

complex number? A complex number is a number that can be represented in the form a + bi,
where a and b are real numbers and i is the imaginary part. In the expression a + bi, a is the real
part and b is the imaginary part of the complex number. Complex numbers are used in situations
where some part is predictable (real) and some part is unpredictable (imaginary — to be assumed).
Complex numbers are used in a variety of areas like electrical analysis, stress analysis of bridges
and buildings, electronics etc. We will create a program to add and subtract two complex numbers.
The further task of multiplying two complex numbers is left as an assignment to you.

S JEE Il Complex Number Program

L1

L2

L3

L4

L5

L6

L7
L8

L9
L10

L11
L12
L13
L14
L15

L16
L17

L18

L19

L20

L21

L22

class Complex

{

// instance variables
int real,imaginary;
// No argument Constructor
Complex()
{
real=0;
imaginary=0;
}
// Overloaded Constructor
Complex(int real,int imaginary)
{
this.real= real;
this.imaginary= imaginary;
}
// setter method for real part of complex number
void setReal(int real)
{
this.real=real;
}
// getter methods for real part of complex number
int getReal()
{
return real;
}
// setter method for imaginary part of complex number
void setImaginary(int imaginary)
{
this.imaginary=imaginary;
}
// getter method for imaginary part of complex number
int getImaginary()
{
return imaginary;
}
void add(Complex cl,Complex c2)
{

real=cl.real+c2.real;

126 Programming in Java

L23 imaginary=cl.imaginary+c2.imaginary;
}

L24 void subtract(Complex c1,Complex c2)
{

L25 real=cl.real-c2.real;

L26 imaginary=cl.imaginary-c2.imaginary;
}

/* A better way of displaying complex number object is to override toString() */
L27 void display()

{
L28 if(imaginary>0)
L29 System.out.println(real+"+"+imaginary+"i");
L30 else
L31 System.out.println(real+""+imaginary+"i");
}
L32 public static void main(String args[])
L33 {
L34 // command line arguments for First Complex Number
L35 int nl=Integer.parselnt(args[0]);
L36 int n2=Integer.parselnt(args[1]);
L37 // command line arguments for Second Complex Number
L38 int n3=Integer.parselnt(args[2]);
L39 int n4=Integer.parselnt(args[3]);
L40 Complex cl=new Complex(nl,n2);
L41 Complex c2=new Complex(n3,n4);
L42 Complex d=new Complex();
L43 System.out.print("First complex number is = ");
L44 cl.display();
L45 System.out.print("Second complex number is = ");
L46 c2.display();
L47 d.add(c1,c2);
L48 System.out.print("Addition of two complex numbers = ");
L49 d.display();
L50 d.subtract(cl,c2);
L51 System.out.print("Subtraction of two complex numbers = ");
L52 d.display();
L53 }
L54 }

Output

D:\javabook\programs\chap 4>java Complex 1 2 3 4
First complex number is = 1+2i

Second complex number is = 3+4i

Addition of two complex numbers = 4+6i
Subtraction of two complex numbers = -2-2i

Classes and Objects 127

Explanation

L1 Class declaration.

L2 Shows two integer instance variables have been
defined A complex number comprises of two parts:
real and imaginary. So a complex number object
should have two instance variables.

L3 A no-argument constructor is created to
initializes these variables. This can be termed as an
explicit default constructor.

L4 & 5 Instance variables are initialled to zero.
L6 The constructor is overloaded to accept different
values for real and imaginary part of a complex
number. If the previous constructor is used while
creating objects, then real and imaginary part will
have a value of 0. If this constructor is used during
object creation, then objects can pass on different
values as argument to the constructors which can
be assigned to instance variables. So every complex
number can have different real and imaginary values.
L7 this keyword is used to differentiate between
instance variable and local variable as both variables
bear the same name and clearly specify that value of
the argument (local variable) has to be assigned to
instance variable.

L8 Same as previous statement.

L9-11 Defines the setter method for the instance
variable: real. As the name suggest, these methods
are used to set the value of the instance variable:
real and hence the name setReal. The purpose
of setter method is to set the values. So the setter
methods accept an argument which is assigned to the
instance variable. Basically setter methods (or getter
methods) are created for depicting clean structured
programming and these are basic fundamental used
in Java Beans or component architecture. These
methods are also very useful while working with IDE.
L12-15 Defines the getter method for the instance
variable: real. As the name suggests, these method
are used to return the value of the instance variable:
real and hence the name getReal.

L16-18 Setter method for imaginary part has been
defined.

L19-20 Getter method for imaginary part has been
defined.

L21 We need to add two complex numbers.
Instance method, add is created which accepts two

complex number objects. Not only variables, object
references can also be passed as arguments to
methods. For adding two complex numbers, we need
to add the real parts of these two numbers separately
and imaginary parts separately and encapsulate the
resultant real and imaginary parts in a complex
number object because the result of addition of two
complex numbers will also be a complex number.
The two complex numbers to be added are passed
as arguments to the add method. The add method is
invoked using a third complex number object (L47),
which will store the resultant real and imaginary part
after addition.

L22 Real part of both the complex numbers objects
are accessed, added and stored in real part of the
object which invoked the add method. The complex
number object that invoked add method will also have
real and imaginary instance variables.

L23 Imaginary part of both the complex numbers
objects are accessed, added and stored in imaginary
part of the object which invoked the add method.
L.24-26 We need to subtract two complex numbers.
Instance method subtract is created which accepts
two complex number objects. The two complex
numbers to be subtracted are passed as arguments
to the subtract method. The subtract method is
invoked using a third complex number object (L50),
which will store the resultant real and imaginary part
after subtraction.

L27-31 Display method is created to display the
complex numbers in the format a+bi.

L32 Main method declaration.

L35-39 Command line arguments are used to
capture integer real and imaginary parts of two
complex numbers. These numbers will be captured
in the String array argument of the main method.
The numbers entered through command line will
become strings. These numbers have to be added/
subtracted so they have to be converted to integers
and hence we use the predefined static method of
Integer class as shown:

Integer.parseInt(args[0])

L40-42 Three complex number objects (c1, c2,and
d) are created. We need to add/subtract two complex

128 Programming in Java

numbers so two objects (c1 and c2) of Complex class
are created so that add and subtract operations can be
applied on them. The third object is used to invoke
the instance method add and subtract and store the
result within itself.

L44 The display method is called through c1 to
display the first complex number. Complex numbers
have to be displayed in their format: a+bi. As the
display method is invoked through c1, the display

method can access the instance variable of c1 directly
and display the real and imaginary parts of c1.

L46 The display method is called to display the
second complex number.

L47 The add method is invoked through the third
object d and c1 and c2 are passed to this method.
L48-49 Statements display the object d.

L50-52 The subtract method is invoked similar
to the add method and later on the result is displayed.

m Acommon mistake that is committed by many students is that they pass two real and two imaginary
integer values to the add method, add the real and imaginary values differently and print them.

void add(int reall, int imaginaryl, int real2, int imaginary2)

{

int real=reall+real2;

int imaginary=imaginaryl+imaginary2;
System.out.println(real+"i"+imaginary);

¥

The answer may be correct but the approach is wrong. We have to add two complex numbers
and not two integers. So for adding two complex numbers, complex number objects have to

be passed to the add method.

In this chapter, we have discussed many fundamental
principles of the object-oriented model, used while
implementing Java constructs. We discussed how
classes and their objects can be created in Java. We
have also seen how these objects are used in a Java
program and what these are actually made of.

A class provides a sort of template or blueprint
for an object. An object is a software bundle that
encapsulates variables and methods operating on
those variables. A Java object is defined as an instance
of a class. A class can have many instances of objects,
each having its own copy of variables and methods.
The variables declared inside a class (but outside a
method) are termed as instance variables. Attributes
of a class are defined by instance variables, while its
behavior is defined by methods.

We have discussed the use of methods in depth.
These methods declared as part of one object can be
invoked or called from another object. The methods
or variables belonging to a particular class can be
accessed by specifying the name of the object to which
they belong to.

SUMMARY

A special type of variable whose value remains the
same across all the objects of a class is known as
class or static variable. Likewise, a method can also be
declared as static, which sticks to a particular location
in the memory no matter how many times it is called
from multiple objects. Both static variables and static
methods can be called directly from anywhere inside
a class, without or with specifying any object name.

In Java, the objects are automatically freed after
their use. The garbage collector periodically frees the
memory used by objects that are no longer needed.
All resources held by the object can be also be freed
explicitly through the finalize() method. Aclass must
override the finalize() method in order to perform
any clean up required by the object.

Methods in Java, just like C++, can be overloaded,
where different methods can have the same name
but different signatures. This concept of method
overloading will come into play , when there is a need
to perform same kind of functions on different input
parameters. In Java, when a value is passed into a

method invocation as an argument, it is passed by
value. A special type of method having the same name
as the class is used to initialize object values. These
are known as constructors. Like ordinary methods,
these constructors too can be overloaded.

Avariable can hold only a single value of a particu-
lar data type. An important data structure known as

Objective Questions

1. Given a one-dimensional array arr, what is the
correct way of getting its number of elements?
(a) arr.length (b) arr.length - 1
(c) arr.size (d) arr.size - 1
2. Which of these statements are legal?
(a) intarr[][] = new int[5][5];
(b) int [Jarr[] new int[5][5];
(c) int[][] arr = new int[5][5];
(d) int[] arr = new int[5][];
3. Which of the following statements are legal
declarations and definitions of a method?
(a) void method() {}
(b) void method(void) {};
(c) method() {};
(d) method(void) {};
4. What is the outcome of compiling and running
the following class?
class Demo {
public static void main(){
System.out.println("Demo");
}
}
(a) The program does not compile as there is
no main method defined
(b) The program compiles and runs generating
an output of “test”
(c) The program compiles and runs but does not
generate any output
(d) The program compiles but does not run

5. What happens when the following program is
compiled and executed with the command
-java Demo.
class Demo{
public static void main(String

EXERCISES

Classes and Objects 129

arrays is used to store a set of values of the same
data type. Command line arguments were also dis-
cussed and practical examples were undertaken to
show how user input can be passed to the program.

A very interesting concept of Nested classes along

with different types has been discussed in this chapter.
Nested classes are classes within classes.

args[1){
if(args.length> 0)
System.out.println(args.
length);

}
}

(a) The program compiles and runs but does not
print anything
(b) The program compiles and runs and prints 0
(c) The program compiles and runs and prints 1
(d) The program compiles and runs and prints 2
6. What is the output when you try to compile and
run the following?

class Demo

{
void Demo()
{

System.out.println("In Demo");
gublic static void main(String
args[1)

{
Demo d=new Demo();
}
}
(@) Compile time error: lllegal Constuctor
declaration

(b) Run Time error
(c) Compiles and prints “ In Demo”
(d) None of the above
7. What is the output when you try to compile and
run the following?
class Demo

{

130 Programming in Java

int x = 20;
Demo ()
{

X = 40;
}

public static void main
(String args[])
{
Demo d = new Demo();
System.out.println(d.x);
b
by

(a) Compile time error

(b) Run Time error

(c) Compiles and prints “ 20”
(d) Compiles and prints “ 40”

. Which statement is true about a static nested

class?

(a) Aninstance of the enclosing class is required
to instantiate it.

(b) It does not have access to non-static
members of the enclosing class.

(c) It must have static variables and methods
only.

(d) None of the above

9. What will be the output of the program?

public class A
{

Review Questions

. What are classes and objects?

. What is method overloading? Explain with the
help of a program.

. What are constructors used for? Can constructors

be overloaded? Write a program in support of
your answer.

. Explain the difference between instance variables
and class variables.

. Explain the keyword this with the help of a
program.

Programming Exercises

. Modify Example 4.2(a) to accept instance
variable values using a constructor with no
arguments and execute it.

10.

public static void
main (String [] args)
{
class B
{
public String name;
public B(String s)
{
name = s;
¥
}
B obj = new B("Yupee");
System.out.println(obj.name);
b
¥

(a) An exception occurs at runtime at line 10.

(b) It prints “Yupee”.

(c) Compilation fails because of an error on line
7.

(d) Compilation fails because of an error on line
13.

Which of the following statements are true?

(a) Constructors cannot be inherited

(b) Thereis an <init> method created implicitly
for each constructors

(c) Default constructors will not be provided if a
class declares a constructor for itself.

(d) All the above

What are command-line arguments and how are
they used?

What are inner classes? What is the need for
creating an inner class?

8. Explain static keyword with all its usages.

10.

What are the possible ways in which multiple
values can be returned from a method?
Explain static nested classes with help of a
program.

Overload the constructor in the previous example
and then try to execute it.

3. Make use of this keyword in the previous
example to show its usages.

Write a program to implement Money class. This
class should have fields for initializing a rupee
and paisa value. The paisa value will be in the
range from 0-99 with the paisa being the same
sign as that of rupees. The class should have all
reasonable constructors, addition and subtraction
methods, and a main() method that provides a
thorough test of all the methods in the class.

5. Modify the complex number practical problem to
multiply two complex numbers, and return the
result.

6. Create a class Rectangle. The class has two

attributes, length and width, each of which

Answers to Objective Questions

1. (a) 2. (a), (b), (c)
5. (a) 6.

7. (d) 8. (b)

3. (a)

9. (b)

Classes and Objects 131

defaults to 0. It has methods that calculate the
perimeter and area of the rectangle. It has set
and get methods for both length and width. The
set method should verify that length and width
are floating-point numbers larger than 0.0 and
less than 20.0.

Modify the Circle class in Example 4.5 to

calculate:

(@) circleCircumference()—compute the
circumference of a circle

(b) arcLength()—compute the length of the arc
for a given angle

Within the main() method of the class named

Circle, create an object of the class Circle.

Compute Circle’s circumference when the radius

is 10 and arc length when the angle is 45.

4. (d)

(c) void Demo is treated as a method not as a constructor

10. (d)

Copyrighted Materials)

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

Inheritance

Property left to a child may soon be lost; but the inheritance of virtue—a good name
an unblemished reputation—will abide forever. If those who are toiling for wealth to
leave their children, would but take half the pains to secure for them virtuous habits,
how much more serviceable would they be. The largest property may be wrested from
a child, but virtue will stand by him to the last. William Graham Sumner

~ After reading this chapter, the readers will be able to
¢ know the difference between inheritance and aggregation
understand how inheritance is done in Java
learn polymorphism through method overriding
learn the keywords: super and final
understand the basics of abstract class
understand the difference between shadowing and overriding

L 2K 2BE 2R 2R 4

5.1 INHERITANCE VS AGGREGATION

Inheritance, in real life, is the ability to derive something specific from something generic.
For example, Fiat Palio parked next to a shopping mall is a specific instance of the generic
category, car.

Inheritance aids in the reuse of code, i.e., a class
can inherit the features of another class and add its own
modification. The parent class is known as the superclass
and the newly created child class is known as the subclass.
A subclass inherits all the properties and methods of the
super class, and can have additional attributes and methods
as shown in Fig. 5.1.

T B— e — On the other hand, the term aggregation is used when
we make up objects out of other objects. The behavior
of the bigger object is defined by the behavior of its
component objects separately and in conjunction with each
Fig. 5.1 Inheritance other. For example, cars contain an engine which in turn

Superclass

Inheritance 133

contains an ignition system and starter motor (Fig. 5.2). Basically it is different from inheritance
in the sense that there exists a whole-part relationship in aggregation, car being the whole and
engine being its part.

The test for inheritance is that there exists an ‘is-a-kind-of-relationship’ among classes. For
example, Manager is a kind of Employee. The test for aggregation is that there exists an ‘is-
a-part-of ' relationship among classes.

5.1.1 Types of Inheritance

There are five different types of inheritance:
¢ Single inheritance
e Multilevel inheritance
e Multiple inheritance

Hierarchical inheritance

Hybrid inheritance

Single Inheritance In single inheritance, classes have only one base class. Consider the
relationship shown in Fig. 5.3.

Multilevel Inheritance Asshown in Fig. 5.4, C not only inherits from its immediate superclass,
i.e., B, but also from B’s superclass, A. Thus, class C will have all the attributes and behavior
that A and B possesses in addition to its own. There is no limit to this chain of inheritance
(known as multilevel inheritance) but getting down deeper to four or five levels makes the code
excessively complex.

Car A A

w—P—

Engine B

o P

Fig. 5.2 Aggregation Fig. 5.3 Single Inheritance Fig. 5.4 Multilevel Inheritance

134 Programming in Java

Multiple Inheritance In multiple inheritance, a class can inherit from more than one unrelated
class, as shown in Fig. 5.5. Class C inherits from both A and B.

A B

Fig. 5.5 Multiple Inheritance

Java does not support multiple inheritance amongst classes. It can still be achieved with the
help of Interfaces.

Hierarchical Inheritance In hierarchical inheritance, more than one class can inherit from a
single class, as shown in Fig. 5.6. Class C inherits from both A and B.

Hybrid Inheritance Hybrid inheritance is any combination of the above defined inheritances
as shown in Fig. 5.7.

+ :
+

Fig. 5.6 Hierarchical Inheritance Fig. 5.7 Hybrid Inheritance

Inheritance 135

5.1.2 Deriving Classes Using extends Keyword

In Java, classes are inherited from other class by declaring them as a part of its definition, as
shown below.

class MySubClass extends Name of the

{ Parent class

¥
In the definition above, the keyword extends declares that MySubClass inherits the parent class
MySuperClass.

Now suppose you need a class for a bike or a car. A bike or a car will have a model name, a
model year, a maximum speed, a weight, a price, and other characteristic features, but these two
will differ in some aspects like a car will possess doors, whereas a bike will not. The properties
that are similar can be abstracted and put in a generic class having common behavior. This
generic class will be the parent class for both these classes, as shown in Fig. 5.8.

MotorVehicle } Class Declaration

int maxSpeed
String modelName

int modelYear Properties
int numberofPassengers
} Methods
Car Bike
int noofDoors boolean kickStart
boolean buttonStart

Fig. 5.8 UML Notation for Car and Bike Class Along with their Parent Class MotorVehicle

Now let us frame classes for the above diagram and see how inheritance is actually done in
Java. First of all, let us frame the parent class Motorvehicle, shown in Example 5.1.

m Parent Class MotorVehicle

L1 class MotorVehicle{

L2 int maxSpeed; // miles per hour
L3 String modelName; // e.g. "Fiat"
L4 int modelYear; // e.g. 2006,2007,2008

L5 int numberOfPassengers; // 2, 4, 6

// we can add some more properties, as above, like the
// engineCapacity etc. but we would leave it as an

136 Programming in Java

// exercise for you.
// constructor

L6 MotorVehicle()
{
maxSpeed = 200;
modelName = "";
modelYear=1997;
numberOfPassengers=2;
}
L7 MotorVehicle(int maxSpeed, String modelName, int modelYear, int numberOfPassengers)
{
L8 this.maxSpeed = maxSpeed;
L9 this.modelName = modelName;
L10 this.modelYear = modelYear;
L1 this.numberOfPassengers = numberOfPassengers;
}
}
Explanation
L1 Class MotorVehicle has been declared. initialize the instance variables declared in L2 to L5.

L2-5 Instance variable maxSpeed (of type int), L8-11 The instance variables declared in L2 to LS
modelName (of type String), modelYear (oftype int) are being initialized with the arguments passed in the
and numberOfPassangers (of type int) are declared constructor. The keyword this has been used, as
in these lines.
L6 Default constructor. variable (arguments in the constructor declaration)
L7 Parameterized constructor declaration to are same.

the name of both the instance variable and the local

L2
L3

L4

L5

Now let us frame the subclasses, as shown in Fig. 5.8. The example below shows one of the
subclasses, i.e., Bike.

The subclass Bike will have all the features that its parent class possesses. In addition to that,
it can have its own features, as shown in Example 5.2.

W Subclass Bike

class Bike extends MotorVehicle {

boolean kickStart;

boolean buttonStart;
/* A kick start bike may or may not be a button start bike but a button start bike
will always have an option of kick starting */
// constructor

Bike()
{

kickStart = true;
buttonStart = false;

}

Bike(boolean ks, boolean bs)

{

kickStart = ks;
buttonStart = bs;

}

Inheritance 137

L6 public static void main(String args[]) {

L7 Bike b = new Bike ();
1}

Explanation

L1 Usage of extends keyword to show inheritance.
L2 and 3 Declaration of two boolean variables:
kickStart and buttonStart.

L4 Default constructor.

L5 Overloaded constructor.

L6 main() method.

L7 Bike objectis created and the default constructor
of the parent class is called first of all and after that,
the subclass constructor is called because the parent
needs to be initialized before the child.

5.2 OVERRIDING METHOD

When a method in a subclass has the same name and type signature as a method in its super-
class, then the method in the subclass is said to override the method in the superclass. Like
overloading, it is a feature that supports polymorphism.

When an overridden method is called from within a subclass, it will always refer to the version
of the method defined by the subclass. The superclass version of the method is hidden.

In the code below, we see that subclass B overrides the method dooverride() in class A.

m Method of Overriding

L1 class A {
L2 int i = 0;
L3 void doOverride (int k) {
L4 i=k;
Y}

// Subclass definition starts here
L5 class B extends A { // Method Overriding
L6 void doOverride(int k){

L7 i=2%*k;
L8 System.out.println("The value of i is: " +i);
}
L9 public static void main (String args[])
{
L10 B b = new B(); // Create an instance of class B
L11 b.doOverride(12); // class B method doOverride() will be called
i3
Output

The value of i is: 24

138 Programming in Java

Explanation

L1 Class declaration.

L2 Instance variable declaration.

L3 Method declaration with an integer argument
passed to it.

L4 Instance variable being assigned with the value
of the arguments.

L5 Subclass declaration.

L6 Methodis overridden, as the name and signature
of the method match.

L7 The variable i is being initialized with a value
twice to that of the argument passed in the method
doOverride. Also note that we have not declared
the variable i in the subclass B, it is the parent class
variable i that is being referred to in the subclass.

This is actually what inheritance is all about. Objects
of the subclass need not define their own definition
of data and methods which are generic in nature. The
generic behavior is left for the super classes.

L8 Print statement.

L9 main()method.

L10 Object of the subclass B is created.

L11 When we create an instance of class B, an
invocation of the method dooverride() will result
in a call to the doOverride() code in class B rather
than A because it is actually the instance that matters
when we call any instance method and the instance
in this case is B.

A superclass reference variable can be assigned a subclass object. This is illustrated by the

following code:

A al = new B ();

/* Create an instance of class B but uses reference of type A . */

al.doOverride();

/* Though the A type reference is used, the doOverride() method of

class B will be called. */

m Remember when you write two or more classes in a single file, the file will be named upon
the name of the class that contains the main method. For example, if you write the complete
Example 5.3 in a notepad editor file, the file will be named as B. java.

Here we see that even though the superclass type variable a1 references the subclass object,
the subclass’s overridden method will be executed rather than the superclass’s instance method.

This is very useful when, for example, an array of the superclass type contains references to
various subclasses. The overridden method in the subclass will be called rather than the method
of the superclass.

Code Snippet 5.1 Superclass and Subclass Object

L1 A a[] = new A[2];
L2 a[o] =
L3 a[1] =
L4 for (int i = 0; i<a.length; i++)
L5 a[i].doOverride();

// Parent Class A type array of two objects
new B(); // A type reference is assigned an instance of B.

new C(); // A type reference is assigned an instance of C.

Inheritance 139

Explanation

Considering A as the superclass of class B and C.
L1 An array of superclass A is defined with a size
of two elements.

L2 The first element of the array is assigned an
object of class B. An array of int contains integers; an
array of characters contains characters in its various
elements, and so on. An array of superclass A will
either contain objects of type A or its subclasses
because a superclass variable can refer to a subclass
object. So basically, it is an array of objects.

L3 The second element of the array contains the
object of class C.

L4 for loop is used to iterate through various array
elements. Value of i will vary from 0 to a.length
which is 2.

L5 Inthe first iteration, the value of i is 0, so a[0]
refers to B class object, so B’ s doOverride() method
will be executed even though the array is of the super-
class A, the code used for the doOverride()method
will be that of the actual object that is referenced,
not of the method in the base class A. The same
applies for the second iteration. The only difference
with the second iteration is that the object will be of
class C. The reason why subclass methods are being
invoked is because these methods are overridden
and overridden methods are dynamically binded.
Dynamic Binding occurs at runtime and methods
are called based on the object from which they have
been invoked.

m Binding is the process of connecting a method call to its body. When binding is performed
before a program is executed, it is called early binding. When multiple methods with the same
name exist within a class (i.e., case of method overloading) which method will be executed
depends upon the argument (number, type or order of arguments) passed to the method. So,
this binding can be resolved by the compiler (at compile time) and hence overloaded methods

are early binded.

When a method with the same name and signature exists in superclass as well as subclass
(i.e., a case of Method overriding) which method will be executed (superclass version or
subclass version) will be determined by the type of object from which it has been called
(Example 5.3) and so it cannot be done by compiler. Objects exist at runtime, and hence /ate
binding is done by the JVM at runtime for resolving which overridden method will be executed.
It is also known as dynamic binding or runtime binding.

A superclass reference variable can refer to a subclass object but vice versa is not possible
because a superclass can have many subclasses and all of these subclasses can have their
additional (different) members (fields and methods) not present in the superclass and its
peer classes. Hence a variable of type subclass can expose more details and can perform
more operations than a variable of type superclass. So every superclass can refer to its
subclass object but every subclass cannot refer to its superclass object. Consider the case
of Furniture class and its subclasses Table and Chair. We can say that every table or chair
is furniture but we cannot ascertain that all furniture is table or chair, etc. Consider another
example of animal and its subclasses like elephant, tiger, dog, cat, etc. Tiger is an animal,
elephant is an animal but we cannot say that animal is a tiger or elephant because it is not
true in all cases. Let us take an example to see how fields are accessed when we refer to

subclass objects using a reference variable of superclass.

140 Programming in Java

S JEER A Superclass Can Refer to a Subclass Object

L1 class SuperClass

{
L2 int instanceVariable = 10;
L3 static int classVariable = 20;

}
L4 class SubClass extends SuperClass

{
L5 int instanceVariable = 12;
L6 static int classVariable = 25;
L7 public static void main(String args[])

{

L8 SuperClass s=new SubClass();
L9 System.out.println("Superclass Instance variable: "+s.instanceVariable);
L10 System.out.println("Superclass static variable: "+s.classVariable);
L11 SubClass st=new SubClass();
L12 System.out.println("Subclass Instance variable: "+st.instanceVariable);

L13

Output

D:\javabook\programs\chap 4>java SubClass
Superclass Instance variable: 10
Superclass static variable: 20

Subclass Instance variable: 12

Subclass static variable: 25

System.out.println("Subclass static variable: "+st.classVariable);

Explanation

L1 Class declaration.

L2 Instance variable defined.

L3 Class variable defined.

L4 Subclass declaration.

L5 Instance variable of the subclass has been
declared with the same name as that of superclass
(shadowing).

L6 Class variable of the subclass has been declared
the with same name as that of superclass (shadowing).
L7 Main method declaration.

L8 Areference variable s of superclass is declared
to hold an object of subclass.

L9 The instance variable is printed using s (created
in L8). The value that is printed (see output) will
be of superclass as the reference is of superclass.

This binding is made by the compiler at the compile
time which checks whether the instance variable
belongs to class Superclass through which it is being
accessed and if yes the binding is made, no matter
which object the reference refers to.

L10 Same as L9. The only difference is it is for
class variables.

L11 Areference variable st of subclass is declared
to hold an object of subclass.

L12 The instance variable is printed using st
(created in L11). The value that is printed (see output)
will be of subclass as the reference is of subclass. As
already stated, this binding is made by the compiler at
the compile time which checks whether the instance
variable belongs to class Subclass through which it

Inheritance 141

is being accessed and if yes, the binding is made, no L13 Same as L12. The only difference is it is for
matter which object the reference refers to. class variables.

In the following topics, we will revisit method overriding combined with some new topics.

5.3 super KEYWORD

The super keyword refers to the parent class of the class in which the keyword is used. It is used
for the following three purposes:

1. For calling the methods of the superclass.

2. For accessing the member variables of the superclass.

3. For invoking the constructors of the superclass.

Case 1: Calling the Methods of the Superclass

super.<methodName> () represents a call to a method of the superclass. This call is particularly
necessary while calling a method of the superclass through the subclass object that is overridden
in the subclass.

SN JERRIENN Simple Example Showing Method Overriding

L1 class A {
L2 void show()

{
L3 System.out.println("Superclass show method");

1}

L4 class B extends A { // Method Overriding
L5 void show()

{
L6 System.out.println("Subclass show method");
}
L7 public static void main (String args[]){
L8 A sl = new A(); // call to show method of Superclass A.
L9 sl.show();
L10 B s2 = new B();
L11 s2.show(); // call to show method of Subclass B
1}

Output

Superclass show method
Subclass show method

Explanation
As discussed earlier in Example 5.3, methods will L9 Shows calling the methods of class A through
be called on the basis of the objects from which they the object created in L8.
are called. L10 and 11 The object being used is that of class B.
L8 Shows the creation of an object of class A.

142 Programming in Java

Problem and Solution In Example 5.5, two methods (show()and overridden show()) are being
called by two different objects (A and B), instead the job can be done by one object only, i.e., by
using the keyword super. Example 5.5 can be reshaped as shown below:

SRR Usage of super Keyword for Calling Parent Class Methods

L1 class ANew {

L2 void show()
{

L3 System.out.println("Superclass show method");
b

}
L4 class BNew extends ANew { // Method Overriding
L5 void show()

{
L6 super.show(); //call to show method of the super class A
L7 System.out.println("Subclass show method");
}
L8 public static void main (String args[]) {
L9 BNew s2 = new BNew();
L10 s2.show(); // call to show method of Subclass B
13
Output

Superclass show method
Subclass show method

Explanation

L5 Method show() is defined. to show()in L5 and the statements within the
L6 Shows how super is used for calling the method are executed. L6 gets executed which is
parent class method which has been overridden in super.show() and the control passes to ANew. show
the subclass. If this line is omitted, only the subclass method. Lines of show()in Anew class are executed
method will be called; we have used super in this
line so that both the version (parent and subclass) of
methods can be called by one object only.

L9 BNew object is created.

L10 The method show()of class BNew is called has no more statements to execute, so the program
using the object created in L9. The control passes ~automatically terminates.

and the control passes back to L7, which is a print
statement. After executing the print statement (L7),
the control passes back to the main method which

Case 2: Accessing the Instance Member Variables of the Superclass

Example 5.6 demonstrates how the keyword super can be used to access the instance variables
of the superclass. The keyword is particularly useful when the variable of the superclass is
shadowed by the subclass variable. The concept of shadowing occurs when variables in super
class and subclass have same name. The superclass variables in this case will be hidden in
the subclass and only subclass variables will be accessible within the subclass. To access the
shadowed variable of superclass super keyword is used as shown below.

Inheritance 143

S I EENN Usage of super Keyword for Accessing Parent Class Variables

L1 class Super_Variable {
L2 int b = 30; //instance Variable

}

L3 class SubClass extends Super_Variable {
// shadows the superclass variable

L4 int b = 12;
L5 void show()

{

L6 System.out.println("subclass class variable:" + b);

L7 System.out.println("superclass instance variable:" + super.b);
}

L8 public static void main (String args[]) {

L9 SubClass s = new SubClass();

L10 s.show(); // call to show method of Subclass B

3
Output

subclass class variable: 12
superclass instance variable: 30

Explanation

L1 Superclass declaration Super_Variable.

L2 Instance variable declaration band it is assigned
the value 30.

L3 Subclass declaration SubClass.

L4 Instance variable b (same name as that of super-
class instance variable) within the subclass defined
and assigned the value 12.

L5 show () method defined within the subclass.
L6 and 7 In the above example, specifically we
have kept the names of two instance variables in
the super and subclass same, i.e., b. In L6 when we
print the value of b by simply writing b, the value

of subclass variable b is printed. In L7, with the help
of super keyword, we have accessed the value of the
superclass instance variable b and in this case, it prints
the value of the superclass variable. If the variable
bin L4 is not defined, then both print statements
would have printed the same value, i.e., value of the
superclass variable b. In our case, both the super and
the subclass contain the variable with the same name,
so to differentiate between the two and to access the
value of the superclass variable from the subclass, we
use the keyword super.

Case 3: Invoking the Constructors of the Superclass

super as a standalone statement (i.e., super()) represents a call to a constructor of the super-
class. This call can be made only from the constructor of the subclass and that too it should be
the first statement of the constructors. The default constructors implicitly include a call to the
super class constructor using the super keyword.

191y JSWAN Constructor Calling Mechanism

L1 class Constructor_A {
L2 Constructor_A()
{
L3 System.out.println("Constructor A");

144 Programming in Java

3
L4 class Constructor_B extends Constructor_A {
L5 Constructor_B() {
L6 System.out.println("Constructor B");
3
L7 class Constructor_C extends Constructor_B {
L8 Constructor_C() {
L9 System.out.println("Constructor C");
}
L10 public static void main (String args[]) {
L11 Constructor_C a = new Constructor_C();
3
Output

Constructor A
Constructor B
Constructor C

Explanation

L1 Parent class declaration Constructor_A.

L2 Default constructor of class Constructor_A.
L4 Subclass declaration Constructor_B of the
class defined in L1.

L5 Default constructor of class Constructor_B.
L7 Subclass declaration Constructor_C of class
defined in L4.

L8 Default constructor of class Constructor_C is
declared explicitly.

L10 main method declaration.

L11 An object of class Constructor_C is created
here. If the class does not provide any constructor,
the default constructor (no argument constructor)
provided by Java is implicitly called when an object
of the class is created. All three classes define their
respective no argument constructors. Object creation

Example 5.7 (a)

L1 class Constructor_A_Revised {
L2 Constructor_A_ Revised()
{

L3

138
L4

// this constructor is commented

/* Constructor_B_Revised() {

System.out.println("Constructor B");

of Constructor_c class results in the explicit default
constructor of this class being called on L8. An
<init> method is created for every constructor for
the class and this <init> includes a call to the super-
class default (no argument) constructor, any instance
variable initializer provided in the class followed by
the code written in the constructor. So when an object
of class Constructor_c is invoked, the superclass
constructor is invoked automatically. Also its parent,
i.e., Constructor_B needs to be initialized before
the child class can be initialized and instantiated.
The same case applies for Constructor_B which in
itself is inherited from Constructor_A. Therefore,
first of all, the constructor of class Constructor_A
gets executed, then Constructor_B and lastly,
Constructor_C.

Usage of super Keyword for Calling Parent Class Constructor

System.out.println("Constructor A Revised");

class Constructor_B_Revised extends Constructor_A Revised {

Inheritance 145

}
*/
L5 Constructor_B_Revised(int a)
{
a++;
L6 System.out.println("Constructor B Revised " +a);
1}

L7 class Constructor_C_Revised extends Constructor_B_Revised {

L8 Constructor_C_Revised()

{
L9 super(11); // if omitted compile time error results
L10 System.out.println("Constructor C Revised");
}
L11 public static void main (String args[]){
L12 Constructor_C_Revised a = new Constructor_C_Revised();
i3
Output

Constructor A Revised
Constructor B Revised 12
Constructor C Revised

Explanation

(Only the changes are being explained)

L5 The parameterized constructor of class
Constructor_B_Revised is defined with an integer
argument.

L6 The integer argument is being post incremented.
L9 super keyword for calling constructor,
followed by the argument to be passed to the parent
class constructor.

L12 An object of Constructor_C_Revised is
created due to which the default constructor of this
class will be invoked. But as already explained, it is
inherited, so its parent’s (i.e.,Constructor_B_Revised)
default constructor will be called automatically. But
instead of the default constructor in Constructor_B_
Revised, a parameterized constructor is provided. If
a class does not provide any constructor (default or
parameterized), it will be provided with an implicit
default constructor automatically by Java. In case the
class does provide a constructor, Java will not provide

it with a default constructor. An implicit call to the
parent class default constructor of Constructor_C_
Revised results in an error, because the default
(no argument) constructor is neither provided nor
it will be implicitly available through Java, as a
parameterized constructor is provided in the class
Constructor_B_Revised.

The solution for this is either to explicitly provide a
default (no argument) constructor in Constructor_B_
Revised (shown in comments) or use super in the
constructor of the subclass Constructor_C_Revised
(as shown in L9) for making an explicit call to the
parameterized constructor in its immediate super-
class and in this case, the compiler will not show you
an error. The constructor of class Constructor A _
Revised is normally called as the default constructor
is provided in the class.

It is mandatory for a super statement in a constructor to be the first statement within the
constructor. As the parent must be initialized before its child, an explicit call to the parent must
be done before any initialization within the child constructor begins.

146 Programming in Java

5.4 final KEYWORD

The keyword final is used for the following purposes:
1. To declare constants (used with variable and argument declaration)
2. To disallow method overriding (used with method declaration)

3. To disallow inheritance (used with class declaration)
Basically, it is used to prevent inheritance and create constants. Let us take an example.

SN JEERN Final Keyword

L1 class Final_Demo {
L2 final int MAX = 100; //constant declaration
// final mOethod declaration with final arguments
L3 final void show(final int x) {
L4 // MAX++; illegal statement as MAX is final
L5 // x++; illegal statement as x argument is final
L6 System.out.println("Superclass show method:" +x);
1}
L7 class Final_Demo_1 extends Final_Demo {
// cannot override show method as it is final in
// parent class,that is why we have commented it

L8 /* void show(){
System.out.println("Subclass show method");
3*/

L9 public static void main (String args[]){
L10 Final_Demo_1 f2 = new Final_Demo_1();

//show of the parent class will be called
L11 f2.show(12);

3
Output

C:\examples\> java Final_Demo_1
Superclass show method: 12

Explanation

L1 Class declaration Final_Demo. become a constant now (shown in L5).

L2 Integer constant declaration MAX with value 100. L7 Subclass declaration. If the parent class would
L3 The final method show()is defined with final —have been a final class, then this class could not have
arguments. This method cannot be overridden in been subclassed. The final class can be declared as
its subclasses as is shown in the comments in L8. follows:

The final argument’s value cannot change, as it has final class Final_Demo

Inheritance 147

5.5 ABSTRACT CLASS

The literary meaning of abstract is — “a concept or idea that is not associated with any specific
instance.” Abstract classes adopt this very concept. Abstract classes are classes with a generic
concept, not related to a specific class. They define the partial behavior and leave the rest for
the subclasses to provide.

Abstract classes contain one or more abstract methods. It does not make any sense to create
an abstract class without abstract methods, but if done, the Java compiler does not complain
about it. An abstract method is a method that is declared, but contains no implementation, i.e.,
no body.

Abstract classes cannot be instantiated, and they require subclasses to provide implementation
for their abstract methods by overriding them and then the subclasses can be instantiated. If
the subclasses do not implement the methods of the abstract class, then it is mandatory for the
subclasses to tag itself as abstract, making way for its own subclasses to override the abstract
methods.

Why do We Create Abstract Methods?

We use abstract methods, when we want to force the same name and signature pattern in all
the subclasses and do not want to give them the opportunity to use their own naming patterns,
but at the same time give them the flexibility to code these methods with their own specific
requirements. Example 5.9(a) shows an abstract Animal class. This class has been specifically
created as an abstract class due to the presence of abstract methods in it. There are certain
features that are common to all the animals but certain other features are specific to a category
of animal. We may also argue that the common features are performed in a variety of ways by
different animals. For example, every animal in this world produce a particular kind of sound,
unique to their own species.

S ElnJEERAENN Abstract Class with Abstract Method

L1

L2
L3

L4

LS
L6

L7

L8

L9

abstract class Animal
{
String name;
String species;
// constructor of the abstract class
Animal(String n, String s)
{
name = n;
species = s;
b
void eat(String fooditem)
{
System.out.println(species +
}

abstract void sound();

}

+ name + " likes to have " + fooditem);

148 Programming in Java

Explanation

L1 Abstract class declared with the keyword
abstract used before the class declaration.

L2 and 3 Two string variables declared, named
name and species.

L4 Parameterized constructor to initialize the
instance variable.

L5 and 6 Instance variables, name and species,

are initialized with the arguments passed to the
constructors in L4.

L7 A non-abstract method has been defined, just
like other normal methods.

L8 Print statement.

L9 Abstract method declared. Note that this method
does not have any body.

The abstract keyword is used for defining both abstract methods and abstract classes. Any
animal that wants to be instantiated must override the sound()method, otherwise it is impossible

to create an instance of that class. Let us take a look at the Lion subclass that inherits the Animal

class.

S'E RN Class Implementing Abstract Methods

L1 class Lion extends Animal
{

L2 Lion() {

L3 super("Lion","Asiatic Lion");
}

L4 void sound() {

L5 System.out.println ("Lions Roar! Roar!");

b

L6 public static void main(String args[])
{

L7 Lion 1 = new Lion();

L8 1l.eat("flesh");

L9 1.sound();
1

Output

Asiatic Lion likes to have flesh
Lions Roar! Roar!

Explanation

L1 Subclass declaration of the abstract class
Animal.

L2 Default constructor created for Lion class.
L3 The keyword super used to set up an explicit
call to the parent class constructor.

L4 Itis mandatory for the subclass Lion to override
the sound() method because the sound ()method has
been declared abstract by the parent class.

L7 The object of Lion class is created.

L8 The eat()method (Example 5.9(a)) of the
parent class will be called with the help of the object
created

inL7.

L9 The sound() method is called which has
been declared in L4.

Inheritance 149

Some key features of an abstract class are as follows:
1. They cannot be instantiated, but they can have a reference variable.

2. Aclass can inherit only one abstract class, as multiple inheritance is not allowed amongst
classes.

3. They can have abstract methods as well as non-abstract methods.

4. Tt is mandatory for a subclass to override the abstract methods of the abstract class,
otherwise the subclass also need to declare itself as abstract. Overriding other methods
(non-abstract) is up to the requirement of the subclass.

5. Abstract classes can have constructors and variables, just like other normal classes.

5.6 SHADOWING VS OVERRIDING

Shadowing of fields occurs when variable names are same. It may occur when local variables
and instance variable names collide within a class or variable names in superclass and subclass
are same. In case of methods, instance methods are overridden whereas static methods are
shadowed. The difference between the two is important because shadowed methods are bound
early whereas instance methods are dynamically (late) bound. The difference is illustrated in
the following example.

S EEERON Shadowing vs Overriding

L1

L2

L3

L4

LS

L6

L7

L8

L9

L10

L11

class Shadowing

{
static void display()
{
System.out.println("In Static Method of Superclass");
}
void instanceMethod()
{
System.out.println("In instance Method of Super Class");
}
}

class ShadowingTest extends Shadowing
{
// Static Methods are not Overridden but Shadowed
static void display()
{
System.out.println("In Static Method of Sub Class");
}
// instance methods are Overridden not shadowed
void instanceMethod()
{

System.out.println("The Overridden instance Method in Sub Class");

}

public static void main(String args[])

150 Programming in Java

L12 Shadowing s=new ShadowingTest();
// invokes the Superclass display as they are
// early binded at Compile time.

L13 s.display();
// invokes the overridden version as they are
// dynamically binded at runtime

L14 s.instanceMethod();

L15 ShadowingTest st=new ShadowingTest();
// invokes the Sub class display as they are
// early binded at Compile time

L16 st.display();
// invokes the overridden version as they are
// dynamically binded at runtime

L17 st.instanceMethod();

}
}
Output

D:\javabook\program\java ShadowingTest

In Static Method of Superclass

The Overridden instance Method in Subclass
In Static Method of Subclass

The Overridden instance Method in Subclass

Explanation

L1 Class declaration

L2-3 Declares a static method with a print
statement within itself.

L4-5 Declares a instance method with a print
statement within itself.

L6 Subclass (ShadowingTest) of the class, declared
in L1, is declared.

L7-8 Declares a static method within the subclass
with the same name and signature as the static
method of superclass with a print statement within
the method.

L9-10 The instance method of the superclass is
overridden with a print statement within it.

L11 main() method.

L12 A reference variable of super (shadowing)
class is declared to hold an object of subclass
(ShadowingTest).

L13 The static method is invoked using this
object created in L12. But as static methods are not

overridden, they are early binded. The compiler
creates this binding at compile time based on the type
of reference through which method has been invoked.
As the reference is of superclass, the superclass static
method is invoked.

L14 The instance method is invoked using this
object created in L12. But as instance methods are
overridden, they are dynamically (late) binded. The
compiler delays this binding till runtime and JVM
invokes the methods based on the type of object
through which method has been invoked. As the
object is of subclass, the subclass instance method
is invoked.

L15 An object of subclass is created. (A reference
variable of subclass (ShadowingTest) class is declared
to hold an object of subclass (ShadowingTest)).
L16 Same as L13 (refer output).

L17 Same as L14 (refer output).

Inheritance 151

5.7 PRACTICAL PROBLEM: circle AND cylinder CLASS

Let us take a practical example to show the power of inheritance and usage of super keyword. We
will create a Circle class and then inherit the Circle class in a Cylinder class to calculate its area.

S ENJERRENEIN Class Implementing Abstract Methods

L1 class Circle {
//declaring the instance variable

L2 float radius;
L3 final float PI = 3.141f;
L4 Circle()
{
L5 radius = 1.0f;
}

// parameterized constructor
L6 Circle(float radius) {
L7 this.radius = radius;

}

//value of pi is fixed

// returns the area of the circle, i.e. fcr‘2

L8 float getArea() {
L9 return PI * radius * radius;

1}

Explanation

L1 circle class has been defined.

L2 The float instance variable radius has been
defined.

L3 The final float instance variable PI has been
defined (similar to m, i.e., PI of mathematics) and
initialized with the value 3.141f (f for float). Why
we have created it as final will become clear in the
next topic.

L4 Default constructor of class Circle.

L5 Instance variable radius has been initialized.
L6 The overloaded constructor has been declared
with an argument of type float, to initialize the
instance variable radius.

SEJEEREN(GN Inheritance

L1 class Cylinder extends Circle {

L7 The instance variable is differentiated from the
local variable with the help of this keyword and
initialized with the value passed as an argument to
the constructor.

L8 Instance method declaration getArea()with a
return type float.

L9 The keyword return is used to return the area
of the circle back to the caller.

The next step is to create a subclass Cylinder of
the Circle class. The Cylinder class will override
the getArea()method of the Circle class which will
return the surface area of a cylinder. The Cylinder

class is defined in Example 5.11(b).

// instance variable to denote height of the cylinder

L2 float height;
L3 Cylinder(float radius, float height){

// explicit call to superclass constructor

L4 super(radius);

152 Programming in Java

L5 this.height = height;
}

// overridden method returns the cylinder surface area

// Surface Area =

(2nr2) + (2nr.height)

// where (2 m r2) is the surface area of the "ends" and
//(2nr.height) is the area of the "side"
// superclass method being invoked using super keyword

L6 float getArea() {

L7 return 2 * super.getArea() + 2 * PI * radius * height;

}
L8 public static void main(String args[]) {
L9 Circle ¢ = new Circle(1.5f);
L10 System.out.println("The Area of Circle is: " + c.getArea());
L11 Cylinder cy = new Cylinder(1.5f,3.5F);
L12 System.out.println("The Surface Area of Cylinder is: " + cy.getArea());

T
Output

C:\examples\chap 5>java Cylinder
The Area of Circle is: 7.0672503
The Surface Area of Cylinder is: 47.114998

Explanation

L1 cylinder class inherits Circle class.

L2 Instance variable height has been defined by
the subclass Cylinder.

L3 Parameterized constructor to initialize radius
and height.

L4 The keyword super is used to pass the radius
accepted as an argument in the subclass constructor
(L3) to the Circle class, i.e., the parent constructor.
It shows the reuse of code, as radius is defined only
once and being used by the subclass.

L5 The instance variable height is initialized with
the local variable height(argument).

L6 getArea()ofCircle classhasbeen overridden,
because the Cylinder class wanted the name of the
method to be same as that of the superclass, i.c.,
getArea() but perform a different function, i.e.,
return the surface area of the cylinder.

L7 getArea() of the superclass has been called
with the help of super, i.e., super.getArea() because
if you look at the formula for calculating the surface
area of the cylinder, it says:

Surface area = (2 « %) + (2 nr height)

where (27t72) is the surface area of the “ends” and
(2mr. height) is the area of the “side”, and mr* is
the area of the circle, and we already have created
a method for calculating the area of the circle in the
parent class. For this reason, we have called the super
class getArea method (reuse of code).radius has
already been passed in L4 using the super keyword.
The return value from the parent class getArea()
method is multiplied by 2 and added to the area of
the sides (2 nrh).

L8 main() method.

L9 The object of Circle class is created with a
radius of 1.5f.

L10 Calling the method getArea()with the help of
Circle class object. The return value is concatenated
with the string present in the println method and
printed on the screen as can be seen in the output.
L11 Creation of an object of Cylinder class with
aradius of 1.5f and height of 3.5¢.

L12 The getArea()method is invoked with the
help of cylinder class object.

The concept of inheritance is derived from real life,
wherein children inherit the good/bad qualities from
their parents and add to that their own identity and
behavior. This has been absorbed by object-oriented
programming, wherein the properties and methods
of a parent class are inherited by the children or
subclasses. The subclasses can implement the
inherited methods in a different way using method
overriding, keeping the method names and signatures
same as that of the parent class.

The super keyword can be used to access the over-
ridden methods, variables, and even the constructors

Objective Questions

1. What will happen when you attempt to compile
and run the following class?

class Demo{
Demo(inti){
System.out.println("Demo");
1}
class Inner extends Demof{
public static void main(String
args[1){
Inner s = new Inner();
}
void Inner(){
System.out.println("Inner");

1}

(a) Compilation and output of the string “Inner”
at runtime

(b) Compile-time error

(c) Compilation and no output at runtime

(d) Compilation and output of the string “Demo”.

2. Which of the following statements are true?

(a) If a class has abstract methods, it must be
declared as abstract.

(b) If the abstract methods are not overridden,
the subclass need not be declared as
abstract.

(c) Afinal class cannot be subclassed.

(d) All methods in an abstract class must be
declared as abstract.

SUMMARY

EXERCISES

Inheritance 153

of the superclass. Abstract classes are used to force
the subclasses to override abstract methods and pro-
vide body and code for them. The difference between
overriding and shadowing is also discussed with ex-
amples. Shadowed methods are binded early by the
compiler whereas overridden methods are dynamically
binded by JVM.

The final keyword is used to create constants and
disallow inheritance. The keywords abstract and
final cannot coexist because final is used to prevent
inheritance and abstract is used to allow subclasses
to inherit it and override methods.

3. Which is the keyword used for deriving classes?
(a) implements (b) extends
(c) throws (d) inherits

4. What will happen when you attempt to compile
and run the following class?

class Base{
void Base()
{
System.out.println("In Base");
}
Base(inti)
{
System.out.println("In Base: "+i);

1}

(a) Compile time error

(b) Compiles but gives runtime error

(c) Compiles and executes successfully but
does not show any output

(d) Compiles and prints “In Base”

5. What will happen when you attempt to compile
and run the following class?

abstract class Demo

{

abstract void show();

}

class Demo_1 extends Demo

{

154

6.

Programming in Java

Demo_1()
{ System.out.println("In Demo"); }
public static void main(String
args[])
{ Demo_1 d = new Demo_1(); }

}

(a) Compile-time error

(b) Compiles but gives runtime error

(c) Compiles and executes successfully but does
not show any output

(d) Compiles and prints “In Demo”

What will happen when you attempt to compile

and run the following class?

class Test
{
Test (int a)
{
System.out.println ("Test" +);
}
}
Class Test_1 extends Test
{
Test_1 (int a)
{
System.out.println ("Test_1")';
}
public static void main (string
args [1)
{

}

Test t = new Test_1(10);

}

(a) Compile-time error

(b) Compiles but gives runtime error

(c) Compiles and prints Test 10 followed by
Test_1

(d) Compiles and prints “Test_1"

. How can the above program be rectified to give

the output as stated in option (c)?

Review Questions

1.

What is inheritance? How is it different from
aggregation?

What is method overriding? Explain with an
example.

Explain super keyword with all its usages.
Support explanation with a program.

10.

o

(a) use super for a method call in subclass
constructor

(b) use super for constructor call in subclass
constructor

(c) make the superclass as abstract

(d) provide default constructor in Test.

Which keyword is used to prevent inheritance?
(a) final (b) super

(c) this (d) Final

What will happen if the following line is present
in a program?

abstract final class Demo {
// Lines of code

}

(a) does not compile, as no class can be abstract
(b) runtime error

(c) does not compile, as no class can be final
(d) does notcompile, as no class can be abstract
and final.

What will be the output when you try to compile
and run the program?

class Demo

{
int a;
Demo(int a)
{
a = a+10;
System.out.println(a);
}
public static void main(String
args[])
{
Demo d = new Demo(4);
System.out.println(d.a);
}
}
(@) 14and 0 (b) Oand 14

(c) 14 and 14 (d) Compile time error

Explain final keyword with all its usages. Support
explanation with a program.

What is an abstract class? Can an abstract class
have constructors? Explain.

What is shadowing of instance variables?

What is the difference between shadowing and
overriding?

8. Overloaded methods are early bound whereas 9.

Overridden methods are late bound. Comment.?
Programming Exercises

1. Define a class MotorVehicle as described

below:
Data members:

(a) modelName (b) modelNumber

(c) modelPrice
Methods:

(a) display() method to display the name,

price, and model number.

Define another class named Car that inherits the
class MotorVehicle and has the following:
Data members:

(a) discountRate

Methods: 3.

(a) display() method to display the Car
name, Car model number, Car price, and
the discount rate.

(b) discount() method to compute the
discount Create the classes MotorVehicle
and Car with suitable constructors and
test it.

2. Create an abstract class Accounts with the
following details:
Data members:

(a) balance

(b) accountNumber

(c) accountHoldersName

(d) address

Methods:

(a) withdrawl() — abstract

(b) deposit() — abstract

(c) display() to show the balance of the
account number

Create a subclass of this class SavingsAccount
and add the following details:
Data members:
(a) rate0OfInterest
Methods:
(a) calculateAmount()

Answers to Objective Questions

1. (a) 2. (a), (c) 3. (b)

5. (a),

7 (b)

8. (a) 9. (a)
)

Inheritance 155

Why subclass reference variables cannot refer
to a superclass object?

(b) display() to display rate of interest with
new balance and full account holder
details

Create another subclass of the Accounts class,
i.e. CurrentAccount with the following:
Data members:
(a) overdraftLimit
Method:

(a) display() to show overdraft limit along
with the full account holder details
Create objects of these two classes and call their

methods. Use appropriate constructors.
Create a class named Employee with the
following details:

Data members:

(a) name (b) address
(c) age (d) gender
Method:

(a) display() to show the employee details
Create another class FullTimeEmployee that
inherits the Employee class:

Data members:

(a) salary (b) designation
Method:

(@) display() to show the salary and
designation along with other employee
details

Create another class PartTimeEmployee that
inherits the Employee class:
Data members:

(a) workingHours (b) ratePerHour
Methods:

(a) calculatePay() to calculate the amount

payable

(b) display() to show the amount payable
along with other employee details

Create objects of these classes and call their
methods. Use appropriate constructors.

4. (b)

either abstract is to be used with Demo_1 or override show in Demo_1 6. (a)
and (d), use super for constructor call in Test _1 or provide default constructor in Test

10 (a), Local variable shadows instance variable in the constructors

Copyrighted Materials)

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

Interfaces,
Packages, and
Enumeration

The greater our knowledge increases, the more our ignorance unfolds.
John F. Kennedy

After reading this chapter, the readers will be able to
« understand what interfaces are and how they are different from abstract classes
understand the concept behind packages and how they are used
know about the java.lang package
understand object class and wrapper class
know how strings are created, manipulated, and split in Java
understand enumerations

L 2K 2BE 2R 2R 4

6.1 INTERFACES

Interfaces in Java are like a contract or a protocol which the classes have to abide with. Interfaces
are basically a collection of methods which are public and abstract by default. These methods do
not have any body. The implementing objects have to override all the methods of the interface
and provide implementation for all these methods. There is no code at all associated with any
method of the interface. The best part of an interface is that a class can inherit any number of
interfaces, thus allowing multiple inheritance in Java, provided the class now has to override all
the methods of all the interfaces it inherits. Java does not support multiple inheritance among
classes, but interfaces allow Java to support this feature.

Interfaces are declared with the help of a keyword interface. Note that none of the methods
have a body. It is the responsibility of the implementing class to override the methods and provide
the implementation for these methods.

interface interfacename

{

returntype methodname(argumentlist);

}

class classname implements interfacename{}

Interfaces, Packages, and Enumeration 157

Example 6.1(a) shows a very simple calculator program. There are a few basic operations that
do not change for any calculator: be it a normal, scientific, or a programmable calculator. The
basic operations (add, subtract, divide, and multiply) can be squeezed out of various implementing
classes and put into an interface. Now all the implementing objects will have to keep the name
and signature of the methods exactly same as has been defined in the interface, that is why we
have created an interface and this is what we actually wanted for all the subclasses to follow.
We do not want the classes to follow their own set of rules like their own created method names
and their signatures. We wanted the classes to follow the rules set up by the interfaces and it
will be a binding upon them, but these rules will be implementation independent. That is, the
objects have to code according to their own requirement within the overridden methods. For
simplicity, we have created an interface named Calculator and four methods have been defined
in it to denote four basic operations of a calculator and these methods perform operations only
on integers. You can later on extend this program to accept different kinds of arguments such as
double, float, and byte.

Classes, while inheriting other classes, use the keyword extends; whereas while inheriting an
interface, they use the keyword implements, as shown in Example 6.1(b).

S EJEREENN Calculator. java: Interface Definition

L1 interface Calculator

{
L2 int add(int a,int b);
L3 int subtract(int a,int b);
L4 int multiply(int a,int b);
L5 int divide(int a,int b);

Explanation

L1 The keyword interface has been used to
declare an interface followed by the name of the
interface and opening curly brackets to denote the
starting of interface.

L2 A method named add has been declared with
the return type int that accepts two arguments of
type int.

L3 A method named subtract has been declared

with the return type int that accepts two arguments
of type int.

L4 A method named multiply has been declared
with the return type int that accepts two arguments
of type int.

L5 A method named divide has been declared
with the return type int that accepts two arguments
of type int, followed by the closing curly bracket
of the interface.

2l NN Normal_Calculator.java: Class Implementing Calculator Interface

L1 class Normal_Calculator implements Calculator
{

L2 public int add(int a,int b){

L3 return a + b; }

L4 public int subtract(int a,int b) {

L5 return a - b; }

L6 public int multiply(int a,int b) {

L7 return a * b; }

L8 public int divide(int a,int b)

158 Programming in Java

{

L9 return a / b;
}

L10 public static void main(String args[]) {
L11 Normal_Calculator ¢ = new Normal_Calculator();
L12 System.out.println("Value after addition = "+c.add(5,2));
L13 System.out.println("Value after Subtraction = " +c.subtract(5,2));
L14 System.out.println("Value after Multiplication = " +c.multiply(5,2));
L15 System.out.println("Value after division = " +c.divide(5,2));

1}

Output

C:\javabook>java Normal_Calculator
Value after addition = 7

Value after Subtraction = 3

Value after Multiplication= 10
Value after division = 2

Explanation

L1 Class Normal_Calculator has been declared
and it inherits the interface Calculator with the help
of implements keyword.

L2 Method add has been overridden and the body
of the method has been provided.

L3 The keyword return is used to return the result
(to the caller) of addition of two arguments passed
into the add method followed by the closing curly
bracket.

L4-9 The methods substract, multiply, and
divide are overridden and the results are returned.

L11 An object of the class Normal_Calculator is
created.

L12-15 Print statements to print the result
of addition/subtraction/multiplication/division.
Respective methods have been called in these lines
with the object created in L11 like c.sum(5,2).
These method calls return the result and the result is
concatenated with the strings passed as an argument
to the println method and displayed on the screen
(see output).

m It is mandatory to add the access specifier public to the method declaration, otherwise the
compiler will not compile the program. As already discussed, all the methods in the interface
are public, so when the implementing classes override the methods defined in the interface,

they have to tag it as public.

Not making it public or leaving the access specifier blank (default) will reduce the privileges from
public to default, which is not allowed in overriding. Either you have to increase the privileges
or keep it intact. Widening conversion in case of overriding takes place automatically, i.e., from
default to public (lesser privileges to more privileges), but narrowing conversion is not allowed.

It is recommended to create two java files in a directory: (a) Calculator.java for defining the
interface and (b) Normal_Calculator.java for declaring the class implementing the Calculator.
java interface. The compiler upon compilation of Normal_Calculator.java will create two class
files automatically: Calculator.class and Normal_Calculator.class.

6.1.1 Variables in Interface

Just like methods in an interface (by default public and abstract; no need to tag them), variables
defined in an interface also carry a default behavior. They are implicitly public, final, and static

Interfaces, Packages, and Enumeration 159

and there is no need to explicitly declare them as public, static, and final. As they are final, they
need to be assigned a value compulsorily. Being static, they can be accessed directly with the
help of an interface name and as they are public, we can access them from anywhere. Example

6.2 shows the usage of variables in an interface.

51NV Variables in an Interface

L1 interface Limit_Test {
L2 int LOWERLIMIT = O;
L3 int UPPERLIMIT = 100;

L4 class Variable_Test implements Limit_Test {

L5 void findNumberWithinLimits(int a) {
L6 if(a > LOWERLIMIT && < < UPPERLIMIT)

L7 System.out.println(a+ " lie in between" + Variable_Test.LOWERLIMIT + " and " +
Variable_Test.UPPERLIMIT);

L8 else

L9 System.out.println(a+ " does not lie in between " + Variable_Test.LOWERLIMIT +
" and " +Variable_Test.UPPERLIMIT);
}

L10 public static void main(String args[]) {

L1 Variable_Test vt = new Variable Test();

L12 //LOWERLIMIT++; illegal statement

L13 //UPPERLIMIT++;

L14 vt.findNumberWithinLimits(23);

L15 vt.findNumberWithinLimits(233);
1}

Output

C:\javabook\>java Variable_Test
23 lie in between 0 and 100
233 does not lie in between 0 and 100

Explanation

L1 We have created an interface Limit_Test,
wherein we will set the upper and lower limits.

L2 and 3 The upper and lower limits are being
set with the help of two variables in the interface,
i.e., UPPERLIMIT and LOWERLIMIT. They have to be
assigned a value, as they are implicitly final.

L4 Class variable_Test inheriting the interface
Limit_Test.

LS Method findNumberWithinLimits is declared
with an argument. This argument will be checked
by the method whether it is within the limit or not.
L6 A simple if condition to check whether the
argument passed in the function (L5) is greater than
the LOWERLIMIT and lesser than the UPPERLIMIT. If
the condition satisfies, L7 is executed, else L9.

L7 print statement to print that the argument lies

in between the limits defined by the interface. Note
that the static variable’s LOWNERLIMIT and UPPERLIMIT
have been accessed with the help of the interface
Variable_Test.

L9 print statement to print that the argument does
not lie in between the limits defined by the interface
(same as in L7).

L11 An object of the class Variable_Test is
created.

L12 and 13 Commented statements to modify
the variables: LOWERLIMIT and UPPERLIMIT. If
uncommented, these statements will result in a
compile-time error because the variables defined
in an interface are final, and final variable values
cannot be modified.

L14 findNumberWitihinLimits() iscalled through
the object of Variable_Test, and an argument of 23

160 Programming in Java

is passed. This argument is checked by the method
to be within the lower limit and the upper limit and
if yes, the value is printed on screen.

L15 findNumberWitihinLimits() is called through

the object of Variable_Test, and an argument of 233
is passed. This argument is checked by the method
to be within the lower limit and the upper limit and
if it is not, print on screen.

6.1.2 Extending Interfaces

Just like normal classes, interfaces can also be extended. An interface can inherit another interface
using the same keyword extends, and not the keyword implements. Example 6.3 shows how

interfaces are extended.

S JERE Extending Interfaces

L1 interface A {

L2 void showA();

}
L3 interface B extends A{
L4 void showB();

}

L5 class InDemo implements B {
L6 public void showA()
{

System.out.println("Overriden method of Interface A");

}
L7 public void showB()

{

System.out.println("Overriden method of Interface B");

public static void main (String args[])

{

InDemo d = new InDemo();
d.showA();
d.showB();

1}
Output

C:\javabook\>java InDemo
Overriden method of Interface A
Overriden method of Interface B

Explanation

L1 An interface named A has been declared.

L2 Method showA() has been defined in interface A.
L3 Interface B is defined and we have used extends
in its declaration to indicate that the parent interface
of B is A. Any class that inherits B will have to
override all the methods of interface A as well as B.

L4 Method showB() has been defined in interface B.
L5 Class declaration shows that it inherits the
interface B.

L6 Shows the overridden method showA(). Note that
while overriding, public access specifier is added.
L7 Shows the overridden method showB().

6.1.3 Interface vs Abstract Class

Table 6.1 lists the differences between interface and abstract class.

Interfaces, Packages, and Enumeration 161

Table 6.1 Interface vs Abstract Class

Interface Abstract Class

Multiple inheritance possible; a class can inheritany Multiple inheritance not possible; a class can inherit only
number of interfaces. one class.

implements keyword is used to inherit an interface. extends keyword is used to inherit a class.

By default, all methods in an interface are publicand Methods have to be tagged as public or abstract or both,
abstract; no need to tag it as public and abstract. if required.

Interfaces have no implementation at all. Abstract classes can have partial implementation.
All methods of an interface need to be overridden. Only abstract methods need to be overridden.

All variables declared in an interface are by default Variables, if required, have to be declared as public, static,

public, static, or final. or final.
Interfaces do not have any constructors. Abstract classes can have constructors.
Methods in an interface cannot be static. Non-abstract methods can be static.

It is not that interfaces and abstract classes are entirely dissimilar, they have some similarities also.
1. Both cannot be instantiated, i.e., objects cannot be created for both of them.
2. Both can have reference variables referring to their implementing classes objects. For
example, if X is an interface and its implementing class name is Y, then we cannot code:
X x1 = new X(); // illegal code
But we can code, X x1 = new Y(); // legal code

3. Interfaces can be extended, i.e., one interface can inherit another interface, similar to
that of abstract classes (using extends keyword).

4. static/final methods can neither be created in an interface nor can they be used with
abstract methods.

6.2 PACKAGES

You must have encountered situations wherein you try to organize too many files in folders/
directories and subdirectories. Similarly, if you have too many classes at your disposal, some
sort of grouping is required. Java package is one such mechanism for organizing Java classes
into groups. In fact, a package is indeed a directory for holding Java files. Java has many such
predefined packages which can be used in programs. Some of the predefined packages in Java
are applet, awt, lang, util, event, io, swing, etc. Programmers are also permitted to develop
their own packages in order to organize classes belonging to the same category or providing
similar functionality.

m A package can be defined as a collection used for grouping a variety of classes and interfaces
based on their functionality.

It is also possible to house these Java packages, as these can be stored in compressed files called
JAR files (a JAR file or Java ARchive is used for aggregating many files into one) allowing
classes to download faster as a group rather than one at a time.

A package declaration resides at the top of a Java source file. All source files to be placed in
a package have a common package name.

162

Programming in Java

A package provides a unique namespace for the classes it contains.

A package can contain the following:
e Classes
e Interfaces
e Enumerated types
e Annotations (metadata facility for elements introduced in Java 5)

Two classes in two different packages can have the same name, which is not possible
without using the package mechanism.

Packages provide a mechanism to hide its classes from being used by programs or
packages belonging to other classes.

6.2.1 Creating Packages

Until now, we have studied what packages are and why they are used. The packages in Java
can be of two kinds, predefined Java API packages and user-defined packages. Java 6 API has
a large number of classes and interfaces, housed according to their functionality into different
packages. Some of these are listed in Table 6.2.

Table 6.2 Commonly Used Predefined Packages

Package Functionality
java.lang Basic language fundamentals
java.util Utility classes and collection data structure classes
java.io File handling operations
java.math Arbitrary precision arithmetic
java.net Network programming
java.sql Java Database Connectivity (JDBC) to access databases
java.awt Abstract window toolkit for native GUI components
javax.swing Lightweight programming for platform-independent rich GUI components

The above-mentioned packages are pre-designed to be a part of Java API. Now the question
arises—how can the users create their own packages?

The name of the package should be followed by the keyword package, declared at the top of
the program. Anything else, say class declaration and so, may only be followed by the package
declaration. Thus, we can define a class belonging to a package as follows:

package packexample; //package declaration
public class ClassinPackage

{

//class definition inside package
//Body of class

}

Saving, Compiling, and Executing Packages

Here, the package name is packexample and the class ClassinPackage has been made a part of this
package. There are two ways of saving, compiling, and executing Java files stored in a package.

L1

L2

L3

Interfaces, Packages, and Enumeration 163

1. Remember the file must be saved with the name of the class, i.e., ClassinPackage and

placed in the directory named exactly the same as the package, i.e., packexample. The
file is compiled from within the package and the class file generated after compilation
is stored in the same directory (package). For executing the file, move up the current
directory and execute the file by mentioning the name of the package() followed by
the class name. For example, suppose the package packexample is within the directory
pack. The sequence of statements would be:

// compiling the class
C:\pack\packexample\> javac ClassinPackage.java

// executing the class
C:\pack\> java packexample.ClassinPackage

// This will not execute as c does not have packexample directory.
C:\> java packexample.ClassinPackage

m Classes that reside inside a package cannot be referred by their own name alone. The
package name has to precede the name of the class of which it is a part of. All classes are
a part of some or the other package. If the keyword package is not used in any class for
mentioning the name of the package, then it becomes a part of the default/unnamed package.
In that case, we execute the classes as shown earlier.

L1

L2

L3

2. This Java source file could be saved in any directory. During compilation time, you need

to specify an option of the Java compiler —d which specifies the destination where you
want to place your generated compiled files. After successful compilation, you would
see that your package has been already created in your specified path and the .class
file has been placed in that package. For executing the class, same steps need to be
followed as explained above. Let us consider, the ClassinPackage.java file is stored
in the javaeg directory.

//-d option used with javac for specifying destination c:\pack

// syntax: javac -d destination directory followed by java source file
C:\javaeg\>javac -d c:\pack ClassinPackage.java

// executing the class /
C:\pack\> java packexample.ClassinPackage

// This will not execute
C:\> java packexample.ClassinPackage

In both the cases, the execution takes place from the parent directory of the package where
the class files are placed as shown in L2. If we want to execute the package from any of the
directories, the classpath should be set.

Setting the Classpath

Classpath is used for storing the path of the third-party and user-defined classes. Whenever we
execute/compile any class file, jdk tools javac and java, search the package/class file in the user
classpath which is the current directory by default. If the classes are not in the current directory,
then we need to set the classpath.

164

Programming in Java

The classpath can be set in two ways:

1. It is an environment variable which can be set using the System utility in the control
panel or at the DOS prompt as shown.

Set CLASSPATH = %CLASSPATH%;c:\pack;

%Classpath% is used to keep the existing path intact and append our new path to it. Now
L3 of both the above cases will execute.

m Setting classpath at the DOS prompt will have to be done each time you open the DOS

prompt, as closing the prompt resets the classpath to its original value. To make the changes
permanent, edit the environment variable in the control panel.

Do not delete the existing classpath; edit the variable to append your classpath to the
environment variable.

2. Use classpath option -classpath or -cp of javac/java tools to override the user-defined
classpath and find the user-defined specific package/classes used in the Java source
files.

//syntax: javac -cp path of the directory/package used in java source file

followed by name of the java source file
C:\pack\packexample> javac -cp c:\javaeg DemoClass.java

-cp specifies that the user-defined package/classes used in DemoClass . java will be found
at c:\javaeg.

Subpackages

Subpackages can be designed in hierarchy, i.e., one package can be a part of another package.
This can be achieved by specifying multiple names of the packages at various levels of hierarchy,
separated by dots. For example,

package rootpackage.subpackagel;

As related classes can be collected in a package, related packages can also be collected in a
larger package. In the above statement, subpackage1l is designed to be a part of rootpackage. Of
course the hierarchical packages have to be stored in a hierarchical structure of directories and
subdirectories. For example, the above package subpackage1l (which is a part of rootpackage)
will be stored within the directory rootpackage.

The names of the packages and the directories have to be same, and the names being used
should be carefully selected.

6.2.2 Using Packages

In Java, the names of classes that are defined inside various packages can always be referenced
by specifying the names of the corresponding packages to which these classes belong to. For
example, the Rectangle class belonging to the package java.awt can be referred to

java.awt.Rectangle, i.c.

Interfaces, Packages, and Enumeration 165

java.awt.Rectangle box = new java.awt.Rectangle (5, 10, 20, 30);

But Java provides an import mechanism which can be used and classes can be used without
prefixing the names of packages they belong to.

The point worth noting here is that the class Rectangle is referred to by preceding it with the
name of the package java.awt. Certainly, this is a tedious process. The statement given below
is a convenient form of the above statement.

Rectangle box = new Rectangle (5, 10, 20, 30);

This statement will do fine only if you import the class beforehand, i.e., at the start of the
program itself.

Now the question is how to import the classes belonging to the various packages. Classes in
a package like java.lang are automatically imported. For all other classes, you must supply an
import statement to either import a specific class

import java.awt.Rectangle;
or to import all the classes in a package, using the wildcard notation.
import java.awt.*;

Let us try and implement the things we have discussed till now. In the following example,
we have created two packages packexample and packexamplel. The packexample has a class

ImportExmaple which will be used in the class UseImportExmaple of another package packexamplel.

S €1 AN N Recursive Program to Calculate Factorial in a Package

L1 package packexample;

L2 public class ImportExample{

L3 public int fact(int a){

L4 if(a == 1)

L5 return 1;

L6 else

L7 return a*fact(a-1);

1}
Explanation
* fact (a-1) (assuming a = 4) L1 Package named packexample has been declared.
L2 Public class named ImportExample within the
4* fact(3) 4*6=24
\ package packexample has been declared.
- 2 3ioop L3 Public method fact has been defined.
ac = o
@) L4 and 5 Ifthe value of a is 1, return 1.
L6 and 7 Else return a * call to fact method with
2* fact(1) 2*1=2 s
the argument a - 1. A function is being called from
within, i.e., recursion. Fig. 6.1 shows the sequence
L of execution of this recursive function.

Fig. 6.1 Recursion

166

Programming in Java

v & 11| [:X08 Using a Package in Another Package and Calling the

E
- Recursive Factorial Method

L1 package packexamplel;

L2 import packexample.*;

L3 class UseImportExample{

L4 public static void main(String args[]){

L5 int a = 4;

L6 ImportExample i = new ImportExample();

L7 System.out.println("factorial of " +a+ " is " +i.fact(a)); }}
Output

factorial of 4 is 24

Explanation

L1 Package packexamplel is defined. of the class ImportExample, i.c., packexample. If

L2 We wanted to access the class ImportExample we do not use the import statement, the compiler
in our class, so we need to import the package would complain about using ImportExample in L6.

Following are the steps to compile and execute this program:

C:\javabook\programs\packexamplel>javac -cp c:\javabook\programs
UseImportExample. java

C:\javabook\programs\packexamplel>java -cp c:\javabook\programs;. packexamplel.
UseImportExample

factorial of 4 is 24

The-cp option specifies the path of package(directory) from where to access classes used
in UseImportExample.java. The dot at the end in the classpath has been added to allow the

UselmportExample in packexamplel locate itself. The dot represents the current directory. The
programs directory is the common parent directory of both packexample and packexamplel, so
the package packexample can be easily imported as the classpath is specified using -cp option
(i.e., c:\javabook\programs). There is no problem in locating packexample in packexamplel.
UseImportExample as classpath for both package is same which has already been given in the
commmand.

You can also set the classpath using the set command at the DOS prompt or set it permanently
in the environment variables in the control panel so that you don't have to use the — cp option
again and again with the JDK tools.

Static Import

In Section 4.7, we have already discussed about the static fields and methods of a class. We
invoked the static fields and methods of a class preceding each with the class name and a dot
(.). Static import a feature was introduced in Java 5. It enables programmers to use the imported
static members as if they were declared in the class itself. The name of the class and a dot (.)
are not required to use an imported static member. The following statement shows how to use
static import:

import static pkgName.[subPkgName].ClassName.staticMemberName;

Interfaces, Packages, and Enumeration 167

e pkgName is the name of the package containing the class whose static members need to
be imported.

e subpkgName is the name of the subpackage to which the class belongs. The square brackets
indicate that it is optional.

e (lassName is the name of the class whose static members need to imported.

e staticMemberName is the name of the static field or method. But the above statement
would import only the mentioned static member of the class.

If you want to import all the static members of the class, then use the following:

import static pkgName.ClassName.*;

m Static import imports only static members of the class. Normal import statements should be
used to import the classes used in a program.

Example 6.6 demonstrates the use of static import.

S €] JENHN Usage of Static Import

L1 import static java.lang.Math.*;
L2 public class ExampleStatchmport {
L3 public static void main(String args[]) {

L4 System.out.println("power of 2 raise to 2 is: " +pow(2,2));
L5 System.out.println("ceil(-10.2)is: " + ceil(-10.2));
L6 System.out.println("floor(-10.2)is: " +floor(-10.2));
L7 System.out.println("ceil(10.2)is: " + ceil(10.2));
L8 System.out.println("floor(10.2)is: " +floor(10.2));
L9 System.out.println("maximum of 23 and 24 is: " +max(23,24));
L10 System.out.println("minimum of 23 and 24 is: " +min(23,24));
L11 System.out.println("value of PI is: " +PI);
L12 System.out.println("Value of E is: " +E);
3
Output

C:\javabook>java ExampleStaticImport
power of 2 raise to 2 is: 4.0
ceil(-10.2)is: -10.0

floor(-10.2)is : -11.0

ceil(10.2)is: 11.0

floor(10.2)is: 10.0

maximum of 23 and 24 is: 24

minimum of 23 and 24 is: 23

value of PI is: 3.141592653589793
Value of E is: 2.718281828459045

Explanation

L1 Itis a static import declaration that imports all ~ without preceding the field name or method names
static fields and methods of the class Math from the with the class name Math and a dot as we had used
package java.lang. import static at the top. If we use normal import
L4-12 Show a few static methods (pow, floor, instead of static import, then each function and field
ceil, min, and max) and fields Pl and E being accessed has to precede with the class name.

168 Programming in Java

6.2.3 Access Protection

Access protection defines how much an element (class, method, variable) is exposed to other
classes and packages. There are four types of access specifiers available in Java (shown in the
decreasing order of access).

® public e applied to variables, constructors, methods, and classes
e protected e applied to variables, constructors, methods, and inner classes (not top-level classes)

e default e applied to variables, constructors, methods, and classes

e private e can be applied to variables, constructor, methods and inner classes (not top-level classes)

public and private are easy to define. The former means accessibility for all and the latter means
accessibility from within the class only. The discussion settles down to two access specifiers:
protected and default. default (blank) access specifiers are accessible only from within the
package and protected access is beyond the package also but only to the subclasses outside the
package. Let us take an example to understand the access specifiers. Assuming

X &y are packages

A is a public class within package x

B is another class within package x

@ is subclass of A in package x

D is subclass of A within package y

E is class within package y

abc() is a method with default access in class A

xyz() is a method with protected access specifier in class A
par() is a method with public privileges in class A

]

public class A

void abc()
protected void xyz()
public void pqr()

B can access abc() A A
xyz(), and pgr() C inherits A
B ©;
C can access abc(),
xyz(), and pqr()
D inherits A
y Can access xyz(), pqr(),butnotabc()
D E

E can only access
pqgr() of class A

Fig. 6.2 UML Representation of Package and Classes to Show Access Protection

Interfaces, Packages, and Enumeration 169

This method abc () is accessible from A, B, and C, but neither from D nor E. protected methods
are also accessible outside the package, but only to the subclasses outside the package. For
example, the method xyz() is accessible from classes A, B, C, D, but not from E. This is
pictorially shown in Fig. 6.2. The method pqr() is accessible from all the classes, as it is a public
method in a public class.

Access of any element, such as variable and method, is also governed by its container. For
example, suppose a default access level class has a public method. This method is available
to all the classes within the package, but not outside it, as the class in which the method has
been defined is not accessible outside the package.

6.3 java.lang PACKAGE

java.lang is a special package, as it is imported by default in all the classes that we create.
There is no need to explicitly import the lang package. It contains the classes that form the
basic building blocks of Java.

Remember we have been using string and the System class from the first example in this
book, but we have not imported any package for using these classes, as both these classes
lie in the 1ang package. There are various classes in the 1ang package and it is not possible to
discuss all the classes, but we will discuss some of the very important ones.

6.3.1 java.lang.0Object Class

Object class is the parent of all the classes (predefined and user-defined) in Java. For all the
classes that we have created so far or will be creating further, object class is the parent by default
and there is no need to explicitly inherit the object class. The methods of object class can be
used by all the objects and arrays. The method toString() and equals() have been overridden
by many of the predefined classes already. We have already seen what happens when we try
to print an object. The tostring() method is implicitly invoked when an object of any class
is printed. If class does not provide a toString() method, the toString() of the superclass is
invoked. If any of the class in the hierarchy does not provide implementation for the toString
method, the object class method is called. If tostring() method of the object class is called,
classname@hexadeciaml representation of hash code of the object is printed. In case you
wish to provide your own definitions for the objects which should be returned once you try to
print your objects, then you must override the tostring() method and return your own defined
strings for the objects (Table 6.3).

Table 6.3 Methods of the java.lang.0Object Class

Method Description
Object clone() A copy of the object is created and returned
boolean equals(object o) Checks whether an object is equal to another or not. If both references

refer to the same object, they are equal, else not.

void finalize() Used by classes to dispose of their occupied resources
(Contd)

170 Programming in Java

(Table 6.3 Contd)
Method

final Class getClass()

int hashCode()

final void notify()

final void notifyAll()

String toString()

Description

Returns the class of the object

Return the hash code of the object

Used by threads, to wake up a thread that is in waiting state
Used by threads, to wake up all the threads in waiting state
A string definition of the object is returned

final void wait() Puts the current thread in waiting state

final void wait(long time) Puts the current thread in waiting state for the specified time

final void wait(long time, int n) Puts the current thread in waiting state for the specified amount of real time

Sl JEWA toString() Method of Object Class

L1 class Demo {
L2 public String toString()
{
L3 return "My Demo Object created";
L4 public static void main(String args[])
L5 System.out.println(new Demo());
1}
Output

C:\javabook\chap 6>java Demo
My Demo Object created

Explanation

L2 tostring() method of the Object class has
been overridden with the return type as String. This
method is basically used for returning a String that
identifies an object. This method is automatically
invoked when we try to print an object. It can also be

explicitly invoked with the help of an object.

L3 Returns a string "My Demo Object created".
L5 Within the print statement, an object of class Demo
is created and whenever an attempt to print an object
occurs, the toString() method is called automatically.

m You may now rewrite the complex number program to add the tostring() method to it instead
of display method of that class.

6.3.2 Java Wrapper Classes

Java primitive types are not objects, i.e., we cannot term Java as a pure object-oriented language.
The language designers decided that the higher processing speed and memory efficiency of
simple, non-class structures for such heavily used data types simply overweighed the elegance
of a pure object-only language.

For each primitive type, there is a corresponding wrapper class designed. As the name suggests,
the wrapper class is a wrapper around a primitive data type. These classes represent primitive
data types, e.g., a boolean data type can be represented as a Boolean class instance.

Interfaces, Packages, and Enumeration 171

As we have said earlier, an instance of a wrapper contains or wraps a primitive value of the
corresponding type. Wrappers allow for situations where primitives cannot be used but their
corresponding objects are required. For example, a very useful tool is the ArrayList class (see
Chapter 10), which is a list that can grow or shrink, unlike an array. So if one wants to use an

ArrayList to hold a list of numbers, the numbers must

Table 6.4 Wrapper for Primitive Types ¢ wrapped in an integer instance. Mostly you will

Primitive Wrapper use wrapper class methods to convert a numeric value
boolean java.lang.Boolean to a string or vice versa.
byte java.lang.Byte Table 6.4 lists the primitive data types and their

corresponding wrapper classes.
You can easily make out that except for integer;
the wrappers come with the same name as the

char java.lang.Character

double java.lang.Double

float java.lang.Float corresponding primitive type except that the first
L 20 L EE G letter is capitalized. Wrappers are normal classes that
long java.lang.long extend the Object as a superclass like all Java classes.
short Jjava.lang.Short The wrapper constructors create class objects from
void java.lang.Void the primitive types. For example, for a double floating

point number “d”:
double a = 4.3; Double wrp = new Double(a);

Here a Double wrapper object is created by passing the double value in the Double constructor
argument. In turn, each wrapper provides a method to return the primitive value.

double r = wrp.doubleValue();

Each wrapper has a similar method to access the primitive value: intvalue() for integer,
booleanvalue() for boolean, and so on.

Features of Wrapper Classes Some of the sound features maintained by the wrapper classes
are as under:

o All the wrapper classes except Character and Float have two constructors—one that
takes the primitive value and another that takes the String representation of the value.
Character has one constructor and float has three.

e Just like strings, wrapper objects are also immutable, i.e., once a value is assigned it
cannot be changed.

Wrapper Classes: Constructors and Methods

The wrapper classes have a number of static methods for handling and manipulating primitive
data types and objects. The methods along with their usage are listed below:

Constructors Converting primitive types to wrapper objects.
Integer ValueOfInt = new Integer(v) //primitive integer to integer object
Float ValueOfFloat = new Float(x) // primitive float to float object
Double ValueOfDouble = new Double(y) // primitive double to double object
Long ValueOfLong = new Long(z) // primitive long to long object

172 Programming in Java

Here v, x, y, and z are int, float, double, and long values, respectively. There is one more way
of converting a primitive value to a wrapper, the valueof () method, which we will discuss later.

Ordinary Methods

Converting Wrapper Objects to Primitives All the numeric wrapper classes have six non-static
methods, which can be used to convert a numeric wrapper to their respective primitive numeric
type. These methods are byteValue(), doubleValue(), floatValue(), intvalue(), longvValue(),
and shortvalue(). Some of them are used as follows:

int v = ValueOfInt.intValue(); // Converting wrapper object to primitive integer
float x = ValueOfFloat.floatValue(); // Converting wrapper object to primitive float
long y = ValueOflong.longValue(); // Converting wrapper object to primitive long

double z = ValueOfDouble.doublevalue(); // Converting wrapper object to primitive double

Converting Primitives to String Object The method tostring() is used to convert primitive
number data types to String, as shown below:

String xyz = Integer.toString() // Converting primitive integer to String
String xyz = Float.toString() // Converting primitive float to String
String xyz = Double.toString() // Converting primitive double to String
String xyz = Long.toString() // Converting primitive long to String

Parser Methods

Converting Back from String Object to Primitives The six parser methods are parselnt,
parseDouble, parseFloat, parselLong, parseByte, and parseShort. They take a string as the
argument and convert it to the corresponding primitive. They throw a NumberFormatException
if the value of the String does not represent a proper number. Parser methods can be used as
shown below:

int v = Integer.parselInt(xyz)

// For converting String containing int values like “10” to primitive integer

long y = Long.parseLong(xyz)

/I For converting String containing long values like “123456” to primitive integer

Converting Primitive Value Represented by String Object to Wrapper Object All wrapper
classes define a static method called valueof (), which returns the wrapper object corresponding to
the primitive value represented by the string argument as shown below. valueof () is overloaded:
one version accepts integer values and another accepts a String. String argument method generates
a NumberFormatException in case the value in a String does not contain a number.

Double ValueOfDouble = Double.valueOf(xyz);
// For converting String containing double values to wrapper objects

Float ValueOfFloat = Float.valueOf(xyz);
// For converting String containing float values to wrapper objects

Integer ValueOfInteger = Integer.valueOf(xyz);
// For converting String containing int values to wrapper objects

Interfaces, Packages, and Enumeration 173

Long ValueOfLong = Long.valueOf(xyz);
// For converting String containing long values to wrapper objects

Double ValueOfDouble = Double.valueOf(xyz);
// For converting primitive value double to wrapper objects

Float ValueOfFloat = Float.valueOf(xyz);
// For converting primitive values float to wrapper objects

Integer ValueOfInteger = Integer.valueOf(xyz);
// For converting int to wrapper objects

Long ValueOfLong = Long.valueOf(xyz);
// For converting long to wrapper objects

Binary and Hexadecimal Conversion The following method converts an integer to its binary/
hexadecimal equivalent and returns it as a String object.

System.out.println(Integer.toBinaryString(8));
System.out.println(Integer.toHexString(32));

The integer value 8 is converted to its binary equivalent using toBinaryString(), i.e., 1000, and
32 is converted to its hexadecimal equivalent, i.e. 20.

Autoboxing and Unboxing of Wrappers

Java 5.0 introduced a new feature for converting back and forth between a wrapper and its cor-
responding primitive. The conversion from primitives to wrappers is known as boxing, while
the reverse is known as unboxing.

In the previous section, we have already seen boxing and unboxing being enforced by the use
of a certain amount of clumsy code. Before J2SE 1.5, Java had primitive data types with wrappers
around them, so programmers had to convert from one type to another programmatically.

public void manualConversion()

{
int a = 12;
Integer b = Integer.valueOf(a);
int ¢ = b.intValue();

}

If you are dealing with a lot of instances of wrappers and conversions, you will need to deal
with a lot of method invocations. The to and fro conversion between primitives and wrappers
is simplified by the use of autoboxing and unboxing. Behind the scenes, the compiler creates
codes to implicitly create objects for you.

public void autoBoxing()

{
int a = 12;
Integer b = a; // wrapping
int ¢ = b;

174 Programming in Java

Here, the wrapping is done automatically. There is no need to explicitly call the integer
constructor. Autoboxing means a primitive value is automatically converted into the wrapper
object. The reverse process, i.e., automatic conversion back from wrapper object to primitive
value, is known as unboxing.

To sum up the complete essence of autoboxing and unboxing, we take the following piece of code:

Integer wrap_int = 5; //primitive 5 autoboxed into an Integer object
int prim_int = wrap_int; //automatic unboxing of Integer into int

There is one thing that you must remember: boxing and unboxing too many values can put undue
pressure on the garbage collector.

6.3.3 String Class

Strings are basically immutable objects in Java. Immutable means once created, the strings
cannot be changed. In fact there is a class named String in the java.lang package for creating
strings. Whenever we create strings, it is this class that is instantiated. In Java, strings can be
instantiated in two ways:

L1 String x = "String Literal Object";
L2 String y = new String ("String object is created here");

L1 Shows a string literal being assigned to a string reference: x.

L2 Shows the creation of a string object with the help of new keyword and the string literal is
passed as an argument to the constructor. Does it mean that in L1, no object is created? Well
actually an object of class String is created in both the lines, the only difference is thatin L1, it is
created implicitly and the memory is allocated from a memory pool which is created specifically
for string literals. In L2, the object is created explicitly using the new keyword, so the memory
required for the object is allocated out of the memory pool.

Before creating objects for string literals (L 1), JVM checks the memory pool for the existence
of string literals in the pool and if found, a reference to the existing String object is passed, else a
new string instance in the pool is created and it is returned. In other words, string objects in the
pool are shared and because it is a sharable thing, it is made immutable so that strings may not
become inconsistent and corrupt. The concept of memory pool for string literals was created to
save time (speed up working) and memory because strings are very often used by programmers.
Let us take an example to clearly understand the concept.

1S €1) FNR:N String Creation and Test for Equality

L1
L2
L3
L4
LS
L6

class StringTest

{

public static void main(String args[]){
String a = "Hello";

String b = "Hello";

String ¢ = new String("Hello");

String d = new String("Hello");

String e = new String("Hello, how are you?");
if(a == b)

Interfaces, Packages, and Enumeration 175

L7 System.out.println("object is same and is being shared by a & b");
else
L8 System.out.println("Different objects");
L9 if(a ==)
L10 System.out.println("object is same and is being shared by a & c");
else
L11 System.out.println("Different objects");
L12 if(c == d)
L13 System.out.println("same object");
else
L14 System.out.println("Different objects");
L15 String £ = e.intern();
L16 if(f == a)
L17 System.out.println("Interned object f refer to the already created object a
in the pool");
else
L18 System.out.println("Interned object does not refer to the already created
objects, as literal was not present in the pool. It is a new object which has
been created in the pool");
i3

Output

C:\examples\chap 6>java StringTest

object is same and is being shared by a & b

Different objects
Different objects

Interned object does not refer to the already created objects, as literal was not present

in the pool. It is a new object which has been created in the pool.

Explanation

References Objects
a
ol
b
(a) Objects in the memory pool
© » Hello
d » Hello

e 4>| Hello, how are you? |

(b) Explicit memory allocation

f 4>| Hello, how are you? |

(c) Interned object in the memory pool

Fig. 6.3 String Objects

L1 An implicit string object has been created for
a string literal Hello in the memory pool and the
reference to the newly created object in the pool is

return to a.

L2 Asexplained earlier, string literal is same as that
of L1, 1i.e.,Hello. JVM does not create a new object
but passes the reference of the previously created
object (L1) to b, which means a and b now point to
the same object. See the following Fig. 6.3.

L3 Although the same string literal Hello is
being used, but the object created is not a part of the
memory pool, as the keyword new is used for object
creation. Whenever new is used to create an object,
it is allocated explicit memory and that memory is
apart from the memory pool of strings.

176 Programming in Java

L4 Anew object is created which is different from
a, b, and c as well.

L5 A new string object is created with a different
literal this time "Hello, how are you?". This object
is also different from all the objects that we have
created till this point in our example.

L6 Equality operator (= =) is used in the if
statement to check whether both references a and
b are pointing to the same location or not. Equality
operator is not used for matching the contents of the
strings, i.e., literals. The two references that are being
matched are a and b and as both point to the same
location, L7 is executed. If a and b do not point to
the same location, L8 would be executed.

L7 Print statement to show that references point
to the same object.

L8 Print statement to show that references point
to different objects.

L15 Asalready discussed, Strings created with the
help of new are not allocated memory from the pool,
but are interned. The method java.lang.String.
intern() is used for this purpose. The intern()
method creates a string object in the pool with the
same String literal as that of the invoking String
object and returns a reference of the newly created
object in the pool. In this Line, f points to the newly
created object in the pool because the string literal
object Hello, how are you? does not exist in the
pool. The intern method is called from the string
object which needs to be interned, i.e., the previous
String object will be garbage collected as it is no
longer in use.

L16 Checks whether f and e point to the same
object in the pool or not. They actually point to
different locations and that is why L18 gets executed.

String Manipulation

Strings in Java are immutable (read only) in nature. That is, once the Strings are defined, they
cannot be altered. Let us have a look at the following lines of code:

L1 String x = "Hello";
L2 String x = x +"World";

// ok
// ok, but how?

Java does not support operator overloading, but the ‘+’ operator is already overloaded to accept
different operands and it acts accordingly. If at least one of the operand is a string, it concatenates.
The question that arises is that if strings are immutable, then how L2 gets executed? Actually
L2 gets converted into the following statement:

String x =

new StringBuffer().append(x).append("World").toString();

Anew stringBuffer object is created which is used for the mutable set of characters. Mutable
characters can change their values. The append (add at the end) method of the StringBuffer

object is used to append the string Hello contained in x into the newly created StringBuffer

object. Again the append method is used to append the string world to existing Hello in the new

object. The method tostring() converts StringBuffer object back to String and x points to this

newly created String object. No references exist for the existing object Hello; it will be garbage

collected.

String Methods

The string class provides a lot of methods. Table 6.5 lists a few common methods of the String

class.

Interfaces, Packages, and Enumeration 177

Table 6.5 Few Methods of string Class

Method Name with Signature Method Details
int length() To find the length of the string.
boolean equals(String str) Used to check the equality of String objects. In contrast to == operator,

the check is performed character by character. If all the characters in
both the Strings are same, it returns true, else false.

int compareTo(String s) Used to find whether the invoking String (Fig. 6.2) is Greater than,
less than or equal to the String argument. It returns an integer value. If
the integer value is

(a) less than zero — invoking string is less than String argument
(b) greater than zero — invoking String is greater than String
argument
(c) equal to zero — invoking String and String argument are equal
boolean regionMatches (int Matches a specific region of the String with a specific region of the

startingIndx, String str, int invoking String. The argument details:

strStartingIndx, int numChars) startingIndx—specifies the region from the invoking String to be
matched.
str—is the second string to be matched.
strStartingIndx—specifes the region from the string to be matched
with the invoking String.
numChars—specifies the number of characters to be matched in both
strings from their respective starting indexes.

int indexOf(char c) To find the index of a character in the invoking String object.

int indexOf(String s) Overloaded method to find the starting index of a String argument in
the invoking String object.

int lastIndexOf(char c) To find the last occurrence of a character in the invoking String.

int lastIndexOf(String s) Overloaded method to find the last occurrence of the String argument

in the invoking String object.

String substring(int s Index) To extract the String from the invoking String object starting with
Index till the End of the String.

String substring(int Overloaded method to extract the String starting with starting Index
startingIndex, int endingIndex) till the ending Index from the invoking String object string.

int charAt(int pos) To find the character at a particular position (pos).

String toUpperCase() To change the case of an entire string to capital letters.

String tolLowerCase() To change the case of an entire string to small letters.

boolean startsWith(String ss) To find whether an invoking string starts with a string argument.
boolean endsWith(String es) To find whether an invoking string ends with a string argument.
Static String valueOf(int is) Converts primitive type int value to string.

Static String valueOf(float f) Overloaded static method to convert primitive type float value to string.
Static String valueOf(long 1) Overloaded static method to convert primitive type long value to string.

Static String valueOf(double d) Overloaded static method to convert primitive type double value to string.

178 Programming in Java

S]] RN String Class Methods

class StringDemo {

public static void main(String args[]){
// String Declaration

String x = "This is a Demo String";
String y = "This is a Demo String 2";

L1

L2

L3
L4
L5
L6
L7
L8

L9

L10

L11

L12

L13

L14
L15

L16

L17
L18

L19

// int declaration

int i = 20;
// finding the length of String
System.out.println("Length of String = " +x.length());

/* equals method of Object class has been overridden by the String class for per-
forming different function i.e., equating two string objects by matching strings
character by character */

System.out.println("x and y are equal =

+(x.equals(y)));

// comparison of Strings
if((x.compareTo(y)) < 0)

System.out.println("x is less than y");

else if((x.compareTo(y)) > 0)

else

System.out.println("x is greater than y");

System.out.println("x is equal to y");

// Region Matching within Strings

System.out.println("x region matches with y:" + ((x.regionMatches(0,y,0,11)));
// finding index of Characters

System.out.println("index of \" i\" in String x is: " +x.indexOf("i"));
// finding index of particular String
System.out.println("index of \"is\" in String x is: " +x.indexOf("is"));

// finding the last occurrence of a particular character
System.out.println("Last index of \"i\" in String x is: " +x.lastIndexOf("i"));
// finding the last occurrence of a particular character
System.out.println("Last index of \"is\" in String x is: " +x.lastIndexOf("is"));
// sub string

System.out.println("Substring of String x from character 4 is: " +x.substring(4));
System.out.println("Substring of String x from character 4 to 15 is:

" 4x.substring(4,15));

// finding character at particular position
System.out.println("character at position 6 is:" +x.charAt(6));

// upper case and lower case
System.out.println("UpperCase:
System.out.println("LowerCase:

+x.toUpperCase());
" +x.toLowerCase());

// finding whether strings start and end with a particular string
System.out.println("x starts with \"Th\":" +x.startsWith("Th"));

Interfaces, Packages, and Enumeration 179

L20 System.out.println("x ends with \" Th\": " +x.endsWith("Th"));
L21 System.out.println("Converts int to String: " +String.valueOf(i));
1}
Output

C:\javabook\ chap 6>java StringDemo
Length of String = 21

x and y are equal = false

x is less than y

X region matches with y : true
index of "i" in String x is: 2
index of "is" in String x is: 2

Last index of "i" in String x is: 18

Last index of "is" in String x is: 5

Substring of String x from character 4 is: is a Demo String
Substring of String x from character 4 to 15 is: is a Demo
character at position 6 is: s

UpperCase: THIS IS A DEMO STRING

LowerCase: this is a demo string

x starts with "Th" : true

x ends with "Th" : false

converts int to String: 20

Explanation

As discussed earlier, all instance methods of the name. Table 6.4 describes these functions in brief.
String class are invoked with the help of String Figure 6.4 pictorially depicts how are the methods
objects and class methods through the String class of String class invoked.

<x.equals(y)>

A A
Invoking String argument
object object
Instance
method

Fig. 6.4 Invoking the Methods of String Class

6.3.4 StringBuffer Class

The stringBuffer class is used for representing changing strings. As already discussed,
StringBuffer offers more performance enhancement whenever we change strings, because it
is this class that is used behind the curtain. So it is advisable to use StringBuffer rather than
String in such a situation. If string class is used, it would result in wastage of memory and time,
as temporary string objects would be needed while changing strings. StringBuffer contains a
sequence of characters which can be altered through the methods of this class. Just like any other
buffer, stringBuffer also has a capacity and if the capacity is exceeded, then it is automatically
made larger. The initial capacity of StringBuffer can be known by using a method capacity().
A few common methods of the stringBuffer class are shown in Table 6.6.

180 Programming in Java

Table 6.6 Methods of stringBuffer Class

Method name with signature Method details

int capacity() Returns the current capacity of the storage available for
characters in the buffer. When the capacity is approached,
the capacity is automatically increased.

StringBuffer append(String str) Appends String argument to the buffer

StringBuffer replace The characters from start to end are removed and the string
(int sindx,int eIndx,String str) is inserted at that position

StringBuffer reverse() Reverses the buffer character by character

Char charAt(int index) Returns the character at the specified index

Void setCharAt(int indx,char c) Sets the specified character at the specified index

Example 6.9 shows how the stringBuffer class is used in a program.

Sl JEEN) StringBuffer Object

class StringBufferDemo {
public static void main(String args[]){

L1 StringBuffer sb = new StringBuffer();
L2 System.out.println("Initial Capacity : " +sb.capacity());
L3 System.out.println("String appended : " +sb.append ("Dogs bark at night"));
L4 System.out.println("String replaced: " +sb.replace (10,12,"during"));
L5 System.out.println("String reversed : " +sb.reverse());
L6 System.out.println("Current Capacity : " +sb.capacity());
L7 System.out.println("character at position 3 is: " + sb.charAt(3));
L8 sb.setCharAt(3, ‘a’);
L9 System.out.println("sb after setting \"a\" at 3: " +sb);
3
Output

C:\javabook>java StringBufferDemo
Initial Capacity : 16

String appended : Dogs bark at night
String replaced : Dogs bark during night
String reversed : thgin gnirud krab sgoD
Current Capacity : 34

character at position 3 is: i

sb after setting "a" at 3: thgan gnirud krab sgoD
Explanation

The description of the methods used in the program is available in Table 6.6.

6.3.5 StringBuilder Class

Java 5 introduced a substitute of StringBuffer: the stringBuilder class. This class is faster
than StringBuffer, as it is not synchronized. The methods of both the classes are same with
the exception that the methods (append(), insert(), delete(), deleteCharAt(), replace(), and

Interfaces, Packages, and Enumeration 181

reverse()) return StringBuilder objects rather than StringBuffer objects. The line below shows
the creation of a StringBuilder object.

StringBuilder s=new StringBuilder();
/* construct a StringBuilder object with an initial capacity of 16 characters.
Similar to that of StringBuffer.*/

6.3.6 Splitting Strings

StringTokenizer is a utility class provided by the java.util package. Now a legacy code, this
class used to be of utmost importance when we want to divide the entire string into parts (tokens)
on the basis of delimiters. The delimiters can be any of the whitespace, tab space, semicolon,
comma, etc. J2SE 1.4 added split() method to the string class for simplifying the task of splitting
a string and also added pattern and Matcher classes in the java.util.regex package. We will
discuss the split() method and Pattern in our next example and also the stringTokenizer
class for backward compatibility.

S EAEREN Splitting Strings

L1
L2
L3
L4
LS
L6

L7
L8
L9
L10
L11

L12
L13
L14
L15

L16
L17
L18
L19

Output

import java.util.*;
import java.util.regex.*;
class StringTokenizerDemo {
public static void main(String args[]) {
int i = 1;
String str = "Never look down on anybody unless you're helping him up";
System.out.println("Splitting String Using StringTokenizer class");
StringTokenizer tr = new StringTokenizer(str, " ");
while(tr.hasMoreTokens()) {
System.out.print(" Token " +i+ " : ");
System.out.println(tr.nextToken());
++1i;

¥
// Another way of splitting String

System.out.println("Splitting String Using split() method");
String[] tk = str.split(" ");

for(String tokens: tk)

System.out.println(tokens);

// Using Pattern class

System.out.println(" Splitting String Using Pattern class");
Pattern p = Pattern.compile(" ");

tk= p.split(str,3);

for(String tokens: tk)

System.out.println(tokens);

1}

C:\javabook>java StringTokenizerDemo
Splitting String Using StringTokenizer class
Token 1 :Never

Token 2 :look

Token 3 :down

182 Programming in Java

Token 4 :on
Token 5 :anybody
Token 6 :unless
Token 7 :you’re
Token 8 :helping
Token 9 :him
Token 10 :up

Splitting String Using split() method
Never

look

down

on

anybody

unless

you’re

helping

him

up

Splitting String Using Pattern class
Never

look

down on anybody unless you’re helping him up

Explanation

L1 Importing the package java.util.* is
mandatory because StringTokenizer is a part of
this package.

L2 Importing the subpackage java.util.regex.*
is mandatory because the class Pattern is a part of
this subpackage regex. An important point to note
here is that importing any package does not mean
that the sub-packages are also implicitly imported.
The sub-packages need to be imported explicitly.
L5 Integer i declared and initialized to 1.

L6 string to be split has been declared, str.

L7 AnobjectofStringTokenizer class is created.
The constructor accepts two arguments: (a) str and
(b) the delimiter, i.e., whitespace in our example. The
string str is cut into tokens wherever the specified
delimiter, i.e., the white space is encountered and the
tokens are stored in the StringTokenizer object tr.
This tr object is iterated for retrieving the tokens
one by one.

L8 The condition in the while loop checks whether
the StringTokenizer object has more tokens or not
with the help of hasMoreTokens(). which returns
a boolean value to indicate whether tr has more
tokens or not.

L9 Statement to print “Token” followed by the
value of i, i.e., Token 1 (for the first iteration, see

the output).

L10 This statement prints the first Token. In the
first iteration, the method nextToken() points to
the first token which is printed on the screen and the
cursor moves to the new line afterwards.

L11 The value of i is incremented. In the next
iteration, the value of i will be 2, and so on.
L12-15 Show another way of splitting the string
using the split()method.

L13 split() method of the String class is used
for splitting the string, str. It accepts one arguments,
i.e., regex.

The regular expression, regex, can be a character, a
group of characters, or a word which is to be searched
in a string. Here we want to split the string on the
basis of regex which is a whitespace. So wherever
a whitespace is encountered in the str, it is split and
stored in the String array tk as the next array item.
L14-15 In each iteration, the String fokens are
assigned successively a value from ‘tk’ and printed.
L16-19 Show another way of splitting the string
using the Pattern class.

L16 Shows how the Pattern class of the regex
sub-package is used for splitting a string. The Pattern
class provides a static method named compile()
to compile the regular expression to a pattern. The

Interfaces, Packages, and Enumeration 183

regular expression is passed as an argument to the (a) str— String to be split.

method, i.e., a whitespace in our example. This (b) limit— Sets the number of times the pattern will
pattern will be searched in the string. be searched in the str. If the limit is n, the pattern
L17 Another method of the Pattern class: split() will be searched n—1 times. In our example, the limit
is used to split the string. This method takes two is 3, so the pattern, i.e., whitespaces will be searched
arguments: twice and the string will be stored in an array.

6.4 Enum TYPE

An enumerated type (enum type) is a kind of class definition, wherein we define the type along
with the possible set of enum values which are listed in the curly braces, separated by commas.
All enum types are the subclasses of the java.lang.Enum class. Each value in an enum is an
identifier. For example, the following statement declares a type, named Games, with the values
CRICKET, FOOTBALL, TENNIS, and BASKETBALL. Remember, here we are talking about an ordered
list. By convention, all names must be in upper case. An enumeration is like a class, so the
naming convention of classes also applies to enumerations. Moreover, values are constants, so
they should be named as regular constants.

enum Games { CRICKET, FOOTBALL, TENNIS, BASKETBALL };
Once a type is defined, you can declare a variable of that type:
Games G;

The variable G can hold one of the values defined in the enumerated type Games or null, but
nothing else. An attempt to assign a value other than the enumerated values mentioned in the
enumeration or null will result in a compilation error. The enumerated values can be accessed
using the following syntax:

enumeratedTypeName.valueName
For example, the following statement assigns the enumerated value TENNIS to the variable G:
G = Games.TENNIS;

An enumerated type is treated as a special class. An enumerated type variable is similar to a
reference variable. Like all other classes in Java, an enumerated type is a grandchild of the object
class. In addition to this, it inherits Comparable interfaces. It is an implicit final subclass of the
Enum class in the java.lang package. All the methods of the object class and the compareTo()
method of the Comparable interface can be used by an enumeration. Additionally, you can use
the following methods on an enumerated object:

® public String name();
It returns the name of the value for the object.
® public int ordinal();

It returns the ordinal value associated with the enumerated value. The first value has an ordinal
value of 0, the second has an ordinal value of 1, and so on. Example 6.11 demonstrates the use
of enumerated types. Example 6.12 shows an alternative way of using enumerated types.

184 Programming in Java

D€ JENNPA Use of Enumerated Type

L1 public class EnumDemo {

L2 static enum Games {CRICKET, FOOTBALL, CHESS, BASKETBALL, TENNIS, BADMINTON};
L3 public static void main (String[] args) {

println("G1l.compareTo(G2) returns " +Gl.compareTo(G2));

L4 Games Gl = Games.CHESS;
L5 Games G2 = Games.TENNIS;
L6 System.out.println("First game is " +Gl.name());
L7 System.out.println("Second game is " +G2.name());
L8 System.out.println("First game's ordinal is " +Gl.ordinal());
L9 System.out.println("Second game's ordinal is " +G2.ordinal());
L10 System.out.println("Gl.equals(G2) returns " +Gl.equals(G2));
L11 System.out.println("Gl.toString() returns " +Gl.toString());
L12 System.out.
3
Output

First game is CHESS

Second game is TENNIS

First game's ordinal is 2
second game's ordinal is 4
Gl.equals(G2) returns false
Gl.toString() returns Chess
G1.compareTo(G2) returns -2

Explanation

L2 An enumerated type is defined, having the
ordered list of games.

L4 and 5 Variables G1 and G2 are declared as the
Games type and assigned enumerated values.

L8 Since G1’s value is Chess, its ordinal value is 2.
L9 Since G2’s value is Tennis, its ordinal value is 4.
L10-12 An enumerated type is a subclass of the
Object class and the Comparable interface, so you
can invoke the methods equals, toString, and

compareTo from an enumerated object reference
variable. G1.equals(G2)returns true if G1 and G2
have the same ordinal value. G1.compareTo(G2)
returns the difference between G1’s ordinal value
to G2’s. The enum type has a toString() method
defined that returns the string values. So it is easy
to print these values without any special conversion
effort. For example, System.out.println(G1)will
print CHESS.

S € IENHEN Alternative Way of Using Enumerated Type

L1 public class EnumExample{

L2 public static void main(String[] args){

" + Gl.name());
" + G2.name());
is " + Gl.ordinal());
is " + G2.ordinal());

" +Gl.equals(G2));

L3 Games Gl = Games.Chess;

L4 Games G2 = Games.Tennis;

L5 System.out.println("Gl's name is

L6 System.out.println("G2's name is

L7 System.out.println("Gl's ordinal

L8 System.out.println("G2's ordinal

L9 System.out.println(" Gl.equals(G2) returns

L10 System.out.println (" G1.toString() returns " +Gl.toString());

L1 System.out.
L12 }}
L13

println (" G1l.compareTo(G2) returns " +G1l.compareTo(G2));

enum Games {Cricket, Football, Chess, Basketball, Tennis, Badminton};

Interfaces, Packages, and Enumeration 185

Output

C:\javabook\PROGRA~1>java EnumExample
Gl's name is Chess

G2's name is Tennis

Gl's ordinal is 2

G2"s ordinal is 4

Gl.equals(G2) returns false
G1l.toString() returns Chess
G1.compareTo(G2) returns -2

An enumerated type defined inside a class behaves as an inner class, as shown in the L2 of
Example 6.11, or standalone as shown in the L13 of Example 6.12. When an enumerated type
is declared inside a class, it is a member of the class and cannot be declared inside a method.
The enumerated type is always static. So, the static keyword in L2 of Example 6.11 may be
omitted. After Example 6.11 is compiled, a class named EnumDemo$Games . class is created. After
Example 6.12 is compiled, a class named Games. class is created.

6.4.1 Using Conditional Statements with an Enumerated Variable
An enumerated type holds a set of values. If you need to perform a specific action depending on
the value, then you can use if or switch-case for the same. For example, if the value is Games.
CRICKET, book ticket; if the value is Games.FOOTBALL, bunk the class; and so on. You can use an
if statement or a switch statement to test the value in the variable, as shown below.
If statement

if (Gl.equals(Games.CRICKET)) {

// action to be performed}

} else if (Gl.equals(Games.FOOTBALL)) {

// action to be performed}
else

Switch statement

switch (Games){
case CRICKET: // case CRICKET and not Games.CRICKET
// action to be performed;

case FOOTBALL:
// action to be performed;

6.4.2 Using for Loop for Accessing Values

Each enumerated type has a static method values() associated with them that returns all
enumerated values for the type in an array. For example,

Games[] G = Games.values();
You can use a for loop to process all the values in the array.

for (int 1 = 0; 1 < G.length; i++)
System.out.println(G[i]);

186 Programming in Java

6.4.3 Attributes and Methods within Enumeration

You can also define an enumerated type with attributes and methods similar to a class, as shown
in Example 6.13(a). Example 6.14(b) shows a test program to use the enumerated type created
in Example 6.14(a).

S eI ENRENEY Defining an Enumerated Type with Attributes and Methods

L1 public enum Desc {
L2 CRICKET ("Sachin Tendulkar"), CHESS("Vishwanathan Anand"), TENNIS ("Sania Mirza");
L3 private String description;
// Constructor
L4 private Desc(String description){
L5 this.description = description;
L6 }
L7 public String getDesc(){
L8 System.out.print("Indian Delight: ");
L9 return description;
L10 }}
Explanation
L1 An enumeration named Desc is declared. L4-6 The constructor Desc is declared. This

L2 The enumerated values are listed with their constructor is invoked whenever an enumerated value
description (mentioned in double quotes). This jsaccessed. The value (description) is passed to the

declaration must be the first statement in the class,
otherwise a compile-time errors results.

L3 A datafield named description is declared to
denote an enumerated description.

constructor, which is then assigned to description.
L7-9 getDesc() hasbeen declared with the return
type String to return the description.

S JEEREN(O) Enumerated Type with Attributes and Methods

L1
L2

L3
L4
L5
L6

Output

public class UseDesc{
public static void main(String[] args)
{
Desc player = Desc.TENNIS;
System.out.println(player.getDesc());
}
}

C:\javabook\PROGRA~1>java UseDesc
Indian Delight: Sania Mirza

Explanation

L3 Anenumerated value Desc.TENNIS isassigned L4 The methods in enumerated type are invoked
to the variable player (L3). Accessing Desc.TENNIS in the same way as the methods in a class. player.
causes the JVM to invoke the constructor with the getDesc() returns the description for the enumerated
argument SaniaMirza. value.

Interfaces, Packages, and Enumeration 187

The constructor for an enumerated type should be private to prevent it from being invoked
directly.

6.5 PRACTICAL PROBLEM: BANKING EXAMPLE

We will be creating a banking example to revise the concepts learned so far. Banks contain
customers who hold accounts within the bank. An account can be of two types—Saving Account
or Current Account. Customers can perform deposit or withdrawal operation on their respective
accounts. Banks provide interest to the saving account holders which it can change any time.
Banks provide a upper limit to the current account holders. In case the balance in their account is
less than what needs to be withdrawn, banks provide the shortfall amount to the customers upto
the credit limit but on a returnable basis. So whenever the current account holder deposits the
amount in the bank, the bank first reclaims its money and then its left over amount is added to
the balance. (We have assumed that banks are not charging any interest on the amount provided
by the bank to the current account holder. Normally banks would charge an interest on that. You
can take that part as an exercise.)

A customer will have a name, an id, and will be holding an account (either saving or current).
Every account will have an id and balance. Saving accounts will have an interest rate apart from
id and balance. Current accounts will have an overdraft limit apart from id and balance.

So we have created five classes: Customer class, Account class with its two subclasses
(savingAccount and CurrentAccount) and a Bank class to hold customers. All these classes have
been packaged into an package named banking. Let us see all these classes. Let us first see the
Account class.

D€ JERENEN Account . java

/*package declaration. The class belongs to the banking package*/
package banking;
/*abstract class declared with default previliges. it can only be accessed from
within the package. This class has two abstract methods:
debit and credit. The subclasses will have to override the abstract methods.*/
abstract class Account
{
/*balance within the account*/
float balance;

/*Account No*/
private String accountNo;

/*constructor to initialize balance and account no*/
Account(float b, String acc)
{
balance = b;
accountNo = acc;
b
/*getter method to access balance*/
float getBalance()
{

return balance;

188 Programming in Java

}

/*setter method to modify balance*/
void setBalance(float b)

{
}

balance = b;

/*The methods are declared abstract so that the subclasses can code them according
to their respective needs keeping their names in tact*/

abstract void debit(float amount);
abstract void credit(float amount);

/*getter method to access account no*/
String getAccountNo()
{

}

/*setter method to modify balance*/
void setAccountNo(String acc)

{
¥

/* Print Account No and balance details*/
void display()

return accountNo;

accountNo = acc;

System.out.println("Account Number: "+accountNo);
System.out.println("Account balance: "+balance);

Now let us create its subclasses—SavingAccount and CurrentAccount.

5] R ER()) SavingAccount. java

/*This class is also part of the same package and hence the package
declaration */

package banking;
/*SavingAccount is a type of Account. So this class inherits the Account class*/

class SavingAccount extends Account

{

/* Interest rate is common for all Saving Accounts. So this field is
declared as static.*/

static float interest = 4;

/* Constructor declared to initailize both the account number and
balance by calling the Account (super class) constructor using super

keyword */

SavingAccount(float b, String acno)

Interfaces, Packages, and Enumeration 189

{
super(b,acno);
}
/*explicit default constructor*/
SavingAccount()
{
super(0,"");
}

/* Static method is created to change the interest rate. If the bank
wishes to change the interest rate, it can do so without creating an
instance of SavingAccount class*/

static void setInterest(float i)

{
}

interest = i;

/*display method to print account no, balance and interest rate. The super class
display method already prints the account no and balance so it is invoked using the
super keyword.*/

public void display()

{
super.display();
System.out.println("Interest rate: "+interest);

}

/*Account is credit with amount. The balance increases by the amount
passed in this method*/

public void credit(float amount)

{
System.out.println("Amount to be credited: "+amount);
System.out.println("0ld balance: "+balance);
balance = balance+amount;
System.out.println("New balance: "+balance);
}

/*Account is debited with amount.*/
public void debit(float amount)

{

System.out.println("Amount to be debited: "+amount);
System.out.println("0ld balance: "+balance);

/*if the amount to be withdrawn is less than the balance, it is de-
creased by the amount otherwise the request is denied*/

if(amount < balance)

{
balance = balance-amount;
System.out.println("New balance: "+balance);
}
else

System.out.println("Request Denied");

190 Programming in Java

/*SavingAccount earn interest on the balance.This method when invoked
will calculate the interest on the balance and add it to the balance*/

public void creditInterest()

{
float temp = balance*interest/100;
System.out.println("Interest paid: "+temp);
balance = balance+temp;
System.out.println("New Balance: "+balance);
}

/*toString method has been overridden to return a String representa-
tion of the SavingAccount object */

public String toString()
{

return "Saving Account No: "+getAccountNo()+ " Balance : "+balance;
}
}
S EJEREN(9) CurrentAccount . java

/*This class is also part of the same package and hence the package declaration states
the package as banking */

package banking;
class CurrentAccount extends Account
{
/* borrowed amount, cannot be greater than the limit */
float overdraftborrowed;
/* Maximum credit limit */
float overdraftlimit;
/*Constructor to initialize the current account. every current account holder
will have a different overdraft limit. so while creating current account object
we have to pass the limit as well*/
CurrentAccount(float b,String acno, float od)
{
super(b,acno);
overdraftlimit = od;
¥
/*1imits may change over time so an option is provided to change the limit*/
void setOverdraft(float o)
{

b

/*credit method is used to deposit the amount in the current account. if the
customer has borrowed some amount from the bank, then first the borrowed
amount is returned to the bank and the rest is added to the balance. */
public void credit(float amount)

{

overdraftlimit = o;

System.out.println("Amount to be credited: "+amount);

System.out.println("0ld Balance: "+balance);

System.out.println("Overdraft Borrowed: " + overdraftborrowed);
/*checks whether amount to be deposited is greater than overdraftborrowed,
deducts it by overdraftborrowed thus making the overdraftbor-

Interfaces, Packages, and Enumeration 191

rowed nil and add the rest amount in balance. otherwise the overdraft-
borrowed is reduced by the amount making no changes to the balance */
if(amount > overdraftborrowed)

{
amount = amount - overdraftborrowed;
overdraftborrowed = 0;
balance = balance + amount;
b
else if(amount<overdraftborrowed)
{
overdraftborrowed = overdraftborrowed-amount;
¥

System.out.println("New Overdraft Borrowed: + overdraftborrowed);

System.out.println("New Balance: "+balance);
}
/* deducts the amount from the balance. If amount to be deducted is less than
balance; the amount is deducted from balance. But, if amount is greater than
balance but less than the 1limit, then the shortfall will be fulfilled by the
bank by setting the overdraftborrowed for the customer. Hence overdraftbor-
rowed is set to shortfall (amount-balance) and balance will be nil. If amount
is greater than balance as well as the ODlimit then the
request is denied */
public void debit(float amount)

{
System.out.println("Amount to be debited: "+amount);
System.out.println("0ld Balance: "+balance);
if(amount <= balance)
balance = balance - amount;
else if((amount > balance) & (amount < (balance + overdraftlimit)))
{
overdraftborrowed = amount - balance;
balance = 0;
System.out.println("Overdraft Borrowed: " + overdraftborrowed);
}
else
System.out.println("Request Denied");
System.out.println("New Balance: "+balance);
System.out.println("Overdraft Borrowed: "+overdraftborrowed);
}
public void display()
{
super.display();
System.out.println("Overdraft limit: "+overdraftlimit);
}
public String toString()
{
return "Current Account No: "+getAccountNo()+ " Balance :"+balance+"
Overdraft limit: "+overdraftlimit;
}

}
Now let us create a Customer class that will own any one of these accounts.

192 Programming in Java

S E] IR EN()) Customer. java

package banking;

class Customer

{
// customer name
String custName;

// customer id
String custId;

/* every customer of the bank is assigned an Account which is its private attribute.
So an instance variable of type Account is defined here. A customer can either have
a saving account or a current account. That is why we have added an attribute of
type Account in this class and not SavingAccount or CurrentAccount. Account refer-
ence variable can refer to objects of both its subclasses: SavingAccount and Curren-
tAccount. So whatever account the customer wishes to open, its object can be saved
into this instance variable of type Account */

private Account account;

/*constructor to initialize the customer attributes*/
Customer(String custName,String custId, Account account)
{

this.custName = custName;

this.custId = custId;

this.account = account;

}

/* deposit method declared to add amount to the balance. Here we have to call the

appropriate method according to the type of the account. So first e check what is

the type of account held by the customer using the instanceof keyword and based on
that we call the credit method of the respective classes.*/

public void deposit(float amt)
{

if(account instanceof SavingAccount)

/* credit method belongs to the SavingAccount class or the CurrentAccount class and
not the Account class. So if the method is invoked as account.credit(amt), the com-
piler will not compile the program. The reason is that the compiler looks for credit
method in the Account class (as the type of account reference variable is Account)
which is not there. The account variable is casted into SavingAccount or CurrentAc-
count and then the credit method is invoked. The cast is possible as the classes are
subclasses of the Account class. The account refernce variable will actually hold
objects of either SavingAccount or CurrentAccount class*/
((SavingAccount)account).credit(amt);

else if(account instanceof CurrentAccount)

((CurrentAccount)account).credit(amt);

}

/*0Only Saving Account to be credited with interest on balances*/

void depositInterest()

Interfaces, Packages, and Enumeration 193

{
System.out.println("Depositing Interest in : "+custId);

if(account instanceof SavingAccount)
((SavingAccount)account).creditInterest();

}

/* withdrawal method declared to deduct amount from the balance. Here we have to
call the appropriate method according to the type of the account. So first we check
what is the type of account held by the customer using the instanceof keyword and
based on that we call the debit method of the respective classes.*/

public void withdrawl(float amt)

{

if(account instanceof SavingAccount)
((SavingAccount)account).debit(amt);

else if(account instanceof CurrentAccount)
((CurrentAccount)account).debit(amt);

¥

/*display the customer details along with the account held by the customer*/

public void display()

{
System.out.println("Customer Name: "+custName);
System.out.println("Customer Id: "+custId);
account.display();
System.out.println(account);

}

Let us now create a Bank class to test all the classes that we have created. First of all we will
create a Bank class in which we will be creating Customers. These customers will be holding
accounts on which we will be performing deposit, withdrawal, and display operations.

5 J R EN(EY) Bank . java

/*This class is also part of banking package */
package banking;

/*class declared with default privileges so it can only be used within

the package*/

public class Bank

{
/* customers are part of the bank and their details should not accessible to oth-
ers. So Customer array is declared to be private. We have considered only three
customers. Each element of the Customer array will hold an object of type Custom-
er. */

private Customer c[]=new Customer[3];

/* constructor for the Bank class is declared */
public Bank()

194 Programming in Java

{

/* Customer objects created and put in the individual array elements.
Constructor of the Customer class accepts three arguments: Customer name, Customer
id and an object of type Account.*/

c[0]=new Customer("Rahul","C001",new SavingAccount(12000,"A001"));
c[1]=new Customer("Ram","C002",new SavingAccount(12000,"A002"));
c[2]=new Customer("Shyam","C003",new CurrentAccount (12000, "A003", 10000));

¥

/* Banks can change its interest rate for all Saving Account holders by invoking
this method*/

void changeInterestRate(float i)

{

/*SavingAccout class contains the attribute for interest rate. A setter method is
created for setting the interest rate. This interest rate is applicable for all sav-
ing bank account holders. The static method ‘setInterest” of the SavingAccount class
is used to change the interest rate.*/

SavingAccount.setInterest(i);

}

/*main method declaration*/
public static void main(String[] args)
{
/*An object of Bank class is created which invokes the constructor of the Bank
class. */
Bank b = new Bank();

/*Banks change its interest rate*/
b.changeInterestRate(6);

/*Invokes its demo method- which deposits and makes withdrawals from the cus-
tomer accounts*/
b.demo();

/* bank deposits interest into its customer accounts*/
b.c[0].depositInterest();

/* bank deposits interest into another customer accounts*/
b.c[1].depositInterest();

}

public void demo()

{
/*display method of the Customer object is called*/

c[0].display();

/*customer deposits 1000 Rupees into his account*/
c[0].deposit(1000);

/*customer withdraws 500 Rupees into his account*/
c[0].withdrawl(15000);

/*display method of the another Customer object is called*/

Interfaces, Packages, and Enumeration 195

c[1].display();

/*customer deposits 2000 Rupees into his account*/
c[1].deposit(2000);

/*customer withdraws 8000 Rupees into his account*/
c[1].withdrawl(8000);

/*display method of the Customer object is called*/
c[2].display();

/*Customer deposits 1000 rupees into his account*/
c[2].deposit(1000);

/*Customer withdraws 15000 rupees into his account*/
c[2].withdrawl(5000);

/*Customer again deposits 3000 rupees into his account*/
c[2].deposit(3000);
}
}

Compilation

Output

During compilation of these programs, make sure the classpath is set or you can use the
-cp option of javac as well,for e.g. if the banking package is part of d:\javabook\
chap 6, then you can invoke the compilation as

javac -cp d:\javabook\chap 6 savingAccount.java

To run the example you have to set the classpath with the path up to the directory that contains
the banking package. For example, if banking package (directory) is within “chap 6 then the
command to edit the classpath would be

set classpath = %classpath%;d:\javabook\chap 6;

D:\javabook\chap 6>java banking.Bank
Customer Name: Rahul

Customer Id: C001

Account Number: A001

Account balance: 12000.0

Interest rate: 6.0

Saving Account No: A001 Balance : 12000.0
Amount to be credited: 1000.0

0ld balance: 12000.0

New balance: 13000.0

Amount to be debited: 15000.0

0ld balance: 13000.0

Request Denied

Customer Name: Ram

Customer Id: C002

Account Number: A002

Account balance: 12000.0

Interest rate: 6.0

Saving Account No: A002 Balance : 12000.0

196 Programming in Java

Amount to be credited: 2000.0
0ld balance: 12000.0
New balance: 14000.0
Amount to be debited:
0ld balance: 14000.0
New balance: 6000.0
Customer Name: Shyam
Customer Id: CO03
Account Number: A003
Account balance: 12000.0
Overdraft 1limit: 10000.0

Current Account No: AOO3 Balance
Amount to be credited: 1000.0
0ld Balance: 12000.0

Overdraft Borrowed: 0.0

New Overdraft Borrowed: 0.0

New Balance: 13000.0
Amount to be debited:
01d Balance: 13000.0
New Balance: 8000.0
Overdraft Borrowed: 0.0
Amount to be credited: 3000.0
0ld Balance: 8000.0

Overdraft Borrowed: 0.0

New Overdraft Borrowed: 0.0
New Balance: 11000.0
Depositing Interest in :
Interest paid: 780.0
New Balance: 13780.0
Depositing Interest in :
Interest paid: 360.0
New Balance: 6360.0

8000.0

5000.0

coo1

€002

Java does not support multiple inheritance among
classes. The only exception to this is interfaces.
Multiple inheritance can be done using interfaces.
A class can inherit any number of interfaces. The
only fact mandatory for a class to follow is that it has
to override and provide implementation for all the
methods of all the interfaces it inherits. Such classes
can be grouped together to form a package. Package
is a collection of Java files similar to a directory. As
subdirectories exist within a directory, subpackages
can exist within a package.

There are a number of predefined packages in
Java—one of them is discussed in this chapter: java.
lang package. This is a fundamental package. For all
the primitive data types, wrapper classes have been
defined in this package. These wrappers encapsulate
the functionality of the primitive data types. A few

SUMMARY

:12000.0 Overdraft limit: 10000.0

other classes like Object, String, StringBuffer
and StringBuilder class have been discussed, as
these classes are frequently used in programming. All
classes, whether predefined or user-defined, inherit
ultimately from the Object class implicitly. So String,
StringBuffer, and StringBuilder also have objects
as their parents.

Strings in Java are immutable, i.e., one cannot
change a string once it is defined. StringBuffer
and StringBuilder are both used for mutable set of
characters. StringBuilder (added in Java 5) is much
more efficient in terms of performance as compared to
StringBuffer because the former is not synchronized
and the latter class is. At the end of the chapter, we
have discussed enumerations. Enum type is a kind of
class and is basically useful when we know the type
along with the possible set of values in that type.

Objective Questions

1. What will happen if the following line is present
in a program?

interface x extends interface y {}

(a) run time error

(b) compile time error

(c) will compile but not execute
(d) will compile and execute

2. What will happen when you try to compile the
following code?

interface x {void show();}

class y implements x{

void show(){
System.out.println("in show");
}

}

(a) runtime error

(b) compile time error

(c) will compile but not execute
(d) will compile and execute

3. Whatwill be the output if the following declarations
are there in a given sequence? If it is not correct,
what is the correct sequence?

class x{}
package y;
import a.b;

(a) runtime error

(b) compile time error

(c) will compile but not execute
(d) will compile and execute

4. Which keyword is used for accessing the features
of a package?
(a) export (b) import
(c) package (d) extends

5. What will happen when you try to compile the
following code?

protected class example{
public static void main(String
args[]) {

String s = "abc";

s = s + "def";

System.out.println(s);

EXERCISES

10.

Interfaces, Packages, and Enumeration 197

¥

(a) will compile and print abcdef

(b) will compile but will not print anything

(c) will not compile as top level class is protected
(d) will compile and print def

Name the modifier of a method that makes the
method available to all classes in the same
package and to all the subclasses of this class.
(a) private (b) default

(c) protected (d) public

All enumerations declared inside a class are by
default

(a) static (b) non static

(c) default (d) protected

What will happen when you try to compile the
following code?

interface test{int CHECK;}

(a) runtime error

(b) compile time error

(c) will compile but not execute

(d) will compile and execute

What will happen when you try to compile the
following code?

interface test {static void show();}

(a) runtime error

(b) compile time error

(c) will compile but not execute
(d) will compile and execute

What will happen when you try to compile and
execute the following code?

class Test{
public static void main(String args[]){
char c;
String t1 = " The World ";
String t2 = new String(" The World ");
if(tl.equals(t2))
System.out.println("String

Concatenated : " + tl.concat
("is beautiful"));
else

System.out.println("String

198

Programming in Java

Concatenated:" +tl.concat("is not
beautiful"));

1}

Review Questions

1.

What is an interface? How is it different from an
abstract class?

What are packages? How are they created and
used?

What are wrapper classes?

What is enum type? Explain with the help of a
program.

Programming Exercises

1.

Design an interface named Stack with the

following methods:

(a) Push and pop elements from the stack.

(b) Check whether the stack is empty or not.
Implement the stack with the help of arrays
and if the size of the array becomes too small
to hold the elements, create a new one. Test
this interface by inheriting it in its subclass
StackTest.java.

. Design an interface named Queue with the

following methods:

(a) Toadd and remove elements from the queue.

(b) Check whether queue is empty or not
Implement the queue with the help of arrays
and if the size of the array becomes too small
to hold the elements, create a new one. Test
this interface by inheriting it in its subclass
QueueTest.java

Create a class within this package “Amountin-

Words” to convert the amount into words. (Con-

sider the amount to be not more than 100000.)

Answers to Objective Questions

1

©OoOUW N

. (d)

. (c) 7. (a)

(a) run time error

(b) compile time error

(c) will compile but not execute

(d) will compile and Print “The World is beautiful”

. Explain the following:

(a) public (b) private
(c) default (d) protected
(e) import (f) static import

. Explain the difference between String and

StringBuffer.

. Write a program to count the number of words

and characters in a string.

. Design an enumeration for weekdays and print

their corresponding description according to the
traditional rules:

Description = Weekdays
Sun Sunday
Moon Monday
Mars Tuesday
Mercury Wednesday
Jupiter Thursday
Venus Friday
Saturn Saturday

. Design an interface with a method reversal.

This method takes a string as its input and
returns the reversed string. Create a class
StringReversal and implement the method [Do

not use predefined methods].

. (b), it will not compile as public is not applied to the overridden show method in class y.

. (b), the correct sequence is package y: import a.b: class{} 4. (b)
(c), the class does not compile because the top-level class cannot be protected.

. (b), compile time error as value is not given for this variable
. (b), it will not compile, as static cannot be applied to method defined in an interface

10. (d)

Copyrighted Materials)

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

Exception,
Assertions, and

Logging

When the imagination and willpower are in conflict, are antagonistic, it is always the
imagination which wins, without any exception. Emile Coue

After reading this chapter, the readers will be able to
« understand the concepts and applications of exception handling
understand all the keywords used for exception handling
create user-defined exceptions
know what assertions are and how to use them
know the basics of logging

* 6 0o o0

7.1 INTRODUCTION

Exceptions in real life are rare and are usually used to denote something unusual that does not
conform to the standard rules. For example, Abraham Lincoln was an exception who, despite all
hurdles in his life, rose to become the sixteenth president of the USA. In computer programming,
exceptions are events that arise due to the occurrence of unexpected behavior in certain statements,
disrupting the normal execution of a program.

Exceptions can arise due to a number of situations. For example,

e Trying to access the 11th element of an array when the array contains only 10 elements
(ArrayIndexOutOfBoundsException)

Division by zero (ArithmeticException)

Accessing a file which is not present (FileNotFoundException)

o Failure of I/O operations (I0Exception)

Illegal usage of null (NullPointerException)

There are predefined classes (mentioned in the parenthesis above) for all exception types
representing each such situation. The topmost class in the hierarchy is java.lang.Throwable. This
class has two siblings: Error and Exception. All the classes representing exceptional conditions
are subclasses of the Exception class. Whenever an exception occurs in a method, the runtime
environment identifies the type of Exception and throws the object of it. If the method does not

200 Programming in Java

employ any exception handling mechanism (discussed later in the chapter), then the exception
is passed to the caller method, and so on. If no exception handling mechanism is employed in
any of the call stack (also known as runtime stack, i.e., the sequence of method calls from the
current method to the main method) methods, the runtime environment passes the exception
object to the default exception handler available with itself. The default handler prints the name
of the exception along with an explanatory message followed by the stack trace at the time the
exception was thrown and the program is terminated.

Stack trace is a record of the active stack frames generated by the execution of a program. It
is used for debugging.

S e JENAN Exception

L1
L2
L3
L4
L5
L6
L7
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24

Output

class ExDemo

{
public static void main(String args[])
{
methodl1();
}
static void method1()
{
System.out.println("IN Method 1, Calling Method 2");
method2();
System.out.println("Returned from method 2");
}
static void method2()
{
System.out.println("IN Method 2, Calling Method 3");
method3();
System.out.println("Returned from method 3");
}
static void method3()
{
System.out.println("IN Method 3");
int a = 20,b = O;
int ¢ = a/b;
System.out.println("Method 3 exits");
1}

C:\javabook\programs\chap 7>java ExDemo

IN Method 1, Calling Method 2

IN Method 2, Calling Method 3

IN Method 3

Exception in thread "main" java.lang.ArithmeticException: / by zero
at ExDemo.method3(ExDemo.java:23)

at ExDemo.method2(ExDemo.java:16)
at ExDemo.methodl(ExDemo.java:10)
at ExDemo.main(ExDemo.java:5)

Exception, Assertions, and Logging 201

Explanation

L1 Class declaration.
L3 main method declaration.
L5 Calltomethodi1(). Control passes to method1().

Call stack populated by pushing method1() call to
top of the stack.

L7 method1() declaration.

L9 Prints IN Method 1, Calling Method 2 (as
shown in the output).

L10 Calltomethod2(). Control passes to method2().
Call stack again populated by pushing method2() call
to the top of the stack above method1() call.

L11 Prints Returned from method 2 if successfully
returns from method 2.

L13 method2() declaration.

L15 Prints IN Method 2, Calling Method 3 (as
shown in the output).

L16 Call to method3(). Control passes to
method3 (). The call stack is again populated by
pushing method3()call to the top of the stack above
method2() call.

L17 Prints Returned from method 3 if successfully
returns from method3().

L19 method3()declaration.

L21 Prints IN Method 3.

L22 Two integer variables initialized with a value
of 20 for a and 0 for b.

L23 An integer variable is being divided by zero.
We have intentionally written this statement to
show you what happens when an exception occurs.
Normally, in practice, nobody would attempt such a
thing. You cannot divide a number by zero. It results
in an ArithmeticException in Java. The execution

halts at this point. The JVM throws an object of class
ArithmeticException for an exception handler
to catch it. No exception handler is provided with
method3 (). So the caller methods are looked upon to
see if they can handle this particular exception. None
of the caller methods, method2(), method1(), and
main() employ any exception handling technique, so
the JVM passes the exception to the default exception
handler which in turn prints Exception in thread
"main" followed by the name of the exception along
with an explanatory message. In the next line, it
prints the stack trace to help programmers debug the
program and finally terminates the program. Take a
look at the stack trace shown in Fig. 7.1.

ExDemo.method3 (ExDemo.java:23)

SN

class method File Line number where
name name name execution halted
method3 was called by method2 (line 16) and method2
by method1 (L10). method1() was called by main (L5).
As you can see in the output, the call stack is printed
as it is from top to bottom. Also note the line numbers
are printed in the output.

method3
method2
methodl

main

Fig. 7.1 Call Stack

7.1.1 Exception Types

Exceptions are broadly classified into two categories: checked and unchecked exceptions. (The
Java specification treats Error as the third type of exception). Checked exceptions are those
for which the compiler checks to see whether they have been handled in your program or not.
Unchecked or runtime exceptions are not checked by the compiler. Table 7.1 shows a few
checked and unchecked classes.

202 Programming in Java

Table 7.1 Checked and Unchecked Exception Classes

Checked Exceptions Unchecked Exceptions
ClassNotFoundException ArithmeticException
NoSuchFieldException ArrayIndexOutOfBoundsException
NoSuchMethodException NullPointerException
InterruptedException ClassCastException
IOException BufferOverflowException
IllegalAccessException BufferUnderflowException

Figure 7.2 shows the exception hierarchy in Java. Not all the Exception and Error subclasses
have been depicted in the figure. The dots in the diagram are an indicator that there are other

classes also within the immediate superclass. Example 7.1 can be modified to handle the exception
generated in method3.

java.lang.Throwable

Y
! '

Enon Exception
NoSuch NoSuch Instantia- .- Runtime
Field Method tion Exception
Exception Exception Exception

y |
! .

AssertionError | - IndexOut -+

O0fBounds
|OError Exception

!
! !

StringIndex ArrayIndex
OutOfBounds OutOfBounds
Exception Exception

NullPointer Arithmetic
Exception Exception

Fig. 7.2 Exception Hierarchy
7.2 EXCEPTION HANDLING TECHNIQUES

Java provides five keywords for exception handling: try, catch, throw, throws, and finally. Let
us take a look at all these one by one.

Exception, Assertions, and Logging 203

7.2.1 try..catch

The try/catch block can be placed within any method that you feel can throw exceptions. All
the statements to be tried for exceptions are put in a try block and immediately following the
try is the catch block. catch block is used to catch any exception raised from the try block. If
exception occurs in any statement in the try block, the following statements are not executed
and control immediately passes to the corresponding catch block.

S e JEWMA try..catch

L1
L2
L3
L4
LS
L6
L7
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29

Output

class ExDemol
{
public static void main(String args[])
{
methodl1();
}
static void methodi1()
{
System.out.println("IN Method 1, Calling Method 2");
method2();
System.out.println("Returned from method 2");
}
static void method2()
{
System.out.println("IN Method 2, Calling Method 3");
try{
method3(); }
catch(Exception e)

{
System.out.println("Exception Handled");
}
System.out.println("Returned from method 3");
}
static void method3()
{
System.out.println("IN Method 3");
int a = 20,b = 0;
int ¢ = a/b;
System.out.println("Method 3 exits");
1}

C:\javabook\programs\chap 7>java ExDemol
IN Method 1, Calling Method 2

IN Method 2, Calling Method 3

IN Method 3

Exception Handled

Returned from method 3

Returned from method 2

204 Programming in Java

Explanation

L28 Exception occurred. No handling mechanism
in method3(), so the control passes to the try..catch
block in method2().

L29 Itis not executed, as the statements following
the occurrence of an exception are not executed.
L16 try block declared. The statements to be
monitored for exceptions should be placed in the try
block within a method.

L17 A call to method3() is placed within the try
block.

L18 catch clause defined with an argument of
type Exception (parent class) so that the exception
objects thrown from the try block can be caught
here. A superclass reference variable can refer to
a subclass object. The try block is immediately
followed by a catch block. As soon as an exception

is encountered in the try block, statements following
the statement on which the exception occurred are
not executed. The runtime environment creates an
object of class representing the exception and throws
it. Control passes to the appropriate catch block (first
appropriate catch in case multiple catch clauses
are present) where the thrown object is caught and
assigned to e, i.e., the Exception reference variable.
L20 Prints ExceptionHandled.

L22 Prints Returned from method3(). After the
exception has been caught (try..catch mechanism
implemented), execution resumes as normal. This
was not possible in Example 7.1. After this, the
control passes back to method1() from where
method2() was called and L11 gets executed (see
output).

A single try can have multiple catch clauses, for catching specific exceptions. As soon
as an exception is thrown, the first appropriate catch clause responsible for handling that
exception is located and the exception is passed to it. By first appropriate catch, we mean, if
ArrayIndexOutOfBoundsException is generated, then the control passes to the first catch that either
specifies the ArrayIndexOutOfBoundsException or the IndexOutOfBoundsException superclass
of the ArrayIndexOutOfBoundsException or Exception. All exceptions can be caught by the
Exception class. Example 7.3 shows how multiple catch clauses are incorporated in a program.

S VAN Multiple Catch Clauses

L1 class Multiple_Catch

L2 {

L3 public static void main(String args[])

L4 {

L5 method1();

L6 }

L7 static void method1()

L8 {

L9 System.out.println("IN Method 1, Calling Method 2");
L10 method2();

L11 System.out.println("Returned from method 2");

L12 }

L13 static void method2()

L14 {

L15 System.out.println("IN Method 2, Calling Method 3");
L16 try {

L17 method3(); }

L18 catch(ArithmeticException ae)

Exception, Assertions, and Logging 205

+ae);

L19 {
L20 System.out.println ("Arithmetic Exception Handled:
L21 }
L22 catch(Exception e)
L23 {
L24 System.out.println("Exception Handled");
L25 }
L26 System.out.println("Returned from method 3");
L27 }
L28 static void method3()
L29 {
L30 System.out.println("IN Method 3");
L31 int a = 20, b = 0;
L32 int ¢ = a/b;
L33 System.out.println("Method 3 exits");
1}
Output

C:\javabook\programs\chap 7>java Multiple_Catch

IN Method 1, Calling Method 2
IN Method 2, Calling Method 3
IN Method 3

Arithmetic Exception Handled: java.lang.ArithmeticException: / by zero

Returned from method 3
Returned from method 2

Explanation

L16 try block defined.

L17 Call to method3().

L18 The first catch clause defined with an
argument of type ArithmeticException class.

L20 Prints Exceptionhandled concatenated with
the output of ae. toString(). Remember toString()
is called automatically when you try to print any
object. toString() method is overridden in the

ArithmeticException class to print its own string
rather than that of the Object class.

L22 The second catch clause defined with an
argument of type Exception class. This has been
specified intentionally because if any other exception
is thrown apart from ArithmeticException, then
that exception will be caught in this particular catch
clause.

m While specifying multiple catch clauses for exception handling, the catch clause having the
Exception type as its argument should be the last catch block in your program. This is because
if the catch having the reference variable of type Exception class is placed as the top catch
clause, then all the exceptions thrown from the try block will be caught in the first catch and the
control will never pass onto the lower catch blocks, leading to an unreachable code.

An unreachable code in Java is easily recognized by the Java compiler and it complains about
it during compilation. For example, if the catch clauses in Example 7.3 are reversed, as shown,

the program will not compile.

catch(Exception e){}
catch(ArithmeticExceptionae) {}

206 Programming in Java

7.2.2 throw Keyword

The throw keyword is used to explicitly throw an exception. In the earlier examples, this job was
being done implicitly. Whether implicit or explicit, objects of exception need to be created before
they are thrown. Execution of the program is suspended as in previous cases and the runtime
environment looks for the appropriate catch to handle the exception. throw is more useful when
we want to throw a user-defined exception. The syntax for throw is as follows:

throw new NullPointerException(); // throw new ThrowableInstance

Let us rework Example 7.3 to throw an exception explicitly.

SEnJEVAE throw Keyword

L1
L2
L3
L4
LS
L6
L7
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L28

L29

Output

class ThrowDemo

{
public static void main(String args[])
{
methodl1();
}
static void method1()
{
System.out.println("IN Method 1, Calling Method 2");
method2();
System.out.println("Returned from method 2");
}
static void method2()
{
System.out.println("IN Method 2, Calling Method 3");
try {
method3(); }
catch(Exception e)
{
System.out.println("Exception Handled:" + e);
}
System.out.println("Returned from method 3");
}
static void method3()
{

System.out.println("IN Method 3");

throw new ArithmeticException("Testing Throw");
// This line is intentionally commented. If not, it results
// in compile time error as it leads to unreachable code.
// System.out.println("Method 3 exits");

1}

C:\javabook\programs\chap 7>java ThrowDemo
IN Method 1, Calling Method 2
IN Method 2, Calling Method 3

IN Method 3

Exception, Assertions, and Logging 207

Exception Handled: java.lang.ArithmeticException: Testing throw

Returned from method 3
Returned from method 2

Explanation

L28 Instead of an expression which leads to the
runtime environment throwing an exception, we
have used throw keyword to throw the exceptions
ourselves. Just like the runtime environment, we
also need to create an object for throwing it. So the
ArithmeticException object is created with the
help of new keyword and an argument is passed
to its constructor. This argument is printed onto
the console via the toString() method of the
ArithmeticException class, when we catch this
exception and print the exception object (see output).

This argument can also be separately printed using the
getMessage() method of the ArithmeticException
class.

L29 It is commented. If it is not commented, the
compiler will give an error stating Unreachable Code.
Particularly, in this program, the control will always
move out after the throws clause, searching for a
handler, so this line will never be executed. The Java
compiler is intelligent enough to understand this and
raises an error.

This exception is caught and printed in the catch present in L18-21. Rest of the logic is similar

to the previous example.

7.2.3 throws

The throws is added to the method signature to let the caller know about what exceptions the
called method can throw. It is the responsibility of the caller to either handle the exception
(using try..catch mechanism) or it can also pass the exception (by specifying throws clause
in its method declaration). If all the methods in a program pass the exception to their callers
(including main()), then ultimately the exception passes to the default exception handler. A
method should use either of the two techniques—try/catch or throws. Usually (for checked
exceptions specifically), it is the catch or specify mechanism that is used. A method can throw
more than one exception; the exception list is specified as separated by commas. The syntax for

the throws keyword is shown below:

public void divide(int a, int b) throws ArithmeticException, IllegalArgumentException

Let us take a look at the following example.

S EJEWAN throws Keyword

L1 class ThrowsDemo

L2 {

L3 public static void main(String args[])

L4 {

L5 method1();

L6 }

L7 static void method1()

L8 {

L9 System.out.println("IN Method 1, Calling Method 2");
L10 method2();

L1 System.out.println("Returned from method 2");

208 Programming in Java

+ e);

L12 }
L13 static void method2()
L14 {
L15 System.out.println("IN Method 2, Calling Method 3");
L16 try{
L17 method3(4,0); }
L18 catch(Exception e)
L19 {
L20 System.out.println("Exception Handled:
L21 }
L22 System.out.println("Returned from method 3");
L23 }
L24 static void method3(int a, int b) throws Exception
L25 {
L26 System.out.println("IN Method 3");
L27 if(b == 0)
L28 throw new ArithmeticException("Testing throw");
L29 else
System.out.println("Result: "+a/b);
1}
Output

Whena=4and b =2

C:\javabook\programs\chap 7>java ThrowsDemo

IN Method 1, Calling Method 2
IN Method 2, Calling Method 3
IN Method 3

Result: 2

Returned from method 3
Returned from method 2

Whena=4andb=0

C:\javabook\programs\chap 7>java ThrowsDemo

IN Method 1, Calling Method 2
IN Method 2, Calling Method 3
IN Method 3

Exception Handled: java.lang.ArithmeticException: Testing throw

Returned from method 3
Returned from method 2

Explanation

L24 method3() hasbeen declared with throws clause
specifying that it may throw an exception. The parent
class (Exception) has been specified in the throws
clause, so there is no need to explicitly mention the
subclass name (ArithmeticException). If throws is
omitted in this line, the program works as usual. If the
try/catch in method2() (L16, L18-21 and L.23) is
omitted and throws in method3() declaration is kept

intact, the compiler will not compile the program as
now, it is mandatory for the calling method to either
pass or catch the exception.

L26 Print statement.

L.27 if statement checks the value of b. Ifit is zero,
L28 is executed, else .29.

L28 Anobjectof ArithmeticException is created
and thrown.

L29 else prints the result of division of a by b.

Exception, Assertions, and Logging 209

7.2.4 finally Block

The finally block is always executed in try-catch-finally statements irrespective of whether an
exception is thrown from within the try/catch block or not. Statements following the exception
in a try block are not executed. Some statements are mandatory to execute such as the state-
ments related to the release of resources. All these statements can be put in a finally block. The
syntax of the finally keyword is as follows:

try {...} catch(Throwable e){...} finally {....}
Let us take an example to understand it better.

S e JEWAN finally Keyword

L1 class FinallyDemo

L2
L3 public static void main(String args[])
L4 {
L5 methodl();
L6 System.out.println("Result : "+method2 (24,0)); }
L7 static void method1()
L8 {
L9 try {
L10 System.out.println("IN Method 1");
L11 throw new NullPointerException(); }
L12 catch(Exception e)
L13 {
L14 System.out.println("Exception Handled: " + e);
L15 }
L16 finally {
L17 System.out.println("In method 1 finally"); } }
L18 static int method2(int a, int b)
L19 {
L20 try{
L21 System.out.println("IN Method 2");
L22 return a/b; }
L23 finally {
System.out.println("In method 2 finally");
}
}
}
Output

Whena=24and b =4

C:\javabook\programs\chap 7>java FinallyDemo

IN Method 1

Exception Handled: java.lang.NullPointerException
In method 1 finally

IN Method 2

In method 2 finally

Result : 6

210 Programming in Java

Whena=24andb=0

C:\javabook\programs\chap 7>java FinallyDemo

IN Method 1

Exception Handled: java.lang.NullPointerException

In method 1 finally

IN Method 2

In method 2 finally

Exception in thread "main" java.lang.ArithmeticException: / by zero
at FinallyDemo.method2(FinallyDemo.java:24)

at FinallyDemo.main(FinallyDemo.java:6)

Explanation

L5 Call to method1(). Control passes to L7. zero, an attempt to divide any number by zero results

L6 Call to method2() and if any, return is printed
on the screen.

L7 method1() declaration.
L9 try block defined.

L11 NullPointerException
passes to catch in L12.

L12 catch block corresponding to try in L9.

L14 Prints the exception object e. (e.toString()
is called by default).

L16 Shows the finally block. The exception
thrown in L11 is caught at L12. The finally block
following catch gets executed after that (see output).
L17 The statement within finally gets executed.
L18 method2() declared expecting two integer
arguments. Value passes are 24 and 0.

L20 try block within method2().

L22 As already discussed, the value of b being

is thrown. Control

in an ArithmeticException being thrown.

L23 Just to show that the finally block executes
in all cases, we have intentionally not given the catch
inmethod2(). A try can either have a corresponding
catch with finally or it can also have a finally
following it. In the earlier examples, we have seen
that as soon as an exception is encountered, its
appropriate handler is looked upon and nothing gets
executed until and unless the exception is handled.
The only exception to this fact is the finally block.
In our example, the exception is thrown in L22.
method2() does not have its own catch to handle
exceptions, so its caller is to be looked upon but
before control passed to the caller, i.e., main method,
the finally in method2() is executed. And then the
control passes to main() where no handler is present,
so the runtime environment handles the exception as
already discussed (see output).

7.2.5 try-with-resources Statement

Java 7 added a new enhancement to the exception handling mechanism, i.e., automatic resource
management with a try-with-resources statement. The applications uses many resources during
their lifetime by creating their objects, e.g., creating a data base connection for accessing/updating
databases, or creating file objects for working with files, or creating sockets for transmission/
receiving of data, etc. A common mistake committed by programmers is that they often do not
close/release the resources occupied by the programs, after their task is complete. This leads
to many orphaned instances, inefficient memory allocation, and garbage collection. Hence the
need for automatic resource management arises.

To address this problem AutoCloseable, a new interface has been created in the java.lang
package. The resources that want to be closed must implement this interface. This interface has
just one method,

public void close() throws Exception

Exception, Assertions, and Logging 211

This close method will be overridden by the class that implements the interface and all resources
releasing code can be put in this method. The close method of the AutoCloseable object is called
automatically when it is used with a try-with-resources statement as soon as the try-with-
resources block has finished execution regardless of whether an exception is thrown or not.
The syntax of a try-with-resources statement is as follows:

try (resources to be used and automatically released)

{
// statements within the block

}
For example
try (abc a=new abc(); pqr p=new pqr())

{
// statements within the block

}

More than one AutoCloseable resources can be used in try-with-resources statement separated
by semicolon. Hence it is mandatory for abc and pgr objects to implement the AutoCloseable
interface as shown below in the example. The resources created in the try-with-resources
statement are closed in the reverse order of creation. We will elaborate these concepts in Example
7.7.

S EJEWAA AutoCloseable Resources and try-with-resource Statement

L1

L2

L3

L4

LS

L6

L7

L8

class abc implements AutoCloseable
{
public void close()
{
System.out.println("Within close method of abc");
}
}
class pqr implements AutoCloseable
{
public void close()
{
System.out.println("Within close method of pqr");
}
}
class TestTryWithResources
{
public static void main(String args[])
{
try (abc a=new abc(); pqgr p=new pqr())
{
System.out.println("Within try with resources block");
throw new Exception();

}

212 Programming in Java

L9 catch(Exception e)
{

System.out.println("Within catch block");

}
}
}

Output

D:\javabook\programs\chap 7\java TestTryWithResources

Within try with resources block
Within close method of pqr
Within close method of abc
Within catch block

Explanation

L1-4 All resources that need to be closed auto-
matically after their use must implement the Auto-
Closeable interface and override the close method.
L5 Another class is created to test the AutoClose-
able resources created above.

L6 main method declaration.

L7 try-with-resources statement is used to create
two resources which will be automatically closed
once the block exits by calling their respective close
methods in reverse order of creation. The close
method of pqgr is called first and then the close

method of abc (see output). Note that these two
objects have already inherited the AutoCloseable
interface otherwise a compile time error will be raised
by the compiler.

L8 An explicit Exception is raised to show that
the close methods are called irrespective of whether
an exception occurs or not. In case an Exception is
raised, the close methods are called prior to handling
the Exception (see output).

L9 catchblock is declared to handle the exception
raised from the try-with-resource block.

LT It is not mandatory for a try-with-resource block to have a catch or finally block unlike the
previous version of JDK. They are optional in Java 7 with a try-with-resource block.

7.2.6 Multi catch

Java 7 introduced the multi catch statement to catch multiple exception types using a single
catch block. Example 7.3 showed the older ways of catching multiple exceptions using separate
catch blocks. Assuming that Exceptionil, Exception2, and Exception3 are belonging to different
hierarchies and may be thrown from try block, they can be handled in a single catch block
using the newer syntax for catching multiple exceptions as follows:

try

{
// statements

}

catch (Exceptionl | Exception2 | Exception3 e)

{

// statements

}

Exception, Assertions, and Logging 213

So you might get the feeling that the catch block in Example 7.3 can be rearticulated as:

catch (ArithmeticException | Exception e)

{
// statements

¥

But the problem with the catch block above is that both ArithmeticException and Exception
belong to the same hierarchy. (Actually every exception has branched out of Exception.) If the
catch block is rearticulated as shown below, it compiles because now both exceptions belong
to different inheritance hierarchy.

catch (ArithmeticException | NullPointerException | NumberFormatException e)

{
// Statements

}

The benefit of using multi catch is that it results in more efficient byte code as you have just
one catch block (instead of more as in the above case). Moreover same treatment can be applied
to exceptions of different hierarchies. A way of applying different treatment while using multi
catch syntax is by using instanceof operator as shown below. instanceof operator checks
whether an instance is of a particular class and return true or false.

catch(ArithmeticException | ArrayIndexOutOfBoundsException | NumberFormatException e)

{
if(e instanceof ArithmeticException)
System.out.println("Arithmetic Exception Handled: " +e);
else if(e instanceof NumberFormatException)
System.out.println("Exception Handled: " +e);
else
System.out.println(e);
}

m In case the multi catch syntax is used, the parameter e is implicitly final.

7.2.7 Improved Exception Handling in Java 7

Prior to Java 7, a method can specify only those exceptions in the throws clause that have been
specified in the catch clause while re-throwing exceptions from within catch block. But Java 7
onwards the throws can specify more refined exceptions to be rethrown. Suppose there are two
user defined exceptions Exceptionl and Exception2 which can be rethrown from within the
catch block of a method. Prior to Java 7 only the exceptions specified in the catch block can be
mentioned as argument to the throws keyword. Let us take an example to show this.

S JEVAIEIN Re-throwing an Exception

class Exceptionl extends Exception { }
class Exception2 extends Exception { }
class DemoException{
L1 void throwException(int a, int b) throws Exception {

try {

214 Programming in Java

L2

L3
L4
LS

if (a<b)
throw new Exceptionl();
else
throw new Exception2();
} catch (Exception e) {

throw e;
}
}
public static void main(String args[]) throws Exception
! new DemoException().throwException(4,0);
}
}

The above method throwException could throw either Exception1 (L2) or Exception2 (L3)
based on the value of a or b. Prior to Java 7, it was not possible to specify these exception
types in the throws clause of the throwException method declaration (L1). The exception e is
re-thrown from the catch block (L5) and as e is of type Exception so only Exception can be
specified in the throws clause of method declaration on L1.

Java 7 onwards you can specify Exceptionl and Exception2 in the throws clause of the
throwException method declaration. The compiler deduces that the exceptions thrown by throw
e (L5) must have come from the try block, and the exceptions thrown by the try block can
be Exceptionl or Exception2. Although e is defined of type Exception (L4), the compiler can
determine that e would be an instance of either Exceptionl or Exception2. Let us rephrase the
method in the program.

S A EVAT () Re-throwing an Exception

L1

L2

L3
L4
LS

class DemoException{
void throwException(int a, int b) throws Exceptionl, Exception2 {
try {
if (a<b)
throw new Exceptionl();
else
throw new Exception2();
} catch (Exception e) {
throw e;
}
}
public static void main(String args[]) throws Exceptionl,Exception2
{
new DemoException().throwException(4,0);
}
}

In other words, Java 7 onwards you can rethrow (L5) an exception that is a supertype (in our
case it is Exception) of any of the types declared in the throws (i.e., Exceptionl and Exception2).

7.3 USER-DEFINED EXCEPTION

Exception, Assertions, and Logging 215

Java provides you with the opportunity to create your own exceptions, i.e., user-defined
exceptions. The mandatory requirement is that the class should be a subclass of the Exception
class. We will create a sample exception and use it in a different class and throw this particular

exception on some particular condition.

S JENAN User-defined Exception

L1 class ExcepDemo extends Exception
{
L2 ExcepDemo(String msg)
{
L3 super(msg);
}
L4 public String toString()
{
L5 return "Exception in thread \"main\" ExcepDemo Exception:" +getMessage();
}
}
L6 class TestException
{
L7 static void testException() throws ExcepDemo
{
L8 throw new ExcepDemo("Testing User Defined Exception");
}
L9 public static void main(String args[])
{
L10 try
{
L1 testException();
}
L12 catch(ExcepDemo e)
{
L13 System.out.println(e);
}
3
Output

C:\javabook\programs\chap 7>java TestException
Exception in thread "main" ExcepDemo Exception: Testing User Defined Exception

Explanation

L1 To create your own exception, your class has
to extend the Exception class as shown.

L2 Constructor for the exception subclass has been
defined accepting a String argument.

L3 The String argument is passed to the
superclass constructor using super. This argument
can be retrieved using a method of the superclass,
i.e., getMessage().

L4 toString method has been overridden. This is
automatically called when you print the object of the
exception subclass.

L5 String is being returned concatenated with the
output of the getMessage() function. It returns the
string passed to the constructor of the superclass.

216 Programming in Java

The user-defined class is ready and now we need a
sample class to test it, so we created the TestExcep-
tion class.

L6 TestException class defined.

L7 static method declaring that it can throw
ExcepDemo exception.

L8 Exception thrown using the keyword throw.

L11 testException() method called.

L12 catch corresponding to try (L10).

L13 Prints the exception. toString() is called
automatically, which returns the string Exceptionin-
thread "main" ExcepDemoException: concatenated
with the argument passed in the constructor of the
ExcepDemo class in L8 (see output). This String is

L9

main method declaration.
L10 try block defined.

returned through the method getMessage(), defined
in the Throwable class.

7.4 EXCEPTION ENCAPSULATION AND ENRICHMENT

Java 1.4 introduced exception encapsulation (chaining), which is the process of wrapping a
caught exception in a different exception and throwing the wrapped exception. The Throwable
class (parent class) has added a cause parameter in its constructors for wrapped exceptions and a
getCause() method to return the wrapped exception. If you pass all your exception, your top level
method might have to deal with a lot of exceptions; and declaring or handling exceptions in all
the previous methods is a tedious task. The solution is to wrap exceptions and throw it. Wrapping
is also used to abstract the details of implementation. You might not want your working details
(including the exception that are thrown) to be known to others. Let us see how wrapping is done.

try{
throw new InstantiationException();

}
catch(InstantiationException t)
{
// wrapping InstantiationException in ExcepDemo
throw new ExcepDemo("Wrapped Instantiation Exception”,t);
}

Wrapping has some disadvantages also. It leads to long stack traces; one for each exception in
the wrapping hierarchy. Secondly, due to wrapping, it becomes difficult to figure out the problem
that led to exceptions.

The possible solution is exception enrichment. In exception enrichment, you do not wrap
exceptions but add information to the already thrown exception and rethrow it, which leads to
a single stack trace. Let us take an example to see exception enrichment.

S JENATM Exception Enrichment

+message;

L1 class ExcepDemo extends Exception{
String message;

L2 ExcepDemo(String msg){

L3 message = msg;}

L4 public String toString(){

L5 return "Exception in thread \"main\" ExcepDemo Exception:’
}

L6 public void addInformation(String msg) {

L7 message += msg;

1}

L8 class ExceptionEnrichmentDemo{

Exception, Assertions, and Logging 217

L9 static void testException() throws ExcepDemo

L10 {
try
{
L1 throw new ExcepDemo("Testing User Defined Exception");
L12 catch(ExcepDemo e)
{
L13 e.addInformation("\nexception was successfully enriched and
re-thrown from catch");
L14 throw e;
}
}
L15 public static void main(String args[]) {
L16 try
{
L17 testException();
}
L18 catch(ExcepDemo e){
L19 System.out.println(e);
}
i3
Output

C:\javabook\programs\chap 7>java ExceptionEnrichmentDemo
Exception in thread "main" ExcepDemo Exception: Testing User Defined
Exception exception was successfully enriched and re-thrown from catch

Explanation

L6 addInformation method has been added in
the user-defined exception class: ExcepDemo. This
method accepts an argument of type String, so that
additional information about the exception can be
added to the exception object.

L7 The string is concatenated to the instance
variable message.

L8 To test this, a new class has been created:
ExceptionEnrichmentDemo

L9 Method named testException has been
defined stating that it can throw ExcepDemo exception.
L11 Exception ExcepDemo is thrown.

L12 The exception thrown in L11 is caught at the
catch defined in this line.

L13 Additional information regarding the exception

is appended by calling the addInfomation() method
of the ExcepDemo object.

L14 The exception object is re-thrown. When an
exception is re-thrown from the catch block, then
the control passes directly to the caller’s catch (if
any). In our case, it is present on L18.

L18 It shows the catch in the main method. This
catch is responsible for handling.

(a) Exceptions occurring in its own try (L16).

(b) Exceptions occurring in the methods that are
called from the try block (L16) corresponding to
this catch.

(c) Exceptions re-thrown from the catch of the
other method that are called from your try (L14).
L19 The exception object is printed.

7.5 ASSERTIONS

Assertions were added in Java 1.4 to create reliable programs that are correct and robust.
Assertions are boolean expressions that are used to test/validate the code. They are basically used
during testing and development phases. Assertions are used by the programmers to be doubly

218 Programming in Java

sure about a particular condition, which they feel to be true. Conditions such as a number is
positive or negative, array/reference is null or not can be checked by asserting them. Assertions
in Java are declared with the help of assert keyword as shown below:

assert expressionil; // assert x > 0;
or

assert expressionl: expression2 // assert x < 0:" Value Ok ";

where expressioni is the condition to be evaluated. In case, the condition is evaluated as false,
an AssertionError is thrown. expression2 is a string which is passed to the constructor of the
AssertionError object.

Assertions have to be enabled explicitly; they are disabled by default. Using the -ea and -da
options of Java, we can enable or disable assertions (see output).

-ea enable assertions
-da disable assertions

S EN IR Assertion

L1 class AssertDemo {
L2 static void check(int i)
{
L3 assert 1> 0: "Value must be positive";
L4 System.out.println("value fine "+i);
}
L5 public static void main(String args[])
{
L6 check(Integer.parseInt(args[0]));
1}
Output
Wheni=1
C:\javabook\programs\chap 7>java -ea AssertDemo 1
value fine 1
When i =-1

C:\javabook\programs\chap 7>java -ea AssertDemo -1

Exception in thread "main" java.lang.AssertionError: Value must be positive
at AssertDemo.check(AssertDemo.java:4)

at AssertDemo.main(AssertDemo.java:9)

Without Enabling Assertions

C:\javabook\programs\chap 7>java AssertDemo -1

value

fine -1

Explanation

L2 The static method has been declared with an Valuemustbepositive is passed to the constructor
integer argument. of the AssertionError object (see output). This
L3 assert keyword is used to check if the value has been handled in the same way exceptions were
of i is greater than O or not. If the value of i is less handled (refer Example 7.1).

than 0, an AssertionError is thrown and the string L4 Prints valuefine followed by the value of i.

L6 The method check

Exception, Assertions, and Logging 219

is called. The first As you can see in the output, if assertions are not

command-line argument is converted to int using enabled, problems can arise. We never expected —1
the Integer.parseInt() function and passed to the to be a fine value in our program but in the (without

check method.

enabling assertion) output, you can see it for yourself.

7.6 LOGGING

The logging feature was added in the java.util.logging package of Java 1.4 for debugging
purpose. Logs are basically used to report messages regarding the functioning of the application
to the programmer. These logs are supposed to be saved and reviewed later by the programmer.
Logs are created with the help of a Logger class in the util.logging package. These messages
are passed to handler objects which pass these messages to console, log files, etc. Loggings have
nine levels in Java (illustrated in Table 7.2) to indicate the severity of logged messages. These
levels are final and static fields of Level class (util.logging package).

Table 7.2 Logging Levels

Level Description

SEVERE Indicates severe problem, requiring attention (highest)

WARNING Indicates potential problem

INFO Informational messages; written on the console

CONFIG Message regarding configuration information

FINE Less detailed messages

FINER More detailed messages

FINEST Least of all three: FINE, FINER, FINEST. Used for most detailed output (lowest)
OFF Turns off logging

ALL Logs all messages

By default, the level is set to INFO. All messages above and including level INFO are sent to
the console. You can set and get these levels using the methods of the Logger class. In addition
to setting the level for the Logger, one has to set the level for the handler also.

public void setLevel(Level 1)
public Level getlLevel()

The Logger class provides methods similar to the names of the levels for logging messages.
All these methods take a String argument as shown:

public
public
public
public
public
public
public

void
void
void
void
void
void
void

severe(String msg) —
warning(String msg) —
config(String msg) —
info(String msg) —
finest(String msg) —
finer(String msg) —
fine(String msg) —

for logging messages of SEVERE level.
for logging messages of WARNING level.
for logging messages of CONFIG level.
for logging messages of INFO level.

for logging messages of FINEST level.
for logging messages of finer level.

for logging messages of finer level.

220 Programming in Java

In addition to these, it also provides a method that sets the level as well as prints the message

on the console.

public void log(Level 1,String msg)

Let us take an example to better understand the concept behind logging.

Sl JENA&PAN Logging

L1 import java.util.logging.*;
L2 class LoggingDemo {

L3 static Logger 1 = Logger.getLogger ("LoggingDemo");
L4 void demo() {
L5 1l.log(Level.SEVERE, "Shows Severe level of the Logger ");
}
L6 public static void main(String[] args)
{
L7 LoggingDemo d = new LoggingDemo();
L8 d.demo();
i3

Output

C:\javabook\programs\chap 7>java LoggingDemo

22 Feb, 2009 11:18:49 AM LoggingDemo demo
SEVERE: Shows Severe level of the Logger

Explanation

L1 Package java.util.logging has been im-
ported, as the class Logger 1is a part of this package.
L3 Normally, we use one Logger per class. That is the
reason why we have created the Logger object as static.
L4 The method demo() has been declared.

LS The log method of the Logger object has been
called to log the message to the console. The first

argument sets the level of the logger and the second
argument is a String message that is the output on the
console. The details of the output are shown below:
L7 An object of the class LoggingDemo has been
declared.

L8 The method demo has been called using the
LoggingDemo object.

Output Details

22 Feb, 2009 11:18:49AM LoggingDemo demo

Date Time of execution ClassName methodName where error occurred
SEVERE: Shows Severe level of the Logger

Level Message passed to constructor of Assertion Error

This chapter focused on how to handle unusual
conditions/situations in Java. Exception handling is the
key. Two types of exceptions have been defined: checked
and unchecked. All exceptions, whether checked or
unchecked, inherit from the parent class Throwable.
There are five keywords in exception handling, namely
try, catch, throw, throws, and finally.

SUMMARY

Apart from using the predefined exception, you can
code your own exceptions according to your own
requirements. Exception chaining (introduced in JDK
1.4) wraps a particular exception into another.

Assertions (introduced in JDK 1.4) are helpful in
assuring the programmer about a particular condition
using the assert keyword. They help in increasing the

reliability of a Java program. Logging features (part of
java.util.logging package introduced in JDK 1.4)
help the user to debug his program.

Objective Questions

1. What are the two types of exceptions available
in Java?
(a) Checked and compiled
(b) Unchecked and compiled
(c) Checked and unchecked
(d) Compiled and non-compiled

2. The parent class of all the exceptions in Java is
(a) Throwable (b) Throw
(c) Exception (d) Throws

3. What is the result of attempting to compile and
execute the program?

class Demo
{
void show() throws ClassNotFound
Exception{}
}
class Demo2 extends Demo {
void show() throws IllegalAccess

Exception,

ClassNotFoundException, Arithmetic

Exception

{

System.out.println("In Demol
Show");

b
public static void main(String ar[]) {
try{

Demo2 d = new Demo2();

d.show();

}
catch(Exception e){}

T

(a) Does not compile
(b) Compiles successfully
(c) Compiles successfully and prints “In Demo1
show”
(d) Complies but does not execute
4. If the assert statement returns false, what is
thrown?

Exception, Assertions, and Logging 221

Java 7 introduced the automatic resource management
with the help of a new try block, i.e.,try-with-
resource block. This chapter also highlights the new
syntax for compressing multiple catch blocks usedin Java 7.

EXERCISES

(a) Exception (b) Assert
(c) Assertion (d) Assertion Error

5. What is the result of attempting to compile and

6.

execute the program?

class Demo

{
void show() throws ArithmeticEx
ception{}

}

class Demol extends Demo {
void show()

{ System.out.println("In Demol
Show");
}
public static void main(String ar[])
{ Demol d = new Demol();
d.show();
}

}

(a) Does not compile

(b) Compiles successfully

(c) Executes successfully and prints “In Demo1
show”

(d) Complies but does not execute

What is the result of attempting to compile and
execute the program?

class Test
{

static void test() throws Runtime-
Exception

{

throw new ArithmeticException();

}
public static void main(String args[])
{

try{
test();

222 Programming in Java

}

catch(RuntimeException re)

{

System.out.println("Exception
Handled");
}
T}

(a) Checked exception is generated

(b) Does not compile

(c) Prints “Exception Handled”, as RuntimeEx-
ception is superclass of the ArithmeticEx-
ception class

(d) Class compiles but nothing is printed on the
console

The two subclasses of Throwable are

(a) Error and AssertionError

(b) Error and Exception

(c) Checked and Unchecked Exception

(d) Error and RuntimeException

Messages above what level will only be logged
to the console by default?

(a) INFO (b) SEVERE

(c) WARNING (d) FINE

What is the purpose of creating a Logger object
as static?

(a) Applies to all objects of the class

Review Questions

1.

What are exceptions? How are they handled in
Java?

2. Explain logging in Java with all its levels.

3. Explain exception changing and environment.

Write a program in support of your answer.

What is the difference between checked and
unchecked exception?

Programming Exercises

1.

Create a user-defined exception named Check-
Argument to check the number of arguments
passed through command line. If the number of
arguments is less than five, throw the CheckAr-

10.

(b) Each for individual objects of the class
(c) Applies only to static objects
(d) Applies only to non-static objects

What is the result of attempting to compile and
execute the program?

class Demo

{
void show(){}

}

class Demo2 extends Demo {
void show() throws IllegalAccess
Exception, ArithmeticException

{
System.out.println("In Demol
Show");
}
public static void main(String ar[]) {
try{
Demo2 d = new Demo2();
d.show();
}
catch(Exception e){}
Y}
(a) Compiles successfully but throws Runtime
Exception

(b) Compiles and prints nothing
(c) Compiles and prints In Demo1 Show
(d) Does not compile

Explain the need for automatic resource
management.

What is a try-with-resources block and how
is it used?

Explain the Java 7 enhancement regarding
multiple catch clauses.

Explain in detail the Java 7 enhancements
regarding re-throwing an exception.

gumentexception, else print the addition of all
the five numbers.

Consider a Student examination database
system that prints the marksheet of students.
Input the following from the command line:

(a) Students’ name
(b) Marks in six subjects

These marks should be between 0 and 50. If
the marks are not in the specified range, raise
a RangeException, else find the total marks and
print the percentage of the students.

Answers to Objective Questions

1

3.

4

8.
g¥

10

. (c) 2. (a)
IllegalAccessException
. (d) 5. (c)

(@)

3.

6. (c)

Exception, Assertions, and Logging 223

Use Assertions in the above program to ensure
that the total marks of a student will always be
greater than or equal to 0.

. Use Logging in Question 2 to log the print status

of the students’ marksheet along with the name,
total marks, and percentage. Keep the log level
at INFO.

(a), does not compile, as the parent class show method does not throw the checked exception

7. (b)

(a), as only one Logger is required for a class, so making it static applies to all the objects of the class

. (d), as the parent class show method does not throw the checked exception IllegalAccessException

Copyrighted Materials)

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

Multithreading in
Java

A person who learns to juggle six balls will be more skilled than the person who never
tries to juggle more than three. Marilyn vos Savant

After reading this chapter, the readers will be able to

¢ know what are threads and how they can be implemented in Java
understand how multiple threads can be created within a Java program
understand different states of a thread in Java
appreciate the Thread class of java.lang package
understand how runnable interface is helpful in creating threads

* 6 o o

8.1 INTRODUCTION

Until now, whatever programs we have discussed were sequential ones, i.e., each of them has a
beginning, an execution sequence, and an end. While the program is being executed, at any point
of time, there is a single line of execution. One thing that you must note that a thread in itself is
not a program, as it cannot run on its own. However, it can be embedded with any other program.

m Athread is a single sequential flow of control within a program.

The concept of single thread is quite simple to understand. Things become somewhat complex
when there are multiple threads running simultaneously, each performing different tasks, within a
single program. This can be enabled by multithreading, where you can write programs containing
multiple paths of execution, running concurrently, within a single program. In other words, we
can say that a single program having multiple threads, executing concurrently, can be termed as
multithreaded program.

Letus go to the basics of multithreading, which is actually a form of multitasking. Multitasking
can either be process-based or thread-based. If we assume programs as processes, then process-
based multitasking is nothing but execution of more than one program concurrently. On the
other hand, thread-based multitasking is executing a program having more than one thread,
performing different tasks simultaneously. Processes are heavyweight tasks, while threads are
lightweight tasks. In process-based multitasking, different processes are different programs, thus
they share different address spaces. The context switching of CPU from one process to another

Multithreading in Java 225

requires more overhead as different address spaces are involved in the same. On the contrary,
in thread-based multitasking, different threads are part of the same program, thus they share the
same address space and context switching of CPU occurs within the program, i.e., within the
same address space. Obviously, this will require less overhead.

The objective of all forms of multitasking including multithreading is to utilize the idle time
of the CPU. Ideally a CPU should always be processing something. The idle time of CPU can
be minimized using multitasking.

Have you ever paid attention to one thing? When you prepare a document using a word
processor program, the spelling can also be checked simultaneously. This is one such example
of thread-based multitasking. While you type in the document, the CPU sits idle and waits for
you to enter characters but because of thread-based multitasking, the word processor minimizes
the CPU idle time somewhat by simultaneously involving the CPU in checking the spelling of
the text. From now onwards, we will call thread-based multitasking as multithreading.

m Multithreading enables programs to have more than one execution paths (separate) which
execute concurrently. Each such path of execution is a thread. Through multithreading,
efficient utilization of system resources can be achieved, such as maximum utilization of CPU
cycles and minimizing idle time of CPU.

8.2 MULTITHREADING IN JAVA

Every program that we have been writing has at least one thread, i.e., the main thread. Whenever
a program starts executing, the JVM is responsible for creating the main thread and calling
the main() method, from within that thread. Alongside, many other invisible daemon threads
responsible for supporting other activities of Java runtime such as finalization and garbage
collection are also created.

Threads are executed by the processor according to the scheduling done by the Java Runtime
System by assigning priority to every thread. It simply means, threads having higher priority
are given preference for getting executed over the threads having lower priority.

When a Java program is executed, the JVM creates at least a single non-daemon thread (which
calls the main() method of the corresponding class). A thread can either die naturally or be forced
to die. The execution of the thread will go on until one of the following conditions occur:

o Athread dies naturally when it exits the run() method normally. The normal exit from
run() means, the instructions of the run() has been processed completely.

o A thread can always be killed or interrupted by calling interrupt() method.

8.3 java.lang.THREAD

Creation of threads in Java is not as complex as the concept itself. There is a class named as
Thread class, which belongs to the java.lang package, declared as,

public class Thread extends Object implements Runnable

This class encapsulates any thread of execution. Threads are created as the instance of this class,
which contains run() methods in it. In fact the functionality of the thread can only be achieved

by overriding this run() method. A typical run() would have the following structure:

226 Programming in Java

public void run()

Table 8.1

Methods of thread Class

Methods

Description

static Thread currentThread()
static intactiveCount()

long getID()

final String getName()

final void join()

void join (long m)
void join (long m, int n)

void run()

final void setDaemon(boolean how)
boolean isInterrupted()

final boolean isDaemon()

final boolean isAlive()

void interrupt()

static boolean holdsLock(Object anyObj)

Thread.State getState()

final int getPriority()

static boolean interrupted()

final void setName(String thrdName)
final void setPriority(int newPriority)
static void sleep(long milliseconds)
void start()

void destroy()

static int enumerate (Thread[] thrdArray)

static void yield()

Returns a reference to the currently executing thread.
Returns the current number of active threads.

Returns the identification of thread.

Returns the thread’s name.

Waits for a thread to terminate.

Waits at the most for ‘m’ milliseconds for the thread to die.

Waits at the most for ‘m’ milliseconds and ‘n’ nanoseconds
for the thread to die.

Entry point for the thread.
If how is true, the invoking thread is set to daemon status.

Returns true if the thread on which it is called has been
interrupted.

Returns true if the invoking thread is a daemon thread.

Returns boolean value stating whether a thread is still
running.

Interrupts a thread.

Returns true if the invoking thread holds the lock on
any0bj.

Returns the current state of the thread.

Returns the priority of the thread.

Returns true if the invoking thread has been interrupted.
Sets a thread’s name to thrdName.

Sets a thread’s priority to newPriority.

Suspends a thread for a specified period of milliseconds.
Starts a thread by calling its run() method.

Destroys the thread, without any clean up.

Copies into the specified array, every active thread of
thread’s group and sub group.

Cause the current executing thread to pause and allow the
other threads to execute.

Multithreading in Java 227

This method is automatically invoked when a thread object is created and initiated using the
start() method. Some of the methods belonging to the Thread class, which help in manipulating
thread instances, are shown in Table 8.1.

Apart from these, some constructors are also defined in the Thread class. These constructors
can be classified in two different categories. We will discuss one category here and the other in
the next section when we will discuss about Runnable interface. The constructors responsible
for creating threads are

1. Thread()

2. Thread(String threadName)

3. Thread(ThreadGroup threadGroup, String threadName)
In the first constructor, you can see that there are no arguments, which simply means it uses the
default name and the thread group. In the second constructor, the name of the constructor can
be specified as string. While in the third, you can specify the thread group and thread name.

8.4 MAIN THREAD

Evenifa thread is not created by a programmer, every Java program has a thread, the main thread.
When a normal Java program starts executing, the JVM creates the main thread and calls the
program’s main()method from within that thread. Apart from this, the JVM also creates some
invisible threads, which are important for its housekeeping tasks such as, threads taking care of
garbage collection and threads responsible for object finalization. The main thread spawns the
other threads. These spawned threads are called child threads. This main thread is always the last
to finish executing because it is responsible for releasing the resources used during the program
execution, such as network connections.

As a programmer, you can always take control of the main (or any other) thread. For this,
a static method, currentThread(), is used to return a reference to the current thread. The main
thread can be controlled by this reference only.

Now let us put these into practicality by creating a reference to the main thread. We could also
change the name of the main thread from main to any new name. The following piece of code
serves the purpose for you.

Sl JER NN Renaming a Thread

L1
L2
L3
L4
LS
L6
L7

Output

class MainThreadDemo {
public static void main (String args[]) {
Thread threadObj = Thread.currentThread();
System.out.println("Current thread: " +threadObj);
threadObj.setName("New Thread");
System.out.println("Renamed Thread: " +threadObj);

Y3

Current thread: Thread[main, 5, main]
Renamed Thread: Thread[New Thread, 5, main]

228 Programming in Java

Explanation

L1 Class MainThreadDemo declared.

L2 main method declared.

L3 Areference to the current Thread is returned and
is stored in the threadobj. Here the current thread is
the main thread itself. The reference is declared by
specifying the name of the class, i.e., Thread class
in this case followed by the name for the reference,
which is done as in the following line of code:

Thread threadObj

We acquire a reference to the main thread by calling
the static method currentThread() of the Thread
class using the following method call:

Thread.currentThread()

The reference to the current thread object (i.e., main)
is returned by the currentThread()method and
stored in the reference previously declared.

L4 The thread object (i.e., main) is passed to the
println method. The toString() method of the
Thread class is called by default, which displays the
first line of the output.

L5 The setName() method of Thread class is used
to change the name of the Thread. This example uses
the setName() method to change the main thread’s
name from main to New Thread.

If we see the output now, the information within the square brackets is the signature of the
thread. The first element in the bracket is the name of the thread. The second element signifies
the thread priority (explained later in the Chapter under the topic thread priority). The range for
setting the priority can be between 1 and 10; 1 for lowest priority 10 for highest priority and 5
for normal priority. The last element in the bracket is the group name for threads to which the
thread belongs. The state of collection of threads can be controlled by a data structure, known
as thread group. The thread group is automatically handled by the Java runtime system.

8.5 CREATION OF NEW THREADS

Once we have mentioned some of the methods and constructors of the Thread class, we can
concentrate on different ways to create a new thread:

e By inheriting the Thread class

e By implementing the Runnable interface

8.5.1 By Inheriting the Thread Class

Threads can be created by inheriting the java.lang. Thread class. All the thread methods belonging
to the Thread class can be used in the program because of the extension (inheritance).
Steps to be followed for thread creation:

e Declare your own class as extending the Thread class.

e Override the run() method, which constitutes the body of the thread.

e Create the thread object and use the start() method to initiate the thread execution.
Let us elaborate these steps in detail.

Declaring a Class Any new class can be declared to extend the Thread class, thus inheriting all
the functionalities of the Thread class.

Multithreading in Java 229

classNewThread extends Thread

Here, we have a new type of thread, named as ‘NewThread’.

Overriding the run() Method The run() method has to be overridden by writing codes
required for the thread. The thread behaves as per this code segment. A typical run() method
would look like

public void run()

Starting New Thread The third part talks about the start() method, which is required to create
and initiate an instance of our Thread class. The following piece of code is responsible for the same:

newThread threadl = new newThread();
threadl.start();

The first line creates an instance of the class NewThread, where the object is just created. The
thread is in newborn state. Second line, which calls the start() method, moves the thread to
runnable state, where the Java Runtime will schedule the thread to run by invoking the run()
method. Now the thread is said to be in running state.

S ARV Creating a Thread Using the Thread Class

L1
L2
L3
L4
L5
L6
L7
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L18

class ThreadOne extends Thread {

public void run(){

try {
for(int i = 1; i<= 5; i++) {
System.out.println("\tFrom child thread 1 : i =" +i);
Thread.sleep(600);

}

} catch(InterruptedException e){

System.out.println("child threadl interrupted");

}

System.out.println("Exit from child thread 1");

}

}

class ThreadTwo extends Thread{
public void run(){
try {
for(int j = 1; j <= 5; j++){
System.out.println("\t From child thread 2 : j =" +j);

230 Programming in Java

L19 Thread.sleep(400);

L20 }

L21 } catch(InterruptedException e){

L22 System.out.println("child thread 2 interrupted");
L23 }

L24 System.out.println("Exit from child thread 2");
L25 }

L26 }

L27 class ThreadThree extends Thread {

L27 public void run(){

L28 try {

L29 for(int k = 1; k <= 5; k++) {

L30 System.out.println("\tFrom child thread 3 : k =" +k);
L31 Thread.sleep(800);

L32 }

L33 } catch(InterruptedException e){

L34 System.out.println("child thread 3 interrupted");

L35 }

L36 System.out.println("Exit from child thread 3");
L37 }

L38 }

L39 class ThreadDemo {

L40 public static void main(String arg[]) {

L41 ThreadOne a = new ThreadOne();

L42 a.start();

L43 ThreadTwo b = new ThreadTwo();

L44 b.start();

L45 ThreadThree ¢ = new ThreadThree();

L46 c.start();

L47 try {

L48 for(int m=1; m<=5; m++){

L49 System.out.println("\t From Main Thread : m =" +m);
L50 Thread.sleep(1200);

L51 }

L52 } catch (InterruptedException e) {
L53 System.out.println("Main interrupted");}
L54 System.out.println("Exit form main thread");

L55 }
L56 }
Output

From child thread 1 :i =1

From Main Thread : m =1

From child thread 2 : j =1
From child thread 3 : k =1
From child thread 2 : j =2
From child thread 1 :i =2
From child thread 3 : k =2
From child thread 2 : j =3
From Main Thread : m =2

From child thread 1 :i =3

From child thread 2 : j =4
From child thread 3 : k =3
From child thread 2 : j =5
From child thread 1 :i =4

Exit from child thread 2
From Main Thread : m =3
From child thread 1 :i =5

From child thread 3 : k =4
Exit from child thread 1
From child thread 3 : k =5

From Main Thread : m =4
Exit from child thread 3

From Main Thread : m =5
Exit from main thread

Multithreading in Java 231

Explanation

L1 Class Threadone extends the Thread class,
thus inheriting all the functions and members of the
Thread class.

L2-7 run() method, returning void is overridden.
The for loop incrementing the counter variable, i,
is looped 5 times (L3). Each value of i is displayed
on the screen (L4) and before moving to the next
value of i, the thread sleeps for 0.6 seconds (L6).
Thread.sleep() method throws an exception,
InterruptedException, so it should be within a
try..catch block.

L14 Just like the class ThreadOne, a new class
ThreadTwo, extending the Thread class is declared.
L15-20 run() method responsible for providing
the functionality of the thread of this class is
overridden. The code of this method is similar to that
of the run(), explained in the previous paragraph.
L27 Third class, ThreadThree, extending the
Thread class is declared.

L28-36 run() method for the third class’ thread
is implemented, similar to the previously explained
run() methods.

L39 Class ThreadDemo encapsulating the main()
method is declared. This class, which acts as the
main thread, is responsible for spawning the other
three child threads.

L40 main() method declared.

L41 Reference for Threadone class is created and
stored in a.

L42 The start() method is invoked on the thread
object a. This method puts the thread in a ready-to
execute state. As soon as the CPU is allocated to the
thread by the thread scheduler, the run() method
for the thread is called automatically. As you can see
in the example also, the run()method is not called
explicitly.

L43-46 Just like creating the object for Threadone,
we create the reference objects for ThreadTwo
and ThreadThree and store them in b and c,
respectively. L44 is responsible for starting the
second thread pertaining to ThreadTwo class and L46
is responsible for starting the third thread pertaining
to ThreadThree class, thus resulting in invocation of
the corresponding run() methods.

L47-55 Certain functionalities, similar to the
functionalities of the above child threads, are
provided inside the main thread also. It has been made
to sleep for 1.2 seconds (L50), which has been kept
more than the three child threads, so that the main
thread completes its execution at last, otherwise there
is always a possibility for the system to get hung.

8.5.2 Implementing the Runnable Interface

We have already mentioned that there can be two ways for implementing threads. First method
has already been discussed in the previous section. Now let us talk about the second way, i.e.,

232 Programming in Java

by implementing the Runnable interface. Before taking on the second method of implementing
Runnable interface, we must know the ins and outs of this interface. It is actually implemented
by class Thread in the package java.lang. This interface is declared public as,

public interface Runnable

The interface needs to be implemented by any class whose instance is to be executed by a thread.
The implementing class must also override a method named as run(), defined as the only method
in the Runnable interface as,

public void run()

The object’s run() method is called automatically whenever the thread is scheduled for
execution by the thread scheduler. The functionality of the thread depends on the code written
within this run() method. One thing worth noting is that other methods can be called from within
run(). Not only this, use of other classes and declaration of variables, just like the main thread,
are also possible inside run(). The thread will stop as soon as the run() exits.

The question that arises here is, when and how shall we resort to the second method? The
approach to be undertaken is dependent on the requirement of the class. If the class requires
inheriting any other class, then obviously the Thread class cannot be inherited, as multiple
inheritance is not allowed in Java. So the obvious solution in this case is to use the interface,
i.e., Runnable. [Remember: any numbers of interfaces can be inherited by a class.]

Some other constructors belonging to the Thread class are worth mentioning here, as these
can be used while creating thread using Runnable interface.

e Thread(Runnable threadObj)

e Thread(Runnable threadObj, String threadName)

e Thread(ThreadGroup threadGroup, Runnable threadObj)

e Thread(ThreadGroup threadGroup, Runnable threadObj, String threadName)

The above threadobj is a reference to an instance of a class that implements the Runnable
interface and overrides the run() method. This defines where the execution will begin. As
mentioned earlier, the object’s run() method’s code is responsible for giving the functionality
to the new thread. threadName is the name of the thread. In case no name is passed externally to
the constructors, the JVM is automatically going to name it. The third argument, threadGroup
is the group name to which the thread belongs. If no thread group is externally specified, the
group is determined by the security managing component or the group is set to the same group,
which the invoking thread is a part of.

Once a class that implements the Runnable interface is created, an object of the Thread class
must be instantiated from within that class. In Example 8.3, we are going to use the second
constructor described in the previous paragraph, i.e.,

Thread (Runnable threadObj, String threadName)

Even if a thread is created, it will not start executing unless the start() method of the Thread
class is called.

Multithreading i