
SAURABH CHOUDHARY

Programming in
Java

Second Edition

SACHIN MALHOTRA

1

 Associate Professor
IMS, Ghaziabad

Formerly, Head
IT Department

IMS, Ghaziabad

www.ebook3000.com

http://www.ebook3000.org

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2010, 2014

The moral rights of the author/s have been asserted.

First Edition published in 2010
Second Edition published in 2014

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-809485-2
ISBN-10: 0-19-809485-X

Typeset in Times New Roman
by Sukuvisa Enterprises

Printed in India by Yash Printographics, Noida 201301

www.ebook3000.com

http://www.ebook3000.org

Dedicated
to

Our Parents

www.ebook3000.com

http://www.ebook3000.org

Sachin Malhotra is currently Associate Professor in the IT department of IMS Ghaziabad. He has more
than a decade long experience in mentoring students on developing Java applications as well as training
practising professionals in the fi eld of Java. He has also designed and conducted various corporate
trainings in Java and networking.
Saurabh Choudhary is currently a practising IT consultant and corporate trainer. He has more than 12
years of experience in industry, academia, and consultancy. He has worked on positions of eminence
at IMS Ghaziabad as Head of IT department and Dean Academics (University Campus). His areas of
expertise include Java, Database Management System, and Information Systems.

Testimonials
From pervasive computing to communications industry, medical science to aeros pace, Java is
gaining a foothold in every domain. Programming in Java has been written to arouse the interest
even in a novice computer programmer to an expert, craving to sharpen his programming skills.

Pankaj Verma | Senior Software Engineer | OSI Inc.
It is defi nitely the best textbook on Java that I have run into. I highly recommend it.

Sachin Dhama | Team Lead | Accenture
Java is a very powerful language for developing enterprise applications. I am hopeful that this
book will provide a basic building platform for Java programmers to enhance their knowledge.

Awadhesh Kumar Katiyar | Technical Lead | HCL Technologies Ltd.
Java enables users to develop applications on the Internet for servers, desktops computers, and small
handheld devices. The future of computing is being infl uenced by the Internet, and Java promises to
play a big part in it. This book is perfect for those who are seeking a clear understanding of Java. It
should allow the readers to create codes that are a lot clearer and are far more effective than before.

Saurabh Moondhra | Sr. Technical Consultant | SGT Inc
This is the most interesting Java programming book for beginners; at the same time, it is equally
good for intermediate readers as well. This should be your fi rst Java book if you are learning
from scratch.

Pankaj Jain | Senior Manager | Bank of America
When you go through this book, you will gain confi dence after completing each chapter. The
authors have written it in such a simple way covering each and every aspect of Java that anyone
can learn how to develop effective codes.

Rajeev Varshney | Lead Consultant | HCL NZ Ltd.

About the Authors

www.ebook3000.com

http://www.ebook3000.org

Java was primarily designed as a platform-independent language for usage in small consumer
electronic devices. It was derived from C++ but with a lot of difference. Java’s platform
independence originally addressed the problem that applications for embedded devices must
run on a wide variety of hardware. But since the Internet was emerging at the same time, Java
soon got adopted as an Internet language because of its portable nature. Major Internet browsers
such as Netscape Navigator and Microsoft Internet Explorer became Java-compatible, as it
effectively addressed the concerns for security by providing a fi rewall between web applications
and the computer. Eventually it became a standard programming language and is now being
used for creating a variety of applications including standalone applications, web applications,
enterprise-wide applications, and mobile games.
 It can therefore be inferred that since its inception, Java has emerged as the most important
programming language. As the domain of Java is quite vast and a bit more complex than other
programming languages such as C, C++, and Visual Basic, it is observed that students and novice
programmers strive hard to comprehend its core concepts. Hence, a need for a book in this area,
which is both concise and simple, is a necessity.

About the Book
The book encapsulates the concepts of the latest version of Java, i.e. Java 6, encompassing a
comprehensive coverage of curriculum and industry expectations. It is useful for the students of
undergraduate and postgraduate courses of computer science and engineering and information
technology disciplines as well as for the instructors at various levels.
 The book provides a thorough understanding of the basic concepts of object-oriented
programming principles and gradually moves on to the advanced concepts in Java. It includes
numerous examples, line-by-line description of examples, fi gures, explanation of concepts, and
key notes. Review questions and programming exercises are included as chapter-end exercises
to assess the learning outcomes. Every topic in the book is supported by examples followed
by an output and explanation. It also offers an appendix on general interview questions which
provides students an insight into the current requirements of the industry and allows them to
prepare accordingly.
 The main features of this book include the following:

  an exhaustive coverage of Java features such as operators, classes, objects, inheritance,
packages, and exception handling

  comprehensive discussion on the latest features of Java such as enumerations, generics,
logging API, console class, StringBuilder class, NetworkInterface class, and assertions

  latest features combined with core concepts such as multithreading, applets, AWT, and
swings

  an introduction to the advanced concepts in Java such as servlets, RMI, and JDBC

Preface to the First Edition

www.ebook3000.com

http://www.ebook3000.org

Appendix A: Lab Manual—Java Lab Exercises XIPreface to the First Edition xi

ACKNOWLEDGEMENTS

Several people have been instrumental throughout this tiring yet wonderful journey. First of all,
we would like to express our sincere gratitude to our families without whose support, patience,
and cooperation, this would not have been possible and we would not have been what we are
today. We are very thankful to Dr R. K. Bharadwaj, Head of our institution, for his inspirational
thoughts which inculcated urgency for writing this book. We are also thankful to our colleagues
for their endless support and suggestions during the entire process of writing this book.

Sachin Malhotra
Saurabh Choudhary

www.ebook3000.com

http://www.ebook3000.org

Java is an easy-to-learn, versatile, robust, portable, and secure language with rich user interfaces.
It has set up new benchmarks in the software development world ranging from desktop to web-
based enterprise applications to mobile and embedded applications. Since its inception in 1995,
it has come a long way by continuously evolving itself and in the process, changing the style of
programming the world over. Java is not only found in laptops or data centres, it is also widely
used in cell phones, SIM cards, smart cards, printers, routers and switches, set-top boxes, ATMs,
and navigation systems, to name a few. According to Oracle, a staggering 1.1 billion desktops
and 3 billion cell phones are based on Java.
 This second edition of Programming in Java confi rms to Java Standard Edition 7, the latest
release since Oracle took over Sun Microsystems. It is signifi cant in the sense that the last update
was six years back and this major release comes bundled with plenty of enhancements which were
overdue. To list a few noticeable enhancements, Java 7 includes support for strings in switch and
try-with-resources statements, improved multi-catch, binary numeric literals, numeric literals
with underscores, new APIs in NIO such as path and fi les, automatic resource management, and
much more. All the new topics are appropriately explained with suitable examples.

New to the Second Edition
This revised edition has been updated thoroughly with greater topical coverage as well as more
programming examples in every chapter, in addition to the confi rmation to Java 7. Practically
every chapter, with the exception of Chapter 11, has been revisited to refi ne the text as much as
possible. The most noticeable changes are as follows:

  New practical programming examples to show how Java is used in practice.
  Enhanced coverage of servlets and JDBC along with an introduction to JSP, Java beans,

Jar fi les and enterprise Java beans
  Enhanced coverage of swing components like JTree, JTable, layered pane, JDesktopPane,

internal frames, JColorChooser, JFileChooser, and JEditorPane
  New classes of java.nio package and project coin language enhancements
  Enhanced coverage of utility classes
  Appendix B contains more interview questions to help students prepare for their interviews.
  The second edition is supplemented with a rich online resource centre that contains chapter-

wise PPTs for teachers and additional practical programming examples for students.

Key Features
The most prominent feature of this book has been the line-by-line explanation section under
each program. They facilitate in-depth understanding of the whole program. We have retained
this feature in the second edition as it has been well appreciated by the users. Other noticeable
features include the following:

Preface to the Second Edition

www.ebook3000.com

http://www.ebook3000.org

Preface to the Second Edition vii

  A recap of object-oriented programming concepts before introducing the concepts of Java
  Plenty of user-friendly programs and key notes at appropriate places to highlight important

concepts
  A variety of end-chapter exercises that includes subjective as well as objective questions

Extended Chapter Material
The second edition includes the following changes:
 Chapter 1, Introduction to OOP: Enhanced coverage of UML and its application in pictorial
representation of OOP concepts.
 Chapter 2, Getting Started with Java: New sections about the features of Java 7 and how
to install JDK 1.7.
 Chapter 3, Java Programming Constructs: Numeric literals with underscores, binary
numeric literals, and how to use strings in switch statements.
 Chapter 4, Classes and Objects: New topics such as inner classes, variable length arguments,
arrays as return values from methods, and objects as arguments to and return type from methods.
It contains a practical problem on complex numbers to demonstrate how OOP concepts can be
put to practise.
 Chapter 5, Inheritance: New section that highlights the differences between shadowing and
overriding. At the end of the chapter, there is a practical programming example on circle and
cylinder class.
 Chapter 6, Interfaces, Packages, and Enumeration: Practical problem on banking concepts
to demonstrate the usage of packages in creating applications.
 Chapter 7, Exception, Assertions, and Logging: try-with-resources and catching multiple
exceptions features which are new enhancements of Java 7.
 Chapter 8, Multithreading in Java: Concrete practical example to show the use of threads
in applications.
 Chapter 9, Input/Output, Serialization, and Cloning: New classes included in java.nio
package and how to perform cloning of objects.
 Chapter 10, Generics, java.util and other API: Utility classes like Random class, Runtime
class, Observer and Observable and refl ection API.
 Chapter 12, Applets: how to use threads and images in applets. The practical problem at the
end of the chapter explains how to display a digital clock.
 Chapter 13, Event Handling in Java: Practical programming example that explains how to
create a cartoon on applet and performs its event handling. This is actually a series of examples
with gradual and step-by-step revision in all of them in order to enhance their functionality and
then eliminate their drawbacks.
 Chapter 14, Abstract Window Toolkit: Mini project like programming example on CityMap
Applet. The applet shows the map of a city from top angle with fi ve buttons, namely, Hospitals,
Shopping Malls, Police station, Post Offi ce, and Stadium. If a user presses the Hospital button,
all the hospitals are shown on the map with a specifi c color and likewise for Malls, Police station,
Post offi ce and Stadium.
 Chapter 15, Swing: Explanation of new classes with examples and also includes a practical
programming example to create a mini text editor.
 Chapter 16, Introduction to Advanced Java: Introductory sections on JSP, Java Beans, Jar
fi les and enterprise Java beans with lots of examples apart from enhanced coverage of servlets
and JDBC. This chapter also encompasses a login application built using servlets and database
to demonstrate how to create and use a web application.

www.ebook3000.com

http://www.ebook3000.org

viii Preface to the Second Edition

Content and Structure
This book comprises 16 chapters and two appendices. A brief outline of each chapter is as follows.
 Chapter 1 focuses on the object-oriented concepts and principles. It provides real life mapping
of concepts and principles besides depicting them pictorially. In addition to this, the chapter also
provides an introduction to Unifi ed Modeling Language (UML), which is a modeling language
to show classes, objects, and their relationship with other objects.
 Chapter 2 introduces Java and its evolution from its inception to its current state. Besides
introducing the features of Java, it also tells you about the structure of JDK (Java Development
Kit) and the enhancements made to Java in its latest versions. It describes how to install and run
the JDK that is in turn required for executing a Java program.
 Chapter 3 describes the basic programming constructs used in Java such as variables, data
types, identifi ers, etc. Java reserved keywords are also depicted in this chapter. The operators
(arithmetic, relational, boolean, etc.) that act on variables are also explained in this chapter. For
each set of operators, we have provided suffi cient examples along with their explanation and
output. Apart from variables and operators, this chapter focuses on statements like if and other
loops available in Java (for, while, do…while, and for...each).
 Chapter 4 deals with classes and objects. A lot of practical problems and their solutions
have been discussed in this chapter. It begins with how to defi ne classes, objects, and method
creation. Method overloading is also discussed. Later, it emphasizes on the differences between
instance variables/methods and class variables and methods. Finally, a discussion about arrays,
this keyword, and command-line arguments is also provided.
 Chapter 5 focuses on inheritance and its uses. How it is realized in Java is discussed in this
chapter. Apart from this, polymorphism concepts are visualized through method overriding and
super keyword. How practical programming problems are solved through super keyword forms
a major part of this chapter. Towards the end of the chapter, some related concepts like abstract
classes are also discussed.
 Chapter 6 covers interfaces, packages, and enumeration. It highlights the differences between
abstract classes and interfaces and their practical usages with examples. The role of packages in
Java and their creation and usage is also discussed. In-depth coverage of a predefi ned package
java.lang is included in this chapter along with some of the famous classes such as String,
StringBuffer, StringBuilder, and Wrapper classes.
 Chapter 7 discusses exceptions in detail. Apart from explaining in detail the fi ve keywords
(try, catch, throw, throws, and fi nally) used in handling exceptions, it also discusses how a user
can create his own exceptions and handle them. Concepts such as exception, encapsulation, and
enrichment are also explained in this chapter. Besides these, the new facilities provided by Java
like assertions and logging are also discussed.
 Chapter 8 covers multithreading concepts, its states, priorities, etc. It also discusses in detail
the inter-thread communication and synchronization concepts. Methods like wait(), notify(), and
notifyAll() have also been discussed.
 Chapter 9 emphasizes on the essentials of I/O concepts like how standard input can be taken
and how output is delivered to the standard output. A few main classes of the java.io package
are discussed with examples and their usages. Console class, used for taking user input, is also
discussed. What is the use of making objects persistent and how will it be done is discussed
towards the end of the chapter.
 Chapter 10 discusses the java.util package in detail. The interfaces like Map, Set, and List
etc have been discussed in detail as well as their subclasses like LinkedList, ArrayList, Vector,
HashSet, HashMap, TreeMap, etc. Java 5 introduced a new feature named ‘Generics’ which

www.ebook3000.com

http://www.ebook3000.org

Preface to the Second Edition ix

forms the core of the java.util package. This concept along with its application has been covered
in detail.
 Chapter 11 explains how network programming can be done in Java. In-depth coverage of
sockets is extended in this chapter. Client and server concept is illustrated by the programs
created. TCP and UDP clients and server and their interactions are demonstrated. The concept
of multithreading is merged with socket and illustrated to create server programs. Some main
classes such as URL, URL connection, and network interface (new feature) are also discussed.
 Chapter 12 focuses on applets, its lifecycle, methods, etc. and how they are different from
applications. Besides providing an in-depth coverage of java.applet package, some of the
classes of java.awt package are also discussed as they are very useful in creating applets such
as Graphics class, Font class, Color class, and FontMetric class. All these classes are discussed
and supported by an example for each of them.
 Chapter 13 talks about event handling in Java. Basically for creating effective GUI applications,
we need to handle events and this forms the basis of this chapter. The event handling model is
not only discussed but applied throughout the chapter. All the approaches to event handling have
been discussed such as Listener interfaces, Adapter classes, inner classes, and anonymous inner
classes.
 Chapter 14 focuses on GUI creation through java.awt package. It has an in-depth coverage
of containers and components. Containers like Frame, Window, etc. and components like Label,
Button, TextField, Choice, Checkbox, List, etc. are discussed in detail. How the components can
be arranged in a container is also discussed, e.g. BorderLayout, GridBagLayout, and GridLayout.
 Chapter 15 shows how to create more advanced and lightweight GUI applications in Java.
More advanced layouts like SpringLayout have been discussed. Lightweight components like
JButton, JLabel, JCheckBox, JToggleButton, JList, JScrollPane, JTabbedPane, etc. have been
discussed. How to create Dialogs is also discussed. The pluggable look and feel of Java is
explained in detail.
 Chapter 16 focuses on advanced Java concepts such as servlets, JDBC, and RMI. An
introduction to the advanced technologies has been discussed. This chapter is equipped with
numerous fi gures showing how to install the necessary softwares required for executing an
advanced Java program. The chapter also provides a step-by-step and simplifi ed approach on
how to learn advanced concepts.
 Appendix A on practical lab problems will facilitate better understanding of the concepts
explained in the book. Appendix B includes a list of interview questions along with their answers
that provides an overview of the industry scenario and their requirements.

ACKNOWLEDGEMENTS

Several people have been instrumental throughout this tiring yet wonderful journey. First of all, we
would like to express our sincere gratitude to our families without whose support, patience, and
cooperation, this would not have been possible and we would not have been what we are today.
 We are also thankful to our colleagues and friends for their endless support and suggestions
during the entire process of writi ng this book. Lastly, we would also like to thank all our readers
/students who have supported us, encouraged us, and provided feedback to us regularly which
has helped us in shaping this edition.

Sachin Malhotra
Saurabh Choudhary

www.ebook3000.com

http://www.ebook3000.org

 Preface to the Second Edition vi
 Preface to the First Edition x
 Detailed Contents xiii

 1. Introduction to OOP 1
 2. Getting Started With Java 12
 3. Java Programming Constructs 42
 4. Classes and Objects 74
 5. Inheritance 132
 6. Interfaces, Packages, and Enumeration 156
 7. Exception, Assertions, and Logging 199
 8. Multithreading in Java 224
 9. Input/Output, Serialization and Cloning 256
 10. Generics, java.util and other API 296
 11. Network Programming 336
 12. Applets 354
 13. Event Handling in Java 394
 14. Abstract Window Toolkit 429
 15. Swing 495
 16. Introduction to Advanced Java 553
Appendix A: Lab Manual 628
Appendix B: Interview Questions 650
Index 657

Brief Contents

 Preface to the Second Edition vi
 Preface to the First Edition x

 1. Introduction to OOP 1

 1.1 Introduction 1
 1.2 Need of Object-Oriented

Programming 2
 1.2.1 Procedural Languages 2
 1.2.2 Object-Oriented Modeling 2
 1.3 Principles of Object-Oriented

Languages 3
 1.3.1 Classes 3
 1.3.2 Objects 3
 1.3.3 Abstraction 3
 1.3.4 Inheritance 4
 1.3.5 Encapsulation 4
 1.3.6 Polymorphism 5
 1.4 Procedural Language vs OOP 5
 1.5 OOAD Using UML 6
 1.6 Applications of OOP 9

 2. Getting Started With Java 12

 2.1 Introduction 12
 2.2 History of Java 13
 2.3 Java’s Journey: From Embedded Systems

To Middle-Tier Applications 13
 2.4 Java Essentials 14
 2.5 Java Virtual Machine 15
 2.6 Java Features 16
 2.6.1 Platform Independence 16
 2.6.2 Object Oriented 16
 2.6.3 Both Compiled and Interpreted 17
 2.6.4 Java is Robust 18
 2.6.5 Java Language Security

Features 18

 2.6.6 Java is Multithreaded 20
 2.6.7 Other Features 20
 2.7 Program Structure 21
 2.7.1 How to Execute a Java

Program 21
 2.7.2 Why Save as Example.Java? 22
 2.7.3 Explanation 22
 2.8 Java Improvements 23
 2.8.1 Java 5.0 Features 23
 2.8.3 Java 6 Features 25
 2.8.4 Java 7 Features 26
 2.8.4 Brief Comparison of Different

Releases 27
 2.9 Differences between Java and C++ 28
 2.10 Installation of JDK 1.7 29
 2.10.1 Getting Started With the JDK 29
 2.10.2 JDK Installation Notes 29
 2.10.3 Exploring the JDK 37
 2.11 Integrated Development

Environment 39

 3. Java Programming Constructs 42
 3.1 Variables 42
 3.2 Primitive Data Types 42
 3.3 Identifi er 44
 3.3.1 Rules for Naming 44
 3.3.2 Naming Convention 44
 3.3.3 Keywords 45
 3.4 Literals 45
 3.5 Operators 48
 3.5.1 Binary Operators 48
 3.5.2 Unary Operators 54
 3.5.3 Ternary Operator 54

Detailed Contents

xiv Detailed Contents

 3.6 Expressions 55
 3.7 Precedence Rules and

Associativity 55
 3.8 Primitive Type Conversion

and Casting 57
 3.9 Flow of Control 61
 3.9.1 Conditional Statements 62
 3.9.2 Loops 65
 3.9.3 Branching Mechanism 68

 4. Classes and Objects 74

 4.1 Classes 74
 4.2 Objects 75
 4.2.1 Difference between Objects

and Classes 76
 4.2.2 Why Should We Use

Objects and Classes? 76
 4.3 Class Declaration in Java 77
 4.3.1 Class Body 78
 4.4 Creating Objects 79
 4.4.1 Declaring an Object 79
 4.4.2 Instantiating an Object 79
 4.4.3 Initializing an Object 80
 4.5 Methods 82
 4.5.1 Why Use Methods? 82
 4.5.2 Method Types 82
 4.5.3 Method Declaration 83
 4.5.3 Instance Method Invocation 86
 4.5.4 Method Overloading 87
 4.6 Constructors 90
 4.6.1 Parameterized Constructors 93
 4.6.2 Constructor Overloading 94
 4.7 Cleaning Up Unused Objects 96
 4.7.1 The Garbage Collector 96
 4.7.2 Finalization 97
 4.7.3 Advantages and Disadvantages 97
 4.8 Class Variable and

Methods—Static Keyword 97
 4.8.1 Static Variables 98
 4.8.2 Static Methods 99
 4.8.3 Static Initialization Block 101

 4.9 this Keyword 103
 4.10 Arrays 105
 4.10.1 One-Dimensional Arrays 105
 4.10.2 Two-Dimensional Arrays 110
 4.10.3 Using for-each With Arrays 115
 4.10.4 Passing Arrays to Methods 115
 4.10.5 Returning Arrays from

Methods 116
 4.10.6 Variable Arguments 117
 4.11 Command-line Arguments 118
 4.12 Nested Classes 119
 4.12.1 Inner Class 119
 4.12.2 Static Nested Class 122
 4.12.3 Why Do We Create Nested

Classes? 124
 4.13 Practical Problem: Complex

Number Program 124

 5. Inheritance 132

 5.1 Inheritance vs Aggregation 132
 5.1.1 Types of Inheritance 133
 5.1.2 Deriving Classes Using

Extends Keyword 135
 5.2 Overriding Method 137
 5.3 super Keyword 141
 5.4 fi nal Keyword 146
 5.5 Abstract Class 147
 5.6 Shadowing vs Overriding 149
 5.7 Practical Problem: Circle

and Cylinder Class 151

 6. Interfaces, Packages, and
 Enumeration 156

 6.1 Interfaces 156
 6.1.1 Variables in Interface 158
 6.1.2 Extending Interfaces 160
 6.1.3 Interface vs Abstract Classes 160
 6.2 Packages 161
 6.2.1 Creating Packages 162
 6.2.2 Using Packages 164
 6.2.3 Access Protection 168

Detailed Contents xv

 6.3 java.lang Package 169
 6.3.1 java.lang.Object Class 169
 6.3.2 Java Wrapper Classes 170
 6.3.3 String Class 174
 6.3.4 StringBuffer Class 179
 6.3.5 StringBuilder Class 180
 6.3.6 Splitting Strings 181
 6.4 Enum Type 183
 6.4.1 Using Conditional Statements with

an Enumerated Variable 185
 6.4.2 Using for Loop for Accessing

Values 185
 6.4.3 Attributes and Methods Within

Enumeration 186
 6.5 Practical Problem: Banking

Example 187

 7. Exception, Assertions,
 and Logging 199

 7.1 Introduction 199
 7.1.1 Exception Types 201
 7.2 Exception Handling Techniques 202
 7.2.1 try…catch 203
 7.2.2 throw Keyword 206
 7.2.3 throws 207
 7.2.4 fi nally Block 209
 7.2.5 try-with-resources

Statement 210
 7.2.6 Multi Catch 212
 7.2.7 Improved Exception Handling

in Java 7 213
 7.3 User-Defi ned Exception 215
 7.4 Exception Encapsulation

and Enrichment 216
 7.5 Assertions 217
 7.6 Logging 219

 8. Multithreading in Java 224

 8.1 Introduction 224
 8.2 Multithreading in Java 225
 8.3 java.lang.Thread 225

 8.4 Main Thread 227
 8.5 Creation of New Threads 228
 8.5.1 By Inheriting the Thread

Class 228
 8.5.2 Implementing the Runnable

Interface 231
 8.6 Thread.State in Java 234
 8.6.1 Thread States 235
 8.7 Thread Priority 240
 8.8 Multithreading—Using isAlive()

 and join() 243
 8.9 Synchronization 245
 8.9.1 Synchronized Methods 246
 8.9.2 Synchronized Statements 246
 8.10 Suspending and Resuming Threads 246
 8.11 Communication between

Threads 248
 8.12 Practical Problem: Time

Clock Example 251

 9. Input/Output, Serialization
 and Cloning 256

 9.1 Introduction 256
 9.1.1 java.io.InputStream and

java io.OutputStream 257
 9.2 java.io.File Class 258
 9.3 Reading and Writing Data 261
 9.3.1 Reading/Writing Files Using Byte

Stream 261
 9.3.2 Reading/Writing Console

(User Input) 264
 9.3.3 Reading/Writing Files Using

Character Stream 269
 9.3.4 Reading/Writing Using Buffered

Byte Stream Classes 270
 9.3.5 Reading/Writing Using Buffered

Character Stream Classes 272
 9.4 Randomly Accessing a File 273
 9.5 Reading and Writing Files

Using New I/O Package 276
 9.6 Java 7 Nio Enhancements 278

xvi Detailed Contents

 9.7 Serialization 283
 9.8 Cloning 285

 10. Generics, java.util and other API 296

 10.1 Introduction 296
 10.2 Generics 301
 10.2.1 Using Generics in Arguments and

Return Types 304
 10.2.2 Wildcards 304
 10.2.3 Bounded Wildcards 306
 10.2.4 Defi ning Your Own

Generic Classes 307
 10.3 Linked List 309
 10.4 Set 311
 10.4.1 Hashset Class 312
 10.4.2 Treeset Class 314
 10.5 Maps 315
 10.5.1 Hashmap Class 315
 10.5.2 Treemap Class 317
 10.6 Collections Class 318
 10.7 Legacy Classes and Interfaces 319
 10.7.1 Difference between Vector

and Arraylist 319
 10.7.2 Difference between Enumerations

and Iterator 320
 10.8 Utility Classes: Random Class 320
 10.8.1 Observer and Observable 322
 10.9 Runtime Class 326
 10.10 Refl ection API 328

 11. Network Programming 336

 11.1 Introduction 336
 11.1.1 TCP/IP Protocol Suite 336
 11.2 Sockets 337
 11.2.1 TCP Client and Server 338
 11.2.2 UDP Client and Server 342
 11.3 URL Class 344
 11.4 Multithreaded Sockets 346
 11.5 Network Interface 349

 12. Applets 354
 12.1 Introduction 354
 12.2 Applet Class 355
 12.3 Applet Structure 356
 12.4 Example Applet Program 357
 12.4.1 How to Run an Applet? 358
 12.5 Applet Life Cycle 359
 12.6 Common Methods Used in

Displaying the Output 361
 12.7 paint(), update(), and repaint() 364
 12.7.1 paint() Method 364
 12.7.2 update() Method 365
 12.7.3 repaint() Method 366
 12.8 More About Applet Tag 366
 12.9 getDocumentbase() and

getCodebase() Methods 369
 12.10 Appletcontext Interface 370
 12.10.1 Communication between Two

Applets 371
 12.11 How To Use An Audio Clip? 372
 12.12 Images in Applet 373
 12.12.1 Mediatracker Class 375
 12.13 Graphics Class 377
 12.13.1 An Example Applet Using

Graphics 379
 12.14 Color 380
 12.15 Font 382
 12.16 Fontmetrics 386
 12.17 Practical Problem: Digital Clock 390

 13. Event Handling in Java 394

 13.1 Introduction 394
 13.2 Event Delegation Model 395
 13.3 java.awt.Event Description 395
 13.3.1 Event Classes 395
 13.4 Sources of Events 404
 13.5 Event Listeners 404
 13.6 How Does The Model Work? 406
 13.7 Adapter Classes 410
 13.7.1 How To Use Adapter Classes 410

Detailed Contents xvii

 13.7.2 Adapter Classes in Java 412
 13.8 Inner Classes in Event Handling 413
 13.9 Practical Problem: Cartoon

Applet 416
 13.9.1 Smiling Cartoon With Blinking

Eyes (Part 1) 416
 13.9.2 Smiling Cartoon With Blinking

Eyes (Part 2) 420
 13.9.3 Smiling Cartoon (Part 3) 423

 14. Abstract Window Toolkit 429

 14.1 Introduction 429
 14.1.1 Why Awt? 429
 14.1.2 java.awt Package 430
 14.2 Components and Containers 432
 14.2.1 Component 432
 14.2.2 Components as Event

Generator 433
 14.3 Button 434
 14.4 Label 437
 14.5 Checkbox 438
 14.6 Radio Buttons 441
 14.7 List Boxes 444
 14.8 Choice Boxes 448
 14.9 Textfi eld and Textarea 451
 14.10 Container Class 455
 14.10.1 Panels 455
 14.10.2 Window 456
 14.10.3 Frame 456
 14.11 Layouts 458
 14.11.1 FlowLayout 459
 14.11.2 BorderLayout 462
 14.11.3 CardLayout 465
 14.11.4 GridLayout 469
 14.11.5 GridbagLayout 471
 14.12 Menu 478
 14.13 Scrollbar 483
 14.14 Practical Problem: City

Map Applet 487

 15. Swing 495

 15.1 Introduction 495
 15.1.1 Features of Swing 496
 15.1.2 Differences between

Swing and AWT 496
 15.2 JFrame 497
 15.3 JApplet 500
 15.4 JPanel 501
 15.5 Components in Swings 502
 15.6 Layout Managers 506
 15.6.1 Springlayout 506
 15.6.2 Boxlayout 509
 15.7 JList and JScrollPane 510
 15.8 Split Pane 513
 15.9 JTabbedPane 514
 15.10 JTree 516
 15.11 JTable 521
 15.12 Dialog Box 525
 15.13 JFileChooser 529
 15.14 JColorChooser 530
 15.15 Pluggable Look and Feel 531
 15.16 Inner Frames 539
 15.17 Practical Problem: Mini Editor 545

 16. Introduction to Advanced Java 553
 16.1 Introduction to J2ee 553
 16.2 Database Handling Using JDBC 553
 16.2.1 Load the Driver 554
 16.2.2 Establish Connection 556
 16.2.3 Create Statement 556
 16.2.4 Execute Query 557
 16.2.5 Iterate Resultset 557
 16.2.6 Scrollable Resultset 559
 16.2.7 Transactions 560
 16.3 Servlets 562
 16.3.1 Lifecycle of Servlets 562
 16.3.2 First Servlet 563
 16.3.3 Reading Client Data 567
 16.3.4 Http Redirects 571
 16.3.5 Cookies 572

xviii Detailed Contents

 16.3.6 Session Management 574
 16.4 Practical Problem: Login Application 577
 16.5 Introduction to Java

Server Pages 589
 16.5.1 JSP Life Cycle 589
 16.5.2 Steps in JSP Page Execution 590
 16.5.3 JSP Elements 590
 16.5.4 Placing Your JSP in the

Webserver 593
 16.6 Java Beans 597
 16.6.1 Properties of a Bean 597
 16.6.2 Using Beans Through JSP 601
 16.6.3 Calculatebean Example 602
 16.7 Jar Files 605

 16.7.1 Creating a Jar File 605
 16.7.2 Viewing the Contents of

a Jar File 606
 16.7.3 Extracting the Contents

of Jar 607
 16.7.4 Manifest Files 607
 16.8 Remote Method Invocation 609
 16.8.1 RMI Networking Model 609
 16.8.2 Creating an Rmi Application 610
 16.9 Introduction to EJB 613
 16.9.1 Types of EJB 614
 16.9.2 EJB Architecture 615
 16.10 Hello World—EJB Example 616

 Appendix A: Lab Manual 628
Appendix B: Interview Questions 650
Index 657

 Beauty is our weapon against nature; by it we make objects, giving them limit,
symmetry, proportion. Beauty halts and freezes the melting flux of nature.

 Camille Paglia

After reading this chapter, the readers will be able to
  know what is object-oriented programming
  understand the principles of OOP
  understand how is OOP different from procedural languages
  comprehend the problems in procedural programming and how OOP overcomes them
  learn the applications of OOP
  use UML notations

1.1 INTRODUCTION

Object-oriented programming (OOP) is one of the most interesting and useful innovations in
software development. OOP has strong historical roots in programming paradigms and practices.
It addresses the problems commonly known as the software crisis. Software have become
inherently complex which has led to many problems within the development of large software
projects. Many software have failed in the past. The term ‘software crisis’ describes software
failure in terms of

  Exceeding software budget
  Software not meeting clients’ requirements
  Bugs in the software

OOP is a programming paradigm which deals with the concepts of object to build programs
and software applications. It is modeled around the real world. The world we live in is full of
objects. Every object has a well-defined identity, attributes, and behavior. Objects exhibit the
same behavior in programming. The features of object-oriented programming also map closely
to the real-world features like inheritance, abstraction, encapsulation, and polymorphism. We
will discuss them later in the chapter.

Introduction to
OOP 11

2 Programming in Java

1.2 NEED OF OBJECT-ORIENTED PROGRAMMING

There were certain limitations in earlier programming approaches and to overcome these
limitations, a new programming approach was required. We first need to know what these
limitations were.

1.2.1 Procedural Languages
In procedural languages, such as C, FORTRAN, and PASCAL, a program is a list of instructions.
The programmer creates a list of instructions to write a very small program. As the length of a
program increases, its complexity increases making it difficult to maintain a very large program.
In the structured programming, this problem can be overcome by dividing a large program into
different functions or modules, but this gives birth to other problems. Large programs can still
become increasingly complex. There are two main problems in procedural language—(i) the
functions have unrestricted access to global data and (ii) they provide poor mapping to the real
world.

Here are some other problems in the procedural languages. Computer languages generally
have built-in data types: integers, character, float, and so on. It is very difficult to create a new
data type or a user-defined data type. For example, if we want to work with dates or complex
numbers, then it becomes very difficult to work with built-in types. Creating our own data types is
a feature called extensibility: we can extend the capabilities of a language. Procedural languages
are not extensible. In the traditional languages, it is hard to write and maintain complex results.

1.2.2 Object-Oriented Modeling
In the physical world, we deal with objects like person, plane, or car. Such objects are not like
data and functions. In the complex real-world situations, we have objects which have some
attributes and behavior. We deal with similar objects in OOP. Objects are defined by their unique
identity, state, and behavior. The state of an object is identified by the value of its attributes and
behavior by methods.

Attributes
Attributes define the data for an object. Every object has some attributes. Different types of
objects contain different attributes or characteristics. For example, the attributes of a student
object are name, roll number, and subject; and the attributes for a car object would be color,
engine power, number of seats, etc. These attributes will have specific values, such as Peter (for
name) or 23 (for roll number).

Behavior
The response of an object when subjected to stimulation is called its behavior. Behavior defines
what can be done with the objects and may manipulate the attributes of an object. For example,
if a manager orders an employee to do some task, then he responds either by doing it or not
doing it. The wings of a fan start moving only when the fan is switched ON. Behavior actually
determines the way an object interacts with other objects. We can say that behavior is synonym
to functions or methods: we call a function to perform some task. For example, an Employee
class will have functions such as adding an employee, updating an employee details, etc.

Introduction to OOP 3

Note If we try to represent the CPU of a computer in OOP terminology, then CPU is the object.
The CPU is responsible for fetching the instructions and executing them. So fetching and
executing are two possible functions (methods or behavior) of CPU. The place (attributes)
where CPU stores the retrieved instructions, values and result of the execution (registers) will
then be the attributes of the CPU.

1.3 PRINCIPLES OF OBJECT-ORIENTED LANGUAGES

OOP languages follow certain principles such as class, object, and abstraction. These principles
map very closely to the real world.

1.3.1 Classes
A class is defined as the blueprint for an object. It serves as a plan or a template. The description
of a number of similar objects is also called a class. An object is not created by just defining a
class. It has to be created explicitly. Classes are logical in nature. For example, furniture does
not have any existence but tables and chairs do exist. A class is also defined as a new data type,
a user-defined type which contains two things: data members and methods.

1.3.2 Objects
Objects are defined as the instances of a class, e.g. table, chair are all instances of the class
Furniture. Objects of a class will have same attributes and behavior which are defined in that
class. The only difference between objects would be the value of attributes, which may vary.
Objects (in real life as well as programming) can be physical, conceptual, or software. Objects
have unique identity, state, and behavior. There may be several types of objects:

  Creator objects: Humans, Employees, Students, Animal
  Physical objects: Car, Bus, Plane
  Objects in computer system: Monitor, Keyboard, Mouse, CPU, Memory

1.3.3 Abstraction
Can you classify the following items?

  Elephant  CD player
  Television  Chair
  Table  Tiger

How many classes do you identify here? The obvious answer anybody would give is three, i.e.,
Animal, Furniture, and Electronic items. But how do you come to this conclusion? Well, we
grouped similar items like Elephant and Tiger and focused on the generic characteristics rather
than specific characteristics. This is called abstraction. Everything in this world can be classified
as living or non-living and that would be the highest level of abstraction.

Another well-known analogy for abstraction is a car. We drive cars without knowing the
internal details about how the engine works and how the car stops on applying brakes. We are
happy with the abstraction provided to us, e.g., brakes, steering, etc. and we interact with them.
In real life, human beings manage complexity by abstracting details away. In programming,
we manage complexity by concentrating only on the essential characteristics and suppressing
implementation details.

www.ebook3000.com

http://www.ebook3000.org

4 Programming in Java

1.3.4Inheritance
Inheritance is the way to adopt the characteristics of one class into another class. Here we have
two types of classes: base class and subclass. There exists a parent–child relationship among
the classes. When a class inherits another class, it has all the properties of the base class and it
adds some new properties of its own. We can categorize vehicles into car, bus, scooter, ships,
planes, etc. The class of animals can be divided into mammals, amphibians, birds, and so on.

The principle of dividing a class into subclass is that each subclass shares common
characteristics with the class from where they are inherited or derived. Cars, scooters, planes,
and ships all have an engine and a speedometer. These are the characteristics of vehicles. Each
subclass has its own characteristic feature, e.g., motorcycles have disk braking system, while
planes have hydraulic braking system. A car can run only on the surface, while a plane can fly
in air and a ship sails over water (see Fig. 1.1).

Vehicle

Road vehicle Air vehicle Water vehicle

Bus Motor bike Aeroplane Boat

Fig. 1.1 Inheritance

Inheritance aids in reusability. When we create a class, it can be distributed to other
programmers which they can use in their programs. This is called reusability. Suppose someone
wants to make a program for a calculator, he can use a predefined class for arithmetic operations,
and then he need not define all the methods for these operations. This is similar to using library
functions in procedural language. In OOP, this can be done using the inheritance feature. A
programmer can use a base class with or without modifying it. He can derive a child class from
a parent class and then add some additional features to his class.

1.3.5 Encapsulation
Encapsulation is one of the features of object-oriented methodology. The process of binding
the data procedures into objects to hide them from
the outside world is called encapsulation (see Fig.
1.2). It provides us the power to restrict anyone from
directly altering the data. Encapsulation is also known
as data hiding. An access to the data has to be through
the methods of the class. The data is hidden from the
outside world and as a result, it is protected. The details
that are not useful for other objects should be hidden
from them. This is called encapsulation. For example,
an object that does the calculation must provide an
interface to obtain the result. However, the internal
coding used to calculate need not be made available
to the requesting object.

Method

Method

Method

Data

Accessing
data

Fig. 1.2 Diagrammatic Illustration of a
Class to Show Encapsulation

Introduction to OOP 5

1.3.6 Polymorphism
Polymorphism simply means many forms. It can be defined as the same thing being used in
different forms. For example, there are certain bacteria that exhibit in more than one morphological
form. In programming, polymorphism is of two types: compile-time and runtime polymorphism.
Runtime polymorphism, also known as dynamic binding or late binding, is used to determine
which method to invoke at runtime. The binding of method call to its method is done at runtime
and hence the term late binding is used. In case of compile-time polymorphism, the compiler
determines which method (from all the overloaded methods) will be executed. The binding of
method call to the method is done at compile time. So the decision is made early and hence
the term early binding. Compile-time polymorphism in Java is implemented by overloading
and runtime polymorphism by overriding. In overloading, a method has the same name with
different signatures. (A signature is the list of formal argument that is passed to the method.)
In overriding, a method is defined in subclass with the same name and same signature as that
of parent class. This distinction between compile-time and runtime polymorphism is of method
invocation. Compile-time polymorphism is also implemented by operator overloading which
is a feature present in C++ but not in Java. Operator overloading allows the user to define new
meanings for that operator so that it can be used in different ways. The operator (+) in Java is
however an exception as it can be used for addition of two integers as well as concatenation of
two strings or an integer with a string. This operator is overloaded by the language itself and
the Java programmer cannot overload any operator.

1.4 PROCEDURAL LANGUAGE VS OOP

Table 1.1 highlights some of the major differences between procedural and object-oriented
programming languages.

Table 1.1 Procedural Language vs OOP

Procedural Language OOP
 Separate data from functions that operate on them.  Encapsulate data and methods in a class.
 Not suitable for defi ning abstract types.  Suitable for defi ning abstract types.
 Debugging is diffi cult.  Debugging is easier.
 Diffi cult to implement change.  Easier to manage and implement change.
 Not suitable for larger programs and applications.  Suitable for larger programs and applications.
 Analysis and design not so easy.  Analysis and design made easier.
 Faster.  Slower.
 Less fl exible.  Highly fl exible.
 Data and procedure based.  Object oriented.
 Less reusable.  More reusable.
 Only data and procedures are there.  Inheritance, encapsulation, and polymorphism are the

key features.
 Use top-down approach.  Use bottom-up approach.
 Only a function call another.  Object communication is there.
 Example: C, Basic, FORTRAN.  Example: JAVA, C++, VB.NET, C#.NET.

6 Programming in Java

1.5 OOAD USING UML

An object-oriented system comprises of objects. The behavior of a system results from its objects
and their interactions. Interaction between objects involves sending messages to each other.
Every object is capable of receiving messages, processing them, and sending to other objects.

 Object-oriented Analysis and Design (OOAD)
It is an approach that models software as a group of interacting objects. A model is a description
of the system that we intend to build. Each object is characterized by its class having its own state
(attributes) and behavior. Object-oriented analysis (OOA) analyzes the functional requirements
of a system and focuses on what the system should do. Object-oriented design (OOD) focuses on
how the system does it. The most popular modeling language for OOAD is the unified modeling
language (UML).

 UML is a standard language for OOAD. It contains graphical notations for all entities (class,
object, etc.) used in the object-oriented languages along with the relationship that exists among
them. These notations are used to create models. UML helps in visualizing the system, thereby
reducing complexity and improving software quality. The notations used for class and object are
shown in Fig. 1.3. For example, consider an Employee class with attributes name, designation,
salary, etc. and operations such as addEmployee, deleteEmployee, and searchEmployee.

The notation for employee class and its object is as follows:

Employee

name
address
designation
salary

addEmployee

deleteEmployee

searchEmployee

Class

Attributes

Behavior

Fig. 1.3 UML Notation for Class

The notation for an object is very much similar to the class notation. The class name underlined
and followed by a colon represents an object (Fig. 1.4).

:Employee

name=peter

address=NY

designation=manager

salary=10000

addEmployee

deleteEmployee

searchEmployee

Object

Attributes

Fig. 1.4 UML Notation for Object

Introduction to OOP 7

An instance of a class can be related to any number of instances of other class known as
multiplicity of the relation. One-to-one, one-to-many, and many-to-many are different types
of multiplicities that exist among objects. The multiplicities along with their examples and
respective notations are shown below. Figure 1.5(a) illustrates the generic notation for representing
multiplicity in object-oriented analysis and design. One-to-one mapping is shown as a straight
line between the two classes. Figure 1.5(b) shows the UML notation for demonstrating the one-
to-one mapping. The 1..1 multiplicity depicted on the straight line (both ends) indicates a single
instance of a class is associated with single instance of other class. Figure 1.5 shows that each
country has a president and a president is associated with a country.

Country President
has

Country
has

President
1.1 1.1

(a) (b)

Fig. 1.5 One-to-one Relationship

A country has many states and many states belong to a country. So there exists a one-to-many
relationship between the two. This relationship is shown in Fig. 1.6. Part (a) of this figure shows
the generic notation where a solid dot is indicated on the many side and both classes are joined
by a straight line. Figure 1.6(b) shows the UML notation where 1..* indicates the one to many
relationship between country and states. On the country end, a 1..1 multiplicity is placed to
indicate one country and on states end, a 1..* is placed to indicate many states.

Country
has 1..1

(a)

States Country
has

(b)

States
1..*

Fig. 1.6 One-to-many Relationship

Let us take another example to explain many-to-many relationship. A teacher teaches many
students and a student can be taught by many teachers. There exists a many-to-many relationship
between them. Many-to-many relationship (Generic notation in OOAD) are represented by
placing solid dots on both ends joined by a straight line as shown in Fig. 1.7(a). The respective
notation in UML is shown in Fig. 1.7(b) where 1..* on both ends is used to signify many-to-
many relationship.

Teacher
teaches 1..*

(a)

Student
teaches

(b)

1..*
Teacher Student

Fig. 1.7 Many-to-many Relationship

8 Programming in Java

Besides multiplicity of relations, the relationships can be of various types: inheritance,
aggregation, composition. These relationships can be denoted in UML with links and associations.
The links represent the connection between the objects and associations represent groups of links
between classes. If a class inherits another class, then there exists a parent-child relationship
between them. This relationship is depicted in UML as shown in Fig. 1.8. For example, Shape
is the superclass, and the subclasses of Shape can take any shape, e.g., Square, Triangle, etc.

Shape

Triangle Square

Fig. 1.8 UML Diagram Depicting Inheritance

The above diagram can be extended to depict the OOP principle of polymorphism. Every shape
will have a method named area() which would calculate the area of that shape. The implementation
of area() method would be different for different shapes. For example, the formula for calculating
area of a triangle is different from a square. So the implementation is different but the name of
the method is same. This is polymorphism (one name many implementations). In Fig 1.9 below,
the area() method is overridden by Triangle and Square classes.

Shape

Triangle

area()

area()

Square

area()

Rectangle

area()

Fig. 1.9 UML Diagram Depicting Polymorphism

Another kind of relationship that exists among objects is the part-of-relationship. When a
particular object is a part of another object then we say that it is aggregation. For example, car is

Introduction to OOP 9

an aggregation of many objects: engine, door, etc. and engine in turn is an aggregation of many
objects, e.g., cylinder, piston, valves, etc. as shown in Fig. 1.10(a). A special kind of aggregation
is composition where one object owns other objects. If the owner object does not exist, the
owned objects also ceases to exist. For example, the human body is a very good example of
composition. It is a composition of different organs. The hands, feet, and internal organs such
as the lung and intestine are also parts of the body owned by the body.

Car

Engine Door

Cylinder Radiator Liver Lungs

Human body

(a) (b)

Fig. 1.10 (a) Aggregation and (b) Composition

1.6 APPLICATIONS OF OOP

The basic thought behind object-oriented language is to make an object by combining data and
functions as a single unit and then operate on that data. In procedural approach, the focus is on
business process and the data needed to support the process. For example, in the last decade, a
problem bothered every programmer, popularly known as the Y2K problem. Everybody related
to the computer industry was afraid of what will happen past midnight 31 December 1999. The
problem arises due to the writing convention of the year attribute. In early programming days,
a programmer wrote a year in two digits, so there was a problem to distinguish the year 1900
from 2000 because if we write only the last two digits of a year, the computer cannot differentiate
between the two. Nobody perceived this problem and used the date and year code as and when
required, thus aggravating the problem. The solution to this problem was to analyze multiple
lines of codes everywhere and change the year to four digits rather than two. It seems simple to
change the state variable of year but analyzing a code of several thousands of lines to find how
many times you have used date in your code is not an easy task.

If object-oriented programming language had been used, we could have created a Date class
with day, month, and year attributes in it. Wherever the date functionality would be required,

10 Programming in Java

a Date object would be created and used. At a later point of time, if a change is required, for
example, the year of Date class needs to be changed to four digits, then this change would be
incorporated in the class only and this change would automatically be reflected in all the objects
of the Date class whenever they are created and used. So, the change would have to be done at
one place only, i.e., the class and wherever the objects of the class are being used, the changes
would be reflected automatically. There is no need to analyze the whole code and change it.

In OOP, we access data with the help of objects, so it is very easy to overcome a problem
without modifying the whole system. Likewise, OOP is used in various fields, such as

  Real-time systems  Neural networks
  Artifi cial intelligence  Database management
  Expert systems

SUMMARY

EXERCISES

Objective Questions
 1. In an object model, which one of the following is

true?
 (a) Abstraction, encapsulation, and multitasking

are the major principles
 (b) Hierarchy, concurrency, and typing are the

major principles
 (c) Abstraction, encapsulation, and polymor-

phism are the major principles
 (d) Typing is the major principle
 2. Which one of the following is not an object-

oriented language?
 (a) Simula (b) Java
 (c) C++ (d) C
 3. The ability to hide many different implementations

behind an interface is.
 (a) Abstraction (b) Inheritance

Object-oriented languages have become an ubiquitous
standard for programming. They have been derived
from the real world. OOP revolves around objects and
classes. A class is defined as a group of objects with
similar attributes and behavior. OOP is a programming
paradigm which deals with the concepts of objects to
develop software applications. Certain principles have
been laid down by OOP which are followed by every
OOP language. These principles are: inheritance,
abstraction, encapsulation, and polymorphism.
 We have presented a detailed comparison of
procedural and object-oriented languages. For building

large projects, a technique known as OOAD is used.
Object-oriented analysis and design deals with how a
system is modeled. OOA deals with what the system
should do and OOD deals with how the system
achieves what has been specified by OOA.
 OOAD is realized with the help of a language known
as UML. UML stands for unified modeling language;
it is a standard language used for visualizing the
software. An abstract model is created for the entire
software using graphical notations provided by UML.

 (c) Polymorphism (d) None of the above
 4. Which one of the following terms must relate to

polymorphism?
 (a) Static allocation (b) Static typing
 (c) Dynamic binding (d) Dynamic allocation
 5. Providing access to an object only through its

member functions, while keeping the details
private is called

 (a) Information hiding (b) Encapsulation
 (c) Modularity (d) Inheritance
 6. The concept of derived classes is involved in
 (a) Inheritance
 (b) Encapsulation
 (c) Data hiding
 (d) Abstract data types

Introduction to OOP 11

 7. Inheritance is a way to
 (a) Organize data
 (b) Pass arguments to objects of classes
 (c) Add features to existing classes without

rewriting them
 (d) Improve data-hiding and encapsulation
 8. UML is used for
 (a) Creating models
 (b) Representing classes, objects and their

relationships pictorially
 (c) Reducing complexity and improving software

quality

 (d) All the above
 9. Which of the following is true about class?
 (a) Class possesses data and methods
 (b) Classes are physical in nature
 (c) Collection of similar type of objects is a class
 (d) Both (a) and (c)
 10. Which of the following is true about procedural

languages?
 (a) Debugging is easier
 (b) analysis and design is easy
 (c) less reusable
 (d) diffi cult to implement changes

Review Questions

Answers to Objective Questions
 1. (c) 2. (d) 3. (c) 4. (c)
 5. (b) 6. (a) 7. (c) 8. (d)
 9. (d) 10. (c) and (d)

 1. Explain the importance of object-oriented pro-
gramming languages.

 2. Explain the difference between class and object.
 3. Differentiate between procedural languages and

OOP languages.

 4. Write short notes on: (a) inheritance, (b) poly-
morphism, (c) abstraction, (d) encapsulation.

 5. Differentiate between runtime and compite-time
polymorphism.

Programming Exercises
 1. Identify the relevant classes along with their

attributes for the following: A departmental store
needs to maintain an inventory of cosmetic items
which might be found there. You should include
female as well as male cosmetic items. Keep
information on all items such as item name,
category, manufacturer, cost, date purchased,
and serial number.

 2. Identify the relevant classes along with their
attributes from the following problem specifi cation:

 A hospital wants to keep track of scheduled
appointments of a patient with his doctor. When
a patient is given an appointment, he should be
given a confi rmation that states the time and date
of appointment along with the doctor’s name.
Meanwhile the doctor should also be informed
about the patient details. Each doctor has one
weekday as off-day and no patients should be
assigned to a doctor on that day.

 The road of life can only reveal itself as it is traveled; each turn in the road reveals a
surprise. Man’s future is hidden. Anon

After reading this chapter, the readers will be able to
  know the history of Java
  understand the features of Java and its runtime environment
  know the basic structure of a Java program
  know the details about JDK installation
  understand various constituents of JDK and its development environments

2.1 INTRODUCTION

Java is a popular and powerful language. Although it is a very simple language, there are a
number of subtleties that can trip up less-experienced programmers. Java is an object-oriented
programming language with a built-in application programming interface (API) that can handle
graphical user interfaces (GUI) used to create applications or applets. Java provides a rich set
of APIs apart from being platform-independent.

Much of the syntax in Java is similar to C and C++. One of the major differences between
Java and other languages is that it does not have pointers. However, the biggest difference is that
you are forced to write object-oriented code in Java. Procedural code is embedded in objects.

In Java, we distinguish between applications and applets, applications being programs that
perform functions similar to those written in other programming languages and applets are
programs that are meant to be embedded in a web page and downloaded over the Internet.
When a program is compiled, a byte code is generated which can be executed on any platform,
provided the runtime environment exists on the destination platform.

This chapter guides the readers to a step-by-step introduction to Java programming. An
important thrust of this chapter is to cover the features of Java from an object-oriented perspective.

It also gives an insight about the installation of Java runtime environment and the various
integrated development environments (IDEs) of Java.

This chapter also focusses on the different versions of Java (including the latest Java 7) and
the Core API’s (Java 7 is also known as Java 1.7).

Getting Started
with Java 22

Getting Started with Java 13

2.2 HISTORY OF JAVA

It is often believed that the Java was developed specifically for the World Wide Web. Java as it
was initially developed was intended for the Web. However, it was improved to be a standard
programming language for the Internet application.

Bill Joy, the Vice President at Sun Micro systems, was thought to be the main person to
conceive the idea of a programming language that later became Java. In late 1970s, Bill Joy
wanted to design a language that could contain the best features of languages like MESA and
C. He found that C++ was inefficient for rewriting Unix operating system. In 1991, it was this
desire to invent a better programming tool that propelled Joy in the direction of Sun’s mammoth
project called as the ‘ Stealth Project.’ This name was given by Scott McNealy, Sun’s president.
In January 1991, a formal team of persons like Bill Joy, James Gosling, Mike Sheradin, Patrick
Naughton (formerly the project leader of Sun’s Open Windows user environment), and several
other individuals met in Aspen, Colorado for the first time to plan for the Stealth Project.
Stealth Project was all about developing consumer electronic devices that could all be centrally
controlled and programmed from a handheld remote control like device.

James Gosling was made responsible for suggesting a proper programming language for the
project. Initially he thought of using C++, but soon after was convinced about the inadequacy of
C++ for this particular project. He took the first step towards the development of an independent
language that would fit the project objectives by extending and modifying C++.

The idea of naming the language as ‘Oak’ struck Gosling while staring at an oak tree outside his
office window. Unfortunately, this name had already been patented by some other programming
language. Owing to the fear of copyright violation, the name ‘Oak’ was dropped. The team
struggled to find a proper name for the language for many days. After so many brainstorming
sessions, one day finally a thought struck their mind during a trip to the local coffee shop as
recalled by Gosling. The term ‘Java’ in USA is generally a slang used for coffee. Java is also the
name of a coffee produced on the islands of Java in Indonesia. There are some other views also
towards the naming convention used for naming the language as Java. One of it speculates that
the name Java came from several individuals involved in the project: James Gosling, Arthur
Van Goff, Andy Bechtolsheim.

2.3 JAVA’S JOURNEY: FROM EMBEDDED SYSTEMS TO
MIDDLE-TIER APPLICATIONS

Java was designed to run standalone in small devices. The Java language was derived from C++
but with many differences. Java’s platform-independence originally addressed the problem that
applications for embedded devices must run on a wide variety of hardware. But later with the
advent of Internet in 1995, Java was soon adopted, as it could run on heterogeneous operating
systems. Netscape Navigator started using Java in its browser. Many applets (which run inside
a browser) were built and Java achieved popularity and acceptance.

Microsoft developed its own virtual machine that it used in its Internet Explorer which differed
from the specifications laid down. Therefore, Sun and Microsoft ran into a dispute, that was
settled later. Sun saw a potential for Java beyond the browser (see Fig. 2.1).

14 Programming in Java

Client

Browser
(running
Java applet)

Internet

Web server

Fig. 2.1 Java Applets Running on the Client System

Still Java was not popular for the client-side because of the following reasons:
  Less Impressive GUI Java’s early GUI (AWT) was primitive. The newer GUI (Swing)

was not shipped until the late 90’s (and Swing is still not supported by most modern
browsers without plug-ins).

  Microsoft’s Strong Presence Nearly 95% of the desktop world uses Microsoft.
  Clients’ Software Upgradation Good alternative methods were found to update clients’

software automatically (without having to download Java on-the-fl y application code
each time).

  Success of DHTML Browsers have their own dynamic capabilities and many developers
found it easier to code in DHTML. In addition, DHTML pages tend to download and
start faster than Java applets.

Figure 2.2 shows how Java could be used as middle-tier services between the database and a
client browser. In 1997, Sun developed servlets, so that Java could be used to generate dynamic
content based on clients’ request. In 1999, Sun released its Java 2 Enterprise Edition (J2EE).

Database
Web application Client browser

Java in Middle Tier

Fig. 2.2 Middle-tier Capabilities of Java to Run in Web/Application Server

Enterprise Java described how to build middle-tier components. Sun defined Enterprise Java
Beans for developing business logic. The J2EE framework allows developers to concentrate on
building applications rather than mulling over scalability, reliability, and security issues which
are handled by the Web/application server vendors.

2.4 JAVA ESSENTIALS

Java is a platform-independent, object-oriented programming language. Java encompasses the
following features:

  A High-level Language Java is a high-level language that looks very similar to C and
C++ but offers many unique features of its own.

  Java Bytecode Bytecode in Java is an intermediate code generated by the compiler,
such as Sun’s javac, that is executed by the JVM.

  Java Virtual Machine (JVM) JVM acts as an interpreter for the bytecode, which takes
bytecodes as input and executes it as if it was a physical process executing machine
code.

Getting Started with Java 15

Java is designed to be architecturally neutral so that it can run on multiple platforms. The
same runtime code can run on any platform that supports Java. To achieve its cross-architecture
capabilities, the Java compiler generates architecturally neutral bytecode instructions. These
instructions are designed to be both easily interpreted on any machine and easily translated into
native machine code on-the-fly, as shown in Fig. 2.3. Java Runtime Environment (JRE) includes
JVM, class libraries, and other supporting files.

 JRE = JVM + Core Java API libraries
 JDK = JRE + development tools like compilers

JAVA source code

JAVA bytecode

JVM

Source code resembles C++ but is simpler to
develop and understand

Same bytecode runs on any JVM (i.e. across
many platforms, so it is called write once run
anywhere (WORA)

All major platforms have a JVM. Each JVM
Interprets bytecode to machine code on-the-fly

Fig. 2.3 Java Runtime Environment

Tools such as javac (compiler), java (interpreter), and others are provided in a bundle, popularly
known as Java Development Kit (JDK). JDK comes in many versions (enhanced in each version)
and is different for different platforms such as Windows and Linux. A runtime bundle is also
provided as a part of JDK (popularly known as Java Runtime Environment).

2.5 JAVA VIRTUAL MACHINE

At the heart of the Java platform lies the JVM. Most programming languages compile the source
code directly into machine code, suitable for execution on a particular microprocessor architecture.
The difference with Java is that it uses bytecode, an intermediate code.

Java bytecode executes on a virtual machine. Actually, there wasn’t a hardware implementation
of this microprocessor available when Java was first released. Instead, the processor architecture
is emulated by software known as the virtual machine. This virtual machine is an emulation of
a real Java processor—a machine within a machine (Fig. 2.4). The virtual machine runs on top
of the operating system, which is demonstrated in Fig. 2.5.

The JVM is responsible for interpreting Java bytecode, and
translating this into actions or operating system calls. The JVM
is responsible for catering to the differences between different
platforms and architectures in a way that the developers need not
be bothered about it.

The JVM forms a part of a large system, the JRE. JRE varies
according to the underlying operating system and computer
architecture. If JRE for a given environment is not available, it is
impossible to run the Java software.

Physical Machine

JVM

Fig. 2.4 JVM Emulation Run on a
Physical CPU

16 Programming in Java

Java Runtime Environment
(JRE)

Java Virtual Machine (JVM)

Operating Systems
(Window, Unix, etc)

Hardware
(Intel, Motorola, Alpha, etc.)

Fig. 2.5 JVM Handles Translations

2.6 JAVA FEATURES

Here we list the basic features that make Java a powerful, object-oriented, and popular
programming language.

2.6.1 Platform Independence
Java was designed not only to be cross-platform in source form, like the previous languages
(C, C++), but also in compiled binary form. To achieve this, Java is compiled to an intermediate
form called the bytecode (see Figs 2.3 and 2.4). This bytecode is a platform-independent code
that is read by a special native program called the Java interpreter that executes the corresponding
native machine instructions. The Java compiler is also written in Java. The bytecodes are precisely
defined to remain uniform on all platforms.

The second important part of making Java cross-platform is the uniform definition of
architecture-dependent constructs. In contradiction to other languages, integers in Java are
always four bytes long, and floating point variables follow the IEEE floating point arithmetic
754 standard. You don’t have to worry about the meaning of any type, as it is not going to change
when you transit between different architectures, e.g., Pentium to Sparc. In Java, everything is
well defined. However, the virtual machine and some of its parts have to be written in native
code, thus making it platform-dependent.

2.6.2 Object Oriented
It is conceived that Java is a pure object-oriented language, meaning that the outermost level
of data structure in Java is the object. Everything in Java (constants, variables, and methods)
are defined inside a class and accessed through objects. Java has been developed in a way that
it allows the user to not only learn object-oriented programming but to apply and practise it.

But there are some constraints that violate the purity of Java. It was designed mainly for OOP,
but with some procedural elements. For example, Java supports primitive data types that are
not objects.

Getting Started with Java 17

2.6.3 Both Compiled and Interpreted
Java incorporates the elements of both interpretation and compilation. Here is more information
on these two approaches.

 Interpretation
An interpreter reads one line of a program and executes it before going to the next line. The line
is parsed to its smallest operations, the corresponding machine-level code is found, and then
the instruction is executed (this could be done with something like the switch statement in C
with every possible operation-case listed). Basic was one of the earliest interpreted languages
where each text line was interpreted. Similarly, scripting languages like JavaScript, VBScript,
and PHP are also interpreted.

In interpretation, there are no intermediate steps between writing/modifying the code and
running it. The best part is: debugging is fast. Also, the programs are easily transportable to other
platforms (if an interpreter is available). The drawback is its slow performance.

 Compilation
The program text file is first converted to native machine code with a program called a compiler.
A linker may also be required to connect together multiple code files together. The output of the
compiler is an executable code. C and C++ are both compiled languages.

The biggest advantage of a compiled language is its fast performance, since the machine
language code instructions load directly into the processor and get executed. In addition, the
compiler can perform certain optimization operations because it looks at the program as a whole
and not line by line. The disadvantages include slower debugging and reduced portability to
other platforms. The source code must be recompiled on the destination platform.

Java Approach
Java incorporates both interpretation and compilation. The text program is compiled to the
intermediate code, called bytecode, for the JVM. The JVM executes the bytecode instructions.
In other words, JVM interprets the bytecode. The bytecode can run on any platform on which a
JVM has been deployed. The program runs inside the JVM, so it does not bother which platform
it is getting executed on.

Thus, Java offers the best of both worlds. The compilation step allows for code optimization
and the JVM makes way for portability. Figure 2.4 will give you an idea about the two phases
involved in the execution of a Java source program, i.e., compile time and execution time (runtime).

Once the source code is converted to bytecode or class file, it is loaded so that it can be
processed by the execution engine of the JVM. Bytecode is loaded either through the bootstrap
class loader (sometimes referred to as the primordial class loader) or through a user-defined
class loader (sometimes referred to as the custom class loader). The bootstrap class loader (part
of the JVM) is responsible for loading trusted classes (e.g., basic Java class library classes).
User-defined class loaders (not part of JVM) are the subclasses of java.util.Class Loader class
that are compiled and instantiated just like any other Java class. The bytecode verifier verifies
the code and ensures that the code is fit to be executed by the JVM. Figure 2.6 shows the flow
of data and control from Java source code through the Java compiler to the JVM. The code is
not allowed to execute until it has passed the verifier’s test.

18 Programming in Java

Java
source

Compile-Time

Java compiler

Java
bytecode

Bytecode
moves through

network or
file system

Runtime

Class loader
(Bytecode

loader)

Bytecode
verifier

Interpreter
Machine code

generator

Operating system

Hardware

Fig. 2.6 Compilation and Interpretation in Java

But there remains the drawback of an extra compilation step after every correction during
debugging. Also, the interpretation of bytecode is still slower in many cases than a program in
local machine code. Advanced JVM can ameliorate this, and in many cases, reach speeds similar
to programs compiled to local machine code.

2.6.4 Java is Robust
The type checking of Java is at least as strong as that of C++. The compile-time and runtime
checks in Java catch many errors and make them crash-proof. The program cannot crash the
system. To sum up, Java is one of the most robust languages to have ever evolved. Automatic
garbage collection of allocated memory is the biggest contributor here.

2.6.5 JAVA Language Security Features
Java has several language features that protect the integrity of the security system and prevent
several common attacks.
Security Through Definition Java is strict in its definition of the language:

 All primitive data types in the language have a specifi c size.
 All operations are defi ned to be performed in a specifi c order.

Security Through Lack of Pointer Arithmetic Java does not have pointer arithmetic, so Java
programmers cannot forge a pointer to memory. All methods and instance variables are referred
to with their symbolic names. Users cannot write a code that interprets system variables or
accesses private information stored in a system.
Security Through Garbage Collection Garbage collection makes Java programs more secure
and robust by automatically freeing memory, once it is no longer needed.

Getting Started with Java 19

Security Through Strict Compile-Time Checking The Java compiler performs extensive,
stringent compile-time checking so that as many errors as possible can be detected by the
compiler. The Java language is strongly typed, that is:

  Objects cannot be cast to a subclass without an explicit runtime check.
  References to methods and variables of a class are checked to ensure that the objects

are of the same class.
  Primitives and objects are not interconvertible.

Strict compilation checks make Java programs more robust and avoid runtime errors. The
bytecode verifier runs the bytecode generated by the compiler when an applet is loaded and
makes security checks. The compiler also ensures that a program does not access any uninitialized
variables.

Java Security Model
Java’s security model is focused on protecting users from hostile programs downloaded from
untrusted sources across a network. Programs downloaded over the Internet are executed in a
 sandbox. It cannot take any action outside the boundaries specified by the sandbox.

The sandbox for untrusted Java applets, for example, prohibits many activities, including
  Reading or writing to the local disk
  Making a network connection to any host, except the host from which the applet came
  Creating a new process
  Loading a new dynamic library and directly calling a native method

By making it impossible for the downloaded code to perform certain actions, Java’s security
model protects the user from the threat of hostile codes.

 Sandbox—Defi nition
Traditionally, you had to trust a software before you ran it. You achieved security by allowing
a software from trusted sources only, and by regularly scanning for viruses. Once a software
gets access to your system, it has full control and if it is malicious, it can damage your system
because there are no restrictions placed on the software by the computer. So, in the first place,
you prevent malicious code from ever gaining access to your system.

The sandbox security model makes it easier to work with the software that comes from untrusted
sources by restricting codes from untrusted sources from taking any actions that could possibly
harm your system. The advantage is—you don’t need to figure out what code is trusted and what
is not. In addition to that, you don’t need to scan for viruses as well. The sandbox is made up of
the following components operating together.
 Class Loader It is the first link in the security chain. It fetches executable codes from the
network and enforces the namespace hierarchy.
 Bytecode Verifier The verifier checks that the applet conforms to the Java language guarantees
and that there are no violations like stack overflows, namespace violations, illegal data type
casts, etc.
Security Manager It enforces the boundary of the sandbox. Whenever an applet performs an
action which is a potential violation, the security manager decides whether it is approved or not.

20 Programming in Java

2.6.6 Java is Multithreaded
To explore this property, you must know the meaning of multithreading.It can be explained well
with the help of an example. Consider a four-gas burner on which food is cooked. The cook,
in order to save time, puts milk to boil on one gas burner, rice on the other, makes chapattis on
the third, and vegetable on the fourth. The cook switches between all the items to be cooked so
that neither of the items are red-heated to lose their taste. He may lower/brighten up the gas as
and when required. Here the cook is the processor and the four items being cooked are threads.
The processor (cook) switches from one thread to another.

A thread can be loosely defined as a separate stream of execution that takes place simultaneously
and independent of everything else that might be happening. Threads are independent parts of a
process that run concurrently. Using threads, a program cannot hold the CPU for a long duration
intentionally (e.g. infinite loop). The beauty of multithreading is that the other tasks that are not
stuck in the loop can continue processing without having to wait for the stuck task to finish.
Threads in Java can place locks on shared resources so that while one thread is using it, no other
thread is allowed to access it. This is achieved with the help of synchronization.

More about threads and its implementation will be taken up later in Chapter 8.

2.6.7 Other Features
Automatic Memory Management
Automatic garbage collection (memory management) is handled by the JVM. To create an instance
of a class, the ‘new’ operator is used (refer to Chapter 4). However, Java automatically removes
objects that are not being referenced. This is known as garbage collection. The advantages and
disadvantages of garbage collection are listed below.

Advantages
  Reduces the possibility of memory leaks, since memory is freed as needed. A memory leak

occurs when the memory allocated is not released, resulting in an unnecessary consumption
of all the available memory.

  Memory corruption does not occur.

Disadvantage
  Garbage collection is considered one of the greatest bottlenecks in the speed of execution.

Dynamic Binding
The linking of data and methods to where they are located is done at runtime. New classes can
be loaded at runtime. Linking is done on-the-fly, i.e., on-demand.

Good Performance
Interpretation of byte code slowed performance in early versions, but advanced virtual machines
with adaptive optimization and just-in-time compilation (combined with other features) provide
high speed code execution.

Built-in Networking
Java was designed with networking in mind and comes with many classes to develop sophisticated
Internet communications. A detailed discussion on this topic is taken up later in Chapter 11.

Getting Started with Java 21

No Pointers
Java uses references instead of pointers. A reference provides access to objects. The programmer
is relieved from the overhead of pointer manipulation.

No Global Variables
In Java, the global namespace is the class hierarchy and so, one cannot create a variable outside
the class. It is extremely difficult to ensure that a global variable is manipulated in a consistent
manner. Java allows a modified type of the global variable called static variable.

2.7 PROGRAM STRUCTURE

A Java application consists of a collection of classes. A class is
a template. An object is defined as an instance of the class. Each
instance (object) contains the members (fields and methods)
specified in the class. A field is one that holds a value. A method
defines operations on the fields and values that are passed as
arguments to the method (see Fig. 2.7).

Let us now create our first Java program. Example 2.1 below
shows a very simple Java program which displays a string on the
console. It has just one print statement (the program is explained
in Section 2.7.3).

Example 2.1 First Java Program

L1 /* Call this file"Example.java".*/
L2 class Example {
L3 //your program starts execution with a call to main()
L4 public static void main (String args[]){
L5 System.out.println(“This is a simple Java program”);
L6 }
L7 }

2.7.1 How to Execute a Java Program?
There are three easy steps for successfully executing the Java program:

 1. Entering the Source Code The above program (Example 2.1) can be written in any
text editor (like Notepad) but make sure it is written exactly the same way it is shown.

 2. Saving the Source Code Now that you’ve written the code in Notepad, this is how
you’ll save it

  Select File | Save As from the notepad menu.
  In the ‘File name’ field, type “Example.java” within double quotes.
  In the ‘Save as type’ field select All Files (*.*).
  Click enter to save the file.

class Example

Method ABC

Local variables

Instruction

Method XYZ

Local variables

Instruction

Class and Instance

variables

Fig. 2.7 Program Structure

22 Programming in Java

 3. Compiling and Running the Source Java programs are compiled using DOS. For
opening OS, type cmd at the run prompt and move to the folder that contains the saved
Example.java fi le. Now compile the program using javac, specifying the name of the
source fi le on the command line as shown below. (Assuming the fi le was saved in a
folder ‘javaeg’ in the C drive.)

 C:\>cd javaeg // change to directory javaeg using cd command
 C:\javaeg\>javac Example.java

The javac compiler creates a file called Example.class (in the same directory). This class
contains the bytecode version of the program. This bytecode will be executed by the Java
interpreter using java followed by the class name as shown below.

C:\javaeg\>java Example

 Output

 This is a simple Java program

2.7.2 Why Save as Example.java?
When the Java source code is compiled, each individual class is put in its own output file named
after the class and using the .class extension. That is why it is a good idea to give the Java
source files the same name as that of the class they contain. The name of the .class file will
match exactly with the name of the source file.

In many programming languages, the name of the source code file can be arbitrary. This is
not so with Java. In the above example, the name of the source file should be Example.java. In
Java, a source file is a normal text file that contains one or more class definitions.

The extension for the source file must be .java. By convention, the name of the file and the
name of class should be same (even the case should match) and that is why we named the above
example as Example.java. Java is case-sensitive. So example and Example are two different
class names.

Note You can also provide a different name for naming a source file. For example, the above
example can be saved as First.java. But in that case, when you compile the file, the .class
that will be generated will have the name Example.class. So for executing the program, you
have to mention java Example on the command line. This may lead to confusion, so it is
advised that the name of the Java file should match with the name of the class defined in the
file (case-wise also). Also note that in case the source file contains more than one classes
defined within itself, the java file name should match exactly with the class name that contains
the main method.

2.7.3 Explanation
L1 The program begins with the comment:

 /* Call this file “Example.java”.*/

The comments are ignored by the compiler. Comments are a good way to induce documentation
in programming.
L2 The next line of code in the program is

 class Example {

Getting Started with Java 23

This line uses the keyword class to declare that a new class is being defined followed by the
class name, i.e., Example. The entire class definition, including all its members, will be between
the opening curly brace ({) and the closing curly brace (}).
L3 Another type of comment is used in this line.

 // your program starts execution with a call to main()

This type of comment is called a single-line comment, and it begins with a double slash //.
L4 This line shows the main method for the class.

 public static void main (String args []) {

This is the line from where the program will start its execution. All applications in Java start
execution from main(). Every complete Java Application must contain a root class where the
execution can begin. A root class must contain a main method defined with the header, as shown
in this line. Let us take a brief look at the attributes of main().
public It is an access specifier used to specify that the code can be called from anywhere.main()is
declared public because it is called by codes outside the class it is a part of. It is called by the JVM.
static It is declared static because it allows main()to be called without having to instantiate
the class. JVM need not create an instance of the class (i.e. object of the class) for calling the
main()method.
void It does not return a value. The keyword void simply tells the compiler that main()does not
return anything back to the caller, i.e., JVM.
String args[] It holds optional command line arguments passed to the class through the java
command line. The curly bracket at the end marks the beginning of the main method and it
ends in L6.

Note The Java compiler will compile classes that do not contain a main () method, but the
Java interpreter has no way to run these classes.

L5 It shows a print statement. If you want to display anything on the standard output, this
statement is used.

System.out.println ("This is a simple Java program");

This line prints the string "This is a simple Java Program" on the standard output. System is
a predefined class. The string (mentioned in double quotes) passed to the println method is
displayed as it is on the standard output. All statements in Java are terminated by a semicolon (;).
Lines other than println()don’t end with a semicolon because they are technically not statements.
L6 The closing curly bracket marks the closing of the main method.
L7 The closing curly bracket marks the closing of the class.

2.8 JAVA IMPROVEMENTS

Features of different versions of Java are discussed in the following sections.

2.8.1 Java 5.0 Features
We present a host of features in Java 5 and later discuss some of the improvements in Java 5.

24 Programming in Java

Autoboxing and Unboxing
Chapter 3 explains that Java has primitive types like int for integers, and Chapter 4 explains
classes and objects. The difference between the two types is very important. In Chapter 6, we
examine the so-called autoboxing and unboxing features added to J2SE 5.0 that removes the
need for explicit conversions in most cases and thus improves code readability and removes
boilerplate codes and sources of errors.

Enhanced for Loop
Chapter 3 looks at several types of looping structures available in Java, one of which is the for
loop (quite similar to the C/C++ for loop). Version 5.0 includes an enhanced for loop syntax
that reduces code complexity and enhances readability. We introduce the enhanced for loop in
Chapter 4 and describe the object types with which the enhanced for loop works.

Enumerated Types
Chapter 6 presents a feature of C/C++ that many programmers have missed in Java. An
enumerated type has been added with the enum keyword. The new enumerated type includes all
the features of C/C++ enum including type safety.

StringBuilder Class
We will be discussing this class in Chapter 6, along with the older StringBuffer class. It offers
better performance than StringBuffer class.

Static Import
Release 5.0 includes a new technique for accessing Java static methods and constants in another
class without the need to include the full package and class name every time they are used. (We
will explain the terms class, package, static, import, etc. in Chapters 4 and 7). The ‘static
import’ facility makes your code easier to write and less error-prone. We will discuss static
import in more detail in Chapter 7 after discussing import in general.

Metadata
The metadata facility (annotation) is designed to reduce much of the boilerplate code that would
be required in the earlier versions of Java. Annotations, though not a part of the program, provide
information about the program to the compiler. This information can be used to detect errors and
supply warnings. Annotations begin with ‘@’. The javac compiler processes some annotations
and some require the annotation-processing tool, apt.

Formatted I/O and Varargs
In Chapter 9, we discuss how to format numerical output with Java. Version 5.0 adds the ability
to produce formatted output easily in the form of a printf()method that behaves similar to
the printf() function in C/C++. There is also a formatted input feature (Scanner class) that is
described in Chapter 9. Both these features rely on ‘varargs,’ which stands for variable argument
list in which the number of parameters passed to a Java method is not known when the source
is constructed (also known as variable arity methods) (see Chapter 4 for varargs).

Getting Started with Java 25

Graphics System Improvements
Release 5.0 includes numerous bug fixes and minor tweaks to Java’s graphics subsystems known
as AWT and Swing, including reduced memory usage. The biggest improvement is that it is no
longer necessary to call getContentPane() when adding Swing components.

New Concurrency Features
Chapter 8 discusses Java’s multithreading support that has been present since Version 1.0.
Release 5.0 enhances the multithreading features of Java. Some of these additions depend upon
the generics concept, so we wait until Chapter 10 to introduce these important new capabilities.

 Generics
In Chapter 10, we introduce the new generics feature, an important subject that we will cover
in detail. Java is type-safe, which simply means that every variable has a well-defined type and
that only compatible types can be assigned to each other. However, the use of generics adds a
greater amount of compile-time safety to the Java language. The use of generics allows objects
of only a specified type to be added to a collection, thereby enhancing the runtime safety and
correctness of the program; otherwise a compile-time error occurs.

Other new features in J2SE 5.0 include core XML support, improvements to Unicode,
improvements to Java’s database connectivity package known as JDBC, and an improved,
high-compression format for JAR files that can greatly reduce download times for applets and
other networking applications.

Java 2 platform Standard Edition 5.0 (J2SE 5.0) dealt with improvements in the ease of
development (EoD) category. The new EoD features were all about syntax shortcuts that greatly
reduce the amount of code that must be entered, making coding faster and error-free. Some
features enable improved compile-time type checking, thus producing fewer runtime errors.
Apart from EoD category, new multithreading and concurrency features were added that provide
capabilities previously unavailable. The designers of J2SE considered quality, stability, and
compatibility to be the most important aspect of the new release. A lot of efforts were made
to ensure compatibility with previous versions of Java. Faster JVM startup time and smaller
memory footprint were important goals. These have been achieved through careful tuning of
the software and the use of class data sharing. It is much easier to watch memory usage, detect
and respond to a low-memory condition in Java 5.

2.8.2 Java 6 Features
Some of the major enhancements to Java 6 are given below.

 Collections API
The motive was to provide bidirectional collection access. New interfaces have been added like
Deque, BlockingDeque, etc. and existing classes like Linked List, TreeSet, and TreeMap have
been modified to implement these new interfaces. A bunch of new classes have been added like
ArrayDeque, ConcurrentSkipListSet, etc.

Input/Output
A new class named Console has been added to the java.io package. It contains methods to
access character-based console. New methods have been added to File class.

26 Programming in Java

Jar and Zip Enhancements
Two new compressed streams have been added.

  java.util.zip.Defl aterInputStream:for compressing data

  java.util.zip.Infl aterOutputStream:for decompressing data
These classes are useful for transmitting compressed data over a network.

Enhancements Common to Java Web Start and Java Plug-in
All dialogs have been redesigned to be more user-friendly. Caching can be disabled via the Java
control panel. A new support for SSL/TSL is added.

Enhanced Network Interface
It provides a number of new methods for accessing state and configuration information relating
to a system’s network adapters. This includes information such as MAC addresses and MTU
size (discussed in Chapter 11).

Splash Screen
Applications can display the splash screen even before the virtual machine starts.

Java 6 also enhanced the monitoring and mangement API and made significant changes to
JConsole.

 2.8.3 Java 7 Features
A number of features have been added in Java 7 such as revised switch…case to accept strings,
multi-catch statements in exception handling,try-with-resource statements, the new file input
output API, the fork and join framework and a few others.

String in switch…case Statement
Java 7 added strings to be used in switch…case statements apart from primitives (short, byte,
int, char), enumerated type and few wrapper classes (discussed in Chapter 3).
Unicode 6.0.0 Support
Java 7 supports Unicode 6.0.0. A new string representation is used to express unicode characters
(discussed in Chapter 6).
 Binary Literals and Numeric Literals (with Underscores)
Java 7 added binary literals and underscores to be used with numeric literals. This feature is
particularly useful in increasing the readability of larger literals with a long sequence of numbers
(discussed in Chapter 3).
Automatic Resource Management
A new try with resources statement is introduced so that resources specified with try are released/
nullified when try block exits. There is no need to manually free up the resources using finally
block as was the case with earlier versions of Java (discussed in Chapter 7).
Improved Exception Handling
Java 7 introduced a multi-catch block where multiple exceptions can be caught using a single
catch block (discussed in Chapter 7).

Getting Started with Java 27

nio 2.0 (Non-blocking I/O)—New File System API
java.nio.file package was created in Java 7 to include classes and interfaces like Path,Paths,
File System, File Systems and others. Simplified methods to efficiently copy, move, create
links and receive file/directory change notifications were also incorporated (Chapter 9).
 Fork and Join Fork and Join Framework is incorporated in Java 7 to have a more efficient
kind of parallel processing. The task is divided (forked) into smaller task such that no thread is
idle and whose results are combined (joined) to achieve the desired outputs. The classes for the
Fork-Join mechanism are ForkJoinPool and ForkJoinTask.
Supporting Dynamism Java compiler performs the type checking of variables, methods,
arguments etc. Java 7 incorporates a new feature invokedynamic to let JVM resolve type
information at runtime like few other dynamic languages and incorporate non-java language
requirements.
 Diamond Operator The Generics declaration, prior to Java 7, required the types to be declared
on both the sides of the declaration. Java 7 onwards the compiler can deduce the type on the right
side, using the diamond operator (< >), by looking at the left-hand-side declaration.
Swing Enhancements Swings added a host of features like AWT and Swing components can
be used together without any problems,JLayer class, Nimbus look and feel, HSV color selection
tab in the JColorChooser class and more (see Chapter 15 for details).
Java FX 2.2.3 Java FX provides the new GUI toolkit for creating rich cross-platform user
interfaces across different types of devices like TV, mobile, desktop etc. Java FX is bundled
with JDK 7.

2.8.4 Brief Comparison of Different Releases
Table 2.1 presents a brief comparison of different releases of Java.

Table 2.1 Java JDK Major Releases and their Differences

Version Name New Features Introduced
1.0 Oak Java released to public.
1.1 Sparkler Added a totally new event model, using Listeners, anonymous classes, and inner classes.
1.2 Playground Added Array List and other Collections, added swing. Added DSA code signing.

Added buffered image.
1.3 Kestrel java.util.Timer,java.lang.StrictMath,java.awt.print.Page Attributes, java.

media.sound (MIDI) Hotspot introduced. RMI can now also use CORBA’s IIOP protocol.
Added RSA code signing.

1.4 Merlin Added regexes, assertions, and nio.
1.5 Tiger Added StringBuilder, java.util.concurrent, generics, enumerations and, annotations.
1.6 Mustang Applet splash screens, table sorting, true double buffering, digitally signed XML fi les,

JavaCompilerTool, JDBC 4.0, smart card API, Console.readPassword, improved drag
and drop.

1.7 Dolphin Automatic resource management, String in switch…case, Fork and join framework,
dynamism support, Unicode 6 supported, Java Fx 2.2.3.

1.8 Not yet
released

There is still on-going discussion on what should be included.

28 Programming in Java

2.9 DIFFERENCES BETWEEN JAVA AND C++

Here is a technical overview of the differences between Java and C++. The following points list
out the aspects that are present in Java and absent in C++.
Multiple Inheritance Not Allowed Multilevel inheritance is enforced, which makes the design
clearer. Multiple inheritance among classes is not supported in Java. Interfaces are used for
supporting multiple inheritance.
Common Parent All classes are single-rooted. The class Object is the parent of all the classes
in Java.
 Packages The concept of packages is used, i.e., a large, hierarchical namespace is provided.
This prevents naming ambiguities in libraries.
In-source Documentation In-source code documentation comments are provided. Documenta-
tion keywords are provided, e.g. @author, @version, etc.
All Codes Inside Class Unlike C++, all parts of a Java program reside inside the class. Global
data declaration outside the class is not allowed. However, static data within classes is supported.
 Operator Overloading Operator overloading is not supported in Java but a few operators are
already overloaded by Java, e.g. ‘+’. Programmers do not have the option of overloading operators.
Explicit boolean Type boolean is an explicit type, different from int. Only two boolean literals
are provided, i.e. true and false. These cannot be compared with integers 0 and 1 as used in
some other languages.
Array Length Accessible All array objects in Java have a length variable associated with them
to determine the length of the array.
go to Instead of goto, break and continue are supported.
Pointers There are no pointers in Java.
 Null Pointers Reasonably Caught Null pointers are caught by a NullPointerException.
Memory Management The use of garbage collection prevents memory leaks and referencing
freed memory.
Automatic Variable Initialization All variables are automatically initialized, except local
variables.
Runtime Checking of Container Bounds The bounds of containers (arrays, strings, etc.) are
checked at runtime and an IndexOutOfBoundsException is thrown if necessary.
Platform Independence C++ is not a platform-independent language whereas Java is.
Sizes of the Integer Types Defined The sizes of the integer types byte, short, int, and long
are defined to be 1, 2, 4, and 8 bytes.
Unicode Provided Unicode represents the characters in most of the languages, e.g. Japanese,
Latin, etc.
String Class An explicit predefined String class is provided along with StringBuffer and
new StringBuilder class.

Getting Started with Java 29

Extended Utility Class Libraries: Package java.util Supported among others, Enumeration
(an Iterator interface), Hashtable, Vector.

Default Access Specifier Added By default, all the variables, methods, and classes in Java
have default privileges that are different from private access specifier. Private is the default
access specifier in C++.

2.10 INSTALLATION OF JDK 1.7

Before writing a single line of code, the software application developer must first make sure
that the best tool for the job are at his or her disposal. Java was designed to be a cross-platform,
object-oriented programming language. Because of the huge amount of interest generated by
the introduction of Java, new tools are being introduced every now and then that provide the
developer with greater flexibility and ease of use.

2.10.1 Getting Started with the JDK
Sun (and now continued by Oracle) decided to give away a Java Developer’s Kit (JDK) that
would provide the basic tools needed for Java programming. The JDK provides the beginners
with all the tools needed to write powerful Java applications or applets. It contains a compiler,
an interpreter, a debugger, sample applications, applet viewer, and some other tools that you
can use to test your code.

A quick visit to Oracle Java website will allow you to download the JDK to your local machine.
Check for the latest version of JDK and download that from this site. The following operating
systems are supported for JDK:
(a) Oracle Solaris (b) Windows (c) Linux (d) Mac
Remember that the availability of JDK for these platforms simply means that Oracle has
implemented the JVM and development tools for these platforms.

2.10.2 JDK Installation Notes
When the Java SE Development Kit is installed, the Java SE Runtime Environment is installed
as well.

Note For the installation of JDK 1.7 on Solaris platform (both 32-bit and 64-bit), you can refer to the
installation documentation on Oracle official site:

http://docs.oracle.com/javase/7/docs/webnotes/install/solaris/solaris-jdk.html
Similarly, for installation of JDK 1.7 on Linux operating system (both 32 bit and 64 bit), visit:

http://docs.oracle.com/javase/7/docs/webnotes/install/linux/linux-jdk.html
For JDK installation on MAC OS visit:

http://docs.oracle.com/javase/7/docs/webnotes/install/mac/mac-jdk.html
The JDK for any OS can be downloaded from:

www.oracle.com/technetwork/java/javase/downloads/jdk7u9-downloads-1859576.html.
Refer to www.oracle.com/technetwork/java/javase/downloads/index.html for latest Java SE
releases.

30 Programming in Java

In this book, we intend to provide the details of installation of JDK 1.7 on Windows operating
system only.

JDK has two versions numbers—an external version number 7 and an internal version
number1.7.0_09, i.e., version 7 update 9.

The installation and configuration process can be broken down into the following steps:
 1. Run the JDK installer.
 2. Update the Path and Classpath variables.
 3. Test the installation.

Step 1: Run the JDK Installer
If you have downloaded the JDK software file (JDK installer) instead of running the installer
from the Java website, you should check to see that the complete file is downloaded:

jdk-7u9-windows-i586.exe

Note The JDK documentation can be downloaded from the following URL: www.oracle.com/
technetwork/java/javase/documentation/java-se-7-doc-download-435117.html.

Double-click on the icon of the JDK Installer.exe to run the installer and then follow the
instructions. Figures 2.8(a)–(h) show some of the snapshots of the installation process. The first
Welcome screen is displayed as soon as you double click on the installer.

Fig. 2.8(a)

The welcome screen also tells you that Java FX SDK is now a part of Java 7. Click on Next>,
the installer prompts you to select what all you want to install and where to install them in your
system.

Getting Started with Java 31

Fig. 2.8(b)

By default, the JDK will be installed at the path mentioned in Install to. You can change
the default path by clicking the Change… button. As soon as you click on the Next> button, the
installation starts.

Fig. 2.8(c)

32 Programming in Java

Figure 2.8(d) snapshot shows that JRE will be installed.

Fig. 2.8(d)

Figure 2.8(e) prompts you to make a selection for installing JRE. As soon as you click on Next>,
the installation of JRE starts.

Fig. 2.8(e)

Getting Started with Java 33

The following snapshot shows you that the JRE is getting registered.

Fig. 2.8(f)

Finally, Java is installed successfully as shown in the snapshot below.

Fig. 2.8(g)

Once you are finished with installation of Java, you get a ‘Thank You’ message (Fig. 2.8(h))
from Oracle Corporation and asking you to register so that you can get alerts, notifications,
special offers, and access to future releases and documentation.

www.ebook3000.com

http://www.ebook3000.org

34 Programming in Java

Fig. 2.8(h)

Installed Directory Structure
JDK 7 will be installed (by default) in c:\program files\java\jdk1.7.0_09 and will have the
following directory structure (Fig. 2.9):

bin lib

jdk1.7.0

jre src.zip db include

java.exe
javac.exe
javap.exe
javah.exe
javadoc.
exe
...

tools.jar

dt.jar
...

java.exe

java.dll

awt.dll

bin lib

client server

jvm.dll jvm.dll

ext security applet fonts

localedata.jar

rt.jar

charsets.jar

Plugin 2 dtPlugin

Fig. 2.9 Structure of JDK Software and Documentation Directories

Included in the directory structure is a file src.zip. Do not unzip the src.zip file as it contains
all the core class binaries, and is used by JDK in this form.

Getting Started with Java 35

  include\ The include directory contains a set of C and C++ header fi les for interacting
with C and C++.

  lib\ This directory contains non-core classes like dt.jar and tools.jar used by tools
and utilities in JDK.

  bin\ The bin directory contains the binary executables for Java. For example, Java
Compiler (Java), Java Interpreter (Java) ,rmicompiler (rmic) etc.

  jre\ It is the root directory for the Java runtime environment.
  db\ Contains Java database.

Step 2: Update Path and Classpath Variables
It is not possible to run a Java program without modifying system environment variables (such
as Path or Classpath) or modifying the autoexec.bat.
Why to Set Path Variable? The PATH environment variable needs to be set if you want to run
the executables (javac.exe, java.exe, javadoc.exe, etc.) from any directory. If you want to find
out the current value of your PATH, then type the following at the DOS prompt:

 C:\>path

Windows NT/XP/Vista/7 It is preferable to make the following environment variable changes
in the Control Panel instead of the autoexec.bat file. Start the Control Panel, select System, and
then edit the environment variables. In case of other recent versions of Windows, right click
on the My Computer icon, and select Properties, click on Environment. The System Properties
window appears. Select Path from the list of system variables and append the following path to
existing path: C:\PROGRA~1\JAVA\JDK1.7\bin (complete path of \bin).

Note Do not erase the existing paths in the path system variable; only append the new path
separated by a semicolon.

 Classpath—What it does? The Classpath tells the JVM and other Java applications where
to find the class libraries and user-defined classes. You need to set the classpath for locating
class libraries, user-defined classes, and packages.

Setting the Classpath
The same procedure (explained above) can be followed for setting the classpath environment
variable with the exception that now you will not look for the path variable but for the classpath
variable.

Step 3: Testing the Installation
Your computer system is now configured and ready to use the JDK. The Java tools do not have
a GUI, as they are all run from the DOS command line. For testing the installation, type the
following command at the command line:

 C:\>javac and C:\>java
If the following screenshots are displayed on typing the command ‘java’ on the DOS prompt, it
means that Java is properly installed and the path is set (Figs 2.10(a) and (b)).

36 Programming in Java

Fig. 2.10(a)

Fig. 2.10(b)

Getting Started with Java 37

2.10.3 Exploring the JDK
It is important to know the complete structure of Java 7. The following diagrammatic
representation (Fig. 2.11) can give you an idea about the various constructs Java 7 is made up
of. It also shows the various components taken care by each construct.

It will be interesting to know, which part(s) of Java 7 will comprise the JDK, JRE, or Java
API? The following representation answers the question in contention. It is worth noting that
the Java API is a subset of JRE and the JRE is a subset of JDK.

The Java Standard Edition (JavaTMSE) Development Kit includes the JRE plus the command-
line development tools such as compilers and debuggers that are necessary for developing applets
and applications.

Tools
and
Tool
APIs

java

Security

javac

Int'l

javadoc

RM1

jar

IDL

javap

Deploy

JPDA

Monito-
ring

Java DB

Trouble-
shoot

jconsole

Scripting JVM T1

Deployment

Technologies
Web Start Java Plug-in

User Inter-

face Tookits Accessibility Drag and Drop

AWT Swing

Input Methods Image I/O Print Service

Java 2D

Sound

Integration

Libraries
IDL JDBC JNDI RMI RMI-IIOP Scripting

Other Base

Libraries

Beans

Networking

Int’l Support

Override

Mechanism

I/O

Security

JMX

Serializ-

ation

JNI

Extension

Mechanism

Math

XML JAXP

Lang
and util
Base
Libraries

Lang & util

Preferences

API

Collections

Ref. Objects

Concurrency
Utilities

Reflection

JAR

Regular
Expressions

Logging

Versioning

Management

Zip Instrument

Java Virtual Machine

Web
Services

JavaFX

Fig. 2.11 Structure of Java 7
The JRE provides the JVM and other components necessary for you to run applets and

applications written in the Java programming language (see Fig. 2.12).

Tools in JDK
The tools available in JDK are split into the following categories:

  Basic tools (javac, java, javadoc, apt, appletviewer, jar, jdb, javah, javap, extcheck)
  Security tools (keytool, jarsigner, policytool, kinit, klist, ktab)
  Internationalization tools (native2ascii)
  Remote Method Invocation (RMI) tools (rmic, rmiregistry, rmid, serialver)
  Java IDL and RMI-IIOP tools (tnameserv, idlj, orbd, servertool)

38 Programming in Java

  Java deployment tools (pack200, unpack200)
  Java plug-in tools (html converter)
  Java Web Start tools (javaws)
  Java Monitoring and Management Console (jconsole)
  Java Web Services tools (schemagen, wsgen, wsimport, xjc)

Basic Tools
Figures 2.12 and 2.13 show the structure of Java and the basic tools available in JDK, respectively.
javac Java complier is named javac. The Java compiler takes input source code files (these
files typically have the extension .java) and converts them into compiled bytecode files (these
files have the extension .class).
java The Java interpreter, known eponymously as java, can be used to execute Java applications.
The interpreter translates bytecodes directly into program actions.
 javadoc As programmers, we have fought it in every way possible. Unfortunately, there is no
longer any excuse for not documenting our source code. Using the javadoc utility provided
with the JDK, you can easily generate documentation in the form of HTML files. To do this,
you embed special comments and tags in your source code and then process your code through
javadoc. All the online Java API documentation was created with javadoc.
 apt It stands for Annotation Processing Tool, used for processing annotations.

-User Interface Toolkits

-Integration Libraries

-Other Base Libraries

-Lang and util Base Libraries

-Deployment Technologies

-Java API

-Java Virtual Machine

-Java Language Constructs

-Tools and Tool APIs

-JRE

Java

API

JRE

JDK

Fig. 2.12 Java Structure

Basic Tools

javac

java

javadoc

apt

appletviewer

jar
jdb

javah

javap

extcheck

Fig. 2.13 Basic Tools Available in JDK

Getting Started with Java 39

 appletviewer This small program provides a real Java environment for testing applets. It loads
the HTML file in which the applet has been embedded and displays the application in a browser-
like window.
 jar It is used for creating and managing jar (similar to WinZip file) files.
 jdb The Java debugger, jdb, enables you to debug your Java classes. Unfortunately, the Java
debugger is a throwback to the pre-GUI debugger dark ages of programming. The Java debugger
is a command-line debugger. You can use the jdb to set breakpoints, inspect objects and variables,
and monitor threads.
 javah Because Java is a new language and must fit in a world dominated by C and C++, it
includes the capability to use native C code within a Java class. One of the steps in doing this
is by using the Java header file generator, javah.

 javap One of the basic tenets of object-oriented programming is that programmers unfamiliar
with a class need only concern themselves with the public interface of that class. If you want to
use a class, you shouldn’t be concerned with how this class has been written.

Because you should be interested only in the public interface of a class, the JDK includes a
disassembler,javap, that can be used to display the public interface, both methods and variables,
of a class. Additionally, the Java disassembler includes options to display private members or to
display the actual bytecodes for the class’s methods. This last option can be particularly useful
if you want to achieve a greater understanding of the bytecodes used by the Java interpreter.

extcheck It is used for detecting Jar conflicts.

2.11 INTEGRATED DEVELOPMENT ENVIRONMENT

Integrated development environment (IDE) contains the tools specifically designed for writing
Java codes. These tools offer a GUI environment to compile and debug your Java program easily
from the editor environment as well as browse through your classes.

New Java IDEs are released every now and then, as Java is accepted as a viable programming
language. Some of these IDEs are listed below.
 Eclipse It is an open source extensible IDE. At present, it is a Java IDE and includes Java
development tools. The requirement is that you should have the JRE installed on your machine.
The IDE supports Windows XP, Windows 2000, Windows 7, Vista, Linux, and Solaris.
 Gel It is an IDE for Java that features syntax highlighting (Java, JSP, HTML, XML, C, C++,
Perl, Python, etc.), unlimited undo and redo, column selection mode, block indent and un-indent,
highlighting of matching braces, spell-checking, automatic positioning of closing braces, auto
indent, regular expression searches, find in files, code completion (Java and JSP), parameter hints,
identifier hints, context-sensitive help linked to Javadoc, class browser, project management,
integrated support for ANT and JUnit, differencing tool to compare files, etc. It works only on
Windows.

DrJava It is an integrated development environment for Java, released under the GNU GPL
that allows you to interactively evaluate Java expressions.

40 Programming in Java

 JCreator The light edition of this IDE for Java has support for project management, a syntax
highlighting editor, wizards, class viewer, package viewer, tabbed documents, JDK profiles
(which allows you to work with multiple JDK), a customizable user interface, etc. JCreator runs
on Windows 95, 98, NT, and 2000.

 NetBeans It is a cross-platform open source IDE for Java. It comes with a code editor that
supports code completion, annotations, macros, auto-indentation, etc. It integrates with compilers,
debuggers, JVMs, and other tools.

SUMMARY
Java is a programming language invented by James
Gosling and others in 1994. Java was originally named
Oak and was developed as a part of the Green Project
at the Sun Company. Patrick Naughton, Mike Sheridan,
and James Gosling were trying to figure out the next
wave in computing and that wave came in 1995, when
Java started to be visualized as a language for Internet
applications.
 It is conceived that Java is a pure object-oriented
language, meaning that the outermost level of data
structure in Java is the object. Java is designed to
be platform independent, so it can run on multiple
platforms. The same runtime code can be downloaded
on any platform and be executed there, if that platform
supports the Java runtime environment. For this,
Java incorporates elements of both interpretation and
compilation.
 At the heart of Java Runtime Environment lies the
Java Virtual Machine or JVM. Most programming
languages compile source codes directly into machine
codes, suitable for execution on a particular micropro-
cessor architecture. But Java is somewhat different,

as it uses bytecode—a special type of machine code.
Java bytecode executes on a special type of micro-
processor. As there was no hardware implementation
of this microprocessor available when Java was first
released, the complete processor architecture was
emulated by a software known as the virtual machine.
Java is a robust language, as its two properties, type

checking and interpretation makes Java programs
crash-proof. Java has several other features that
protect the integrity of the security system and
prevent several common attacks. Java is inherently
multithreaded, i.e., multiple threads developed in this
language can be executed concurrently.
Other features of Java include automatic memory

management, dynamic binding, optimal performance,
built-in networking capabilities, etc. The garbage col-
lector relieves the programmers from memory deal-
location. Java uses references instead of pointers.
Every Java program consists of one or more classes.

A class is nothing but a template for creating objects.
In Java, codes reside inside a class. The name of the
class must match with the name of the file.

EXERCISES

Objective Questions
 1. What was the name of fi rst version of Java?
 (a) Oak (b) Mustang
 (c) Tiger (d) Playground
 2. What was the name of the team that developed

Java?
 (a) Green Team (b) Star Seven
 (c) Sun (d) Java team
 3. What is the name of the tool that is used for

compiling a Java program?

 (a) javap (b) java
 (c) javah (d) javac
 4. What is the name of the tool that is used for

interpreting a Java program?
 (a) javap (b) java
 (c) javah (d) javac
 5. What process automatically removes objects that

are not being referenced?
 (a) Multithreading (b) Object Reclamation

Getting Started with Java 41

 (c) Garbage collection (d) Object collection
 6. What is the name of the tool that is used for

running Applets?
 (a) javap (b) javac
 (c) java (d) appletviewer
 7. What is the extension of the source fi les in Java?
 (a) .jav (b) .java
 (c) .bytecode (d) .class
 8. What is the extension of the bytecode fi les in

Java?
 (a) .jav (b) .java

Programming Exercise
 1. Write a program to print ‘Welcome’ followed by your name and ‘How are you?’

Answers to Objective Questions
 1. (a) 2. (a) 3. (d) 4. (b)
 5. (c) 6. (d) 7. (b) 8. (c)
 9. (a) and (d) 10. (a) and (d)

 (c) .class (d) .bytecode
 9. Which all are correct for main method?
 (a) public static void main(String args[])
 (b) private static void main(String args[])
 (c) static void main(String args[])
 (d) public static void main(String a[])
 10. Which of the following are added in Java 7?
 (a) String in switch case
 (b) meta data
 (c) annotations
 (d) automatic resource management

Review Questions
 1. Why is Java known as a platform-independent

language?
 2. Explain the security model of Java that makes it

more secured than other languages.
 3. Why is Java known to be multithreading? How

does it help Java in its performance?
 4. C++ is an object-oriented language older than

Java, then why did Java replace C++ in most of
the application development?

 5. Java had middle-tier capabilities. What does this
statement mean?

 6. Java was used in Internet applications. Cite
reasons.

 7. Explain the importance of JVM in JRE.
 8. Explain the structure of a Java program.
 9. Explain the steps for executing a Java program.
 10. What is the importance of setting environment

variables such as Path and Classpath?
 11. Discuss the tools available in JDK. How do they

help in application development?

 I often say . . . that when you can measure what you are speaking about, and express
it in numbers, you know something about it; but when you cannot measure it, when
you cannot express it in numbers, your knowledge is of a meager and unsatisfactory
kind; it may be the beginning of knowledge, but you have scarcely, in your thoughts,
advanced to the stage of science, whatever the matter may be. Lord Kelvin

After reading this chapter, the readers will be able to
  understand how variables are used in
  know the basic data types
  learn expressions and conditional statements
  use all the available operations in Java
  know the basics of conversion and casting
  understand loops and branching statements

3.1 VARIABLES

 Variable is a symbolic name refer to a memory location used to store values that can change
during the execution of a program. Java declares its variables in the following manner:

int noofwatts = 100; // variable declaration

Data type Identifier Literal

A variable declaration involves specifying the type (data type), name (identifier), and value
(literal) according to the type of the variable. Let us have a look at the three components in detail.

3.2 PRIMITIVE DATA TYPES

Primitive data types are the basic building blocks of any programming language. A primitive
data type can have only one value at a time and is the simplest built-in form of data within Java.

Java Programming
Constructs 33

Java Programming Constructs 43

All variables in Java have to be declared before they can be used, that is why Java is termed as
a strongly typed language. There are eight primitive data types in Java, as follows:

For whole number

byte

short

int

long

float

double

char

boolean

For real numbers

Characters

Boolean

Java is portable across computer platforms. C and C++ leave the size of data types to the machine
and the compiler, but Java specifies everything.

Note All integer (byte, short, int, long) and floating-point types (float, double) are signed in Java.

byte It is a 1-byte (8-bit) signed 2’s complement integer. It ranges from –128 to 127
(inclusive). The byte data type can be used where the memory savings actually matter.

short It is a 2-byte (16-bit) signed 2’s complement integer. It ranges from –32,768 to 32,767
(inclusive). As with byte, you can use a short to save memory.

 int It is a 4-byte (32-bit) signed 2’s complement integer. It ranges from –2,147,483,648
to 2,147,483,647 (inclusive). For integral values, this data type is the default choice.

 long It is an 8-byte (64-bit) signed 2’s complement integer. It ranges from
–9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 (inclusive). This data
type should be used only when you need a range of values wider than int.

 Floating point conforms to the IEEE 754-1985 binary fl oating point standard.
 fl oat It is a single-precision 32-bit fl oating point. It ranges from 1.401298464324817e–45f

to 3.402823476638528860e+38f.
 double This data type is a double-precision 64-bit floating point. It ranges from

4.94065645841246544e–324 to 1.79769313486231570e (+) 308. For decimal
numbers, this data type is the default choice.

boolean It has only two possible values: true and false. The size of this data type is not
precisely defi ned.

char The unsigned char data type is a single 16-bit unicode character. It ranges from ‘\
u0000’ (or 0) to ‘\uffff’ (or 65,535 inclusive).

Note Unlike C/C++, where handling of character sequences is tedious, Java provides a class
named “String” for handling character strings enclosed within double quotes. Although it is
not a primitive data type, Java string solves much of the complexity with ease.

44 Programming in Java

3.3 IDENTIFIER

Identifiers are names assigned to variables, constants, methods, classes, packages, and interfaces.
No limit has been specified for the length of a variable name. Identifiers can have letters, numbers,
underscores, and any currency symbol. However they may only begin with a letter, underscore,
or a dollar sign. Digits cannot be the first character in an identifier.

3.3.1 Rules for Naming
 1. The fi rst character of an identifi er must be a letter, an underscore, or a dollar sign ($).
 2. The subsequent characters can be a letter, an underscore, dollar sign, or a digit. Note

that white spaces are not allowed within identifi ers.
 3. Identifi ers are case-sensitive. This means that Total_Price and total_price are different

identifi ers.
 Do not use Java’s reserved keywords. A few examples of legal and illegal identifi ers

are shown below.

Legal Identifi ers Illegal Identifi ers

MyClass My Class

$amount 23amount

_totalPay -totalpay

total_Commission total@commission

3.3.2 Naming Convention
Names should be kept according to their usage, as it is meaningful and easy to remember as
shown in Fig. 3.1.

Class declaration

Package declaration

Importing other packages

public class HelloWorld

Beginning of the class

Main method declaration

Print statement

End of main method

End of the class

public static void main(args[])

package hello;

import Java.lang.*;

{

System.out.println("Hello How are You?");

}

}

Fig. 3.1 Naming Convention Used in Java

Java Programming Constructs 45

Class or Interface Identifiers These begin with a capital letter. The first alphabet of every
internal word is capitalized. All other letters are in lower case.

public class MyClass // class identifier: MyClass
interface Calculator; // interface identifier: Calculator

Variable or Method Identifiers These start with a lower-case letter. The first alphabet of every
internal word is capitalized. All other letters are in lower case.

int totalPay; // variable identifier: totalPay
MyClass.showResult();
// MyClass is the Class Name and showResult() is a method of MyClass.

 Constant Identifiers These are specified in upper case. Underscores are used to separate
internal words.

final double TAX_RATE = 0.05; // constant identifier: TAX_RATE

 Package Identifiers These consist of all lower-case letters.
package mypackage.subpackage.subpackage; //Package Declaration

3.3.3 Keywords
 Keywords are predefined identifiers meant for a specific purpose and cannot be used for
identifying used defined classes, variables, methods, packages, and interfaces. All keywords
are in lower case. Table 3.1 lists the keywords in Java.

Table 3.1 Keywords in Java

abstract assert boolean break byte
case catch char class continue
default do double else enum
extends fi nal fi nally fl oat for
if implements import instanceof int
interface long native new package
private protected public return short
static strictfp super switch synchronized
this throw throws transient try
void volatile while const* goto*
*const and goto are reserved keywords.

3.4 LITERALS

A literal is a value that can be passed to a variable or constant in a program. Literals can be numeric
(for byte, short, int, long, float, double), boolean, character, string notations or null literals.
 Numeric Literals can be represented in binary, decimal, octal, or hexadecimal notations. These
literals can be assigned to all numeric types in Java including char (based on their respective
range and size).

 Binary literals are a combination of 0’s and 1’s. Binary literals can be assigned to variables
in Java 7. Binary literals must be prefixed with 0b or 0B (zerob or zeroB). For example,

46 Programming in Java

char bin1 = 0b1010000; // value in bin1 will be P
char bin2 = 0b1010001; // value in bin2 will be Q
float bin3 = 0b1010000; // value in bin3 will be 80.0
int bin4 = 0b1010001; // value in bin4 will be 81

In case octal literals have to be specified, the value must be prefixed with a zero and only
digits from 0 to 7 are allowed.
For example,

int x = 011; //value in x is 9
char y=0150; // value in y will be h
float z=0234; // value in z will be 156.0

 Hexadecimal literals are prefixed with 0x or 0X; the digits 0 through 9 and a through f (or A
through F) are only allowed. For example,

int y = 0x0001; //value in y is 1
char x=0x45; // value in x will be E
float y=0xA3; // value in y will be 163.0

All integer literals are of type int, by default. To define them as long, we can place a suffix
of L or l after the number for instance:

long l = 2345678998L;

All floating literals are of type double, by default. To define them as float literals, we need to
attach the suffix F or f. For double literals, D or d are suffixed at the end; however, it is optional.
For instance,

float f = 23.6F;
double d = 23.6;

Java 7 onwards the readability of literals can be enhanced by using underscore with numeric
literals. As the number of zeroes increase in a literal, counting the number of zeroes becomes
tedious. In such big literals, underscores can be used as shown below:

 int numlit=100_000_000; // value in numlit will be 100000000

Underscores can be used not only with decimal literals but also with hexa, binary, and octal
literals as shown below:

int numlit=0x100_000; // value in numlit1 will be 1048576
int bin=0B1_000_000_000_000_001; // vale in bin will be 32769
float octlit=03_000; // value in octlit will be 1536.0

Note Underscore can only be used with literal values.

The following examples show some valid and invalid use of underscores.
int i =_23; // illegal, cannot start a literal with underscore
long f = 3_2_222_2_l; // invalid use of underscore between value and suffix
long f = 3_2_222_2l; // legal
float e = 4_.2_3f; // illegal use of underscore with a dot

Java Programming Constructs 47

float d = 4_2.2_3f; // legal
float e = 4_2.2_3_f // illegal
int i = 0_x_A_E; // illegal use of underscore in prefix
int j = 0x_A_E; // illegal use of prefix between prefix and literal
int k = 0xA_E; // legal

For char literals, a single character is enclosed in single quotes. You can also use the prefix
\u followed by four hexadecimal digits representing the 16-bit unicode character:

char c = '\u004E'; char sample = 'A'; char example = 'a';

 A single quote, a backslash or a unprintable character (such as a horizontal tab) can be specified
as a character literal with the help of an escape sequence. An escape sequence represents a
character by using a special syntax that begins with a single backslash character. Unicode is a
type of escape sequence (refer Table 3.2). Furthermore, the syntax of unicode escape sequence
consists of \uxxxx (where each x represents a hexadecimal digit).

Table 3.2 Unicode Escape Sequences to
Represent Printable and Unprintable Characters

'\u0041' Capital letter A
'\u0030' Digit 0
'\u0022' Double quote “
'\u003b' Punctuation ;
'\u0020' Space
'\u0009' Horizontal Tab

Table 3.3 Special Escape Sequences

\\ Backslash
\" Double quote
\' Single quote
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab

For instance, char c = '\t'; // creates a character that represents horizontal tab (Refer
Table 3.3).

Unicode characters can be assigned to strings in Java 7. Unicode 6, which has thousands
of characters, cannot be accommodated in a 16-bit char data type. Increasing the size of char
data type would lead to backward compatibility problems. To maintain compatibility with the
application and standards, the string (“U+hex”) is used to express unicode characters in Java.

A boolean literal is specified as either true or false. By default, it takes the value false (Refer
Table 3.4). The following code fragment demonstrates a boolean literal:

boolean firstRoll = true;

String literals consist of zero or more characters within double quotes. For instance,

String s = "This is a String Literal";

 Null literals are assigned to object reference variables (see Chapter 4 for object references).

s = null;

Table 3.4 shows a summary of the data types along with their respective default values, size,
and range.

48 Programming in Java

Table 3.4 Data Types: Size, Default Value, and Range

Data Type Default Value Size Range
byte 0 8 –128 to 127 (inclusive)
short 0 16 –32,768 to 32,767 (inclusive)
int 0 32 –2,147,483,648 to 2,147,483,647 (inclusive)
long 0L 64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 (inclusive)
fl oat 0.0F 32 1.401298464324817e–45f to 3.402823476638528860e+38f
double 0.0D 64 4.94065645841246544e–324 to 1.79769313486231570e+308
char ‘\u0000’ 16 0 to 65535
boolean false Not

defi ned
true or false

Table 3.5 lists the reserved literals in Java.

Table 3.5 Reserved Literals.

true false null

3.5 OPERATORS

An operator performs an action on one or more operands. An operator that performs an action
on one operand is called a unary operator (+, –, ++, – –). An operator that performs an action
on two operands is called a binary operator (+, –, / , * , and more). An operator that performs an
action on three operands is called a ternary operator (? :). Java provides all the three operators.
Let us begin the discussion with binary operators.

3.5.1 Binary Operators
Java provides arithmetic, assignment, relational, shift, conditional, bitwise, and member access
operators.

 Assignment Operators
It sets the value of a variable (or expression) to some new value. The simple ‘=’ operator sets
the left-hand operand to the value of the right-hand operand. The assignment operator has right
to left associativity (discussed in Section 3.7); so the statement a = b = 0; would assign 0 to
b then b to a. Java supports the following list of shortcut or compound assignment operators:

+= –= *= /= %= &= |= ^= <<=>>= >>>=

These operators allow you to combine two operations into one: one fixed as assignment plus
another one. These operators will be explained shortly according to their counterparts.

 Arithmetic Operators
Arithmetic operators are used for adding (+), subtracting (–), multiplying (*), dividing (/), and
finding the remainder (%).

Java does not support operator overloading. There are certain languages like C++ that allow
programmers to change the meaning of operators enabling them to act in more than one way
depending upon the operands. But there are certain operators which are overloaded by Java itself

Java Programming Constructs 49

like + operator which behaves differently when applied to different operands. For example, if
+ operator is used and one of the operands is a string, then the other operand is converted to a
String automatically and concatenated. It is evident in the following examples in the System.
out.println statement when the String in the quotes is concatenated with the values of the
result or individual primitives. In addition to these operators, arithmetic compound assignment
operators are also provided by Java: +=, – =, /=, *=, %=. For example,

a += b; // evaluated as a = a + b;
a –= b; // evaluated as a = a – b;
a *= b; // evaluated as a = a * b;
a /= b; // evaluated as a = a / b;
a % = b; // evaluated as a = a % b

Let us take an example to demonstrate the use of these operators in Java. A close look at the
program will show us that the + operator can be used for two purposes: concatenation and
addition in the print statements.

Example 3.1 Demonstration of Arithmetic Operators
class ArithmeticDemo{
 public static void main(String args[]){

 int a = 25, b = 10;
 System.out.println("Sum "+ a +" +" + b +" = " + (a + b));
 //adding two variables a and b

 System.out.println("Subtraction "+ a +" - " + b +" = " + (a - b));

 //multiplying a with b
 System.out.println("Multiplication "+ a +" * " + b +" = " + (a * b));

 // Division
 System.out.println("Division "+ a +" / " + b +" = " + (a / b));

 // Remainder Operator
 System.out.println("Remainder "+ a +" % " + b +" = " + (a % b));

 // a and b can be added and the result can be placed in a
 // Let us see how?
 a += b;
 System.out.println("Added b to a and stored the result in a " + a);
 }
}

Output
C:\Javaprg\>Java ArithmeticDemo
Sum 25 + 10 = 35
Subtraction 25 - 10 = 15
Multiplication 25 * 10 = 250
Division 25 / 10 = 2
Remainder 25 % 10 = 5
Added b to a and stored the result in a 35

50 Programming in Java

Figure 3.2 shows how the ‘+’ operator concatenates and adds the operands

Adding

System.out.println("Sum "+ a +" and " + b +" = " + (a + b));

Concatenation

Concatenation

Concatenation

Concatenation

Concatenation

Fig. 3.2 The Operation of ‘+’ Operator

Relational Operators
Relational operators in Java return either true or false as a boolean type. Table 3.6 shows a list
of all the relational operators in Java.

Relational operators in C++ returns an integer where the integer value of zero may be interpreted
as false and any non-zero value may be interpreted as true.

Table 3.6 Relational Operators

equal to ==

Not equal to !=

less than <

greater than >

less than or equal to <=

greater than or equal to >=

Example 3.2 Demonstration of Relational Operators
class RelationalOperatorDemo
{
 public static void main(String args[])
 {

 int a = 10,b = 20;
 System.out.println("Equality Operator: a == b : \t\t\t" +(a == b));
 System.out.println("Not Equal To Operator: a != b : \t\t" +(a != b));
 System.out.println("Less Than Operator: a == b : \t\t\t" +(a < b));
 System.out.println("Greater Than Operator: a == b : \t\t" +(a > b));
 System.out.println("Less than or equal to Operator: a == b : \t" +(a <= b));
 System.out.println("Greater than or equal to Operator: a == b : \t" +(a >= b));
 }
}

Java Programming Constructs 51

Output
C:\Javaprg\>Java RelationalOperatorDemo
Equality Operator: a = = b : false
Not Equal To Operator: a != b : true
Less Than Operator: a == b : true
Greater Than Operator: a == b : false
Less than or equal to Operator: a == b : true
Greater than or equal to Operator: a == b : false

Boolean Logical Operators
Boolean logical operators are: conditional OR (||), conditional AND (&&), logical OR (|), logical
AND (&), logical XOR (^), unary logical NOT (!). Boolean logical operators are applied to
boolean operands or expressions (Section 3.6) and return a boolean value. The bitwise logical
AND (&), logical OR (|), logical XOR (^) and logical NOT (~) operators are applied to integers
to perform bitwise logical operations discussed later.
Logical OR results in true if one of the operands is true. Logical AND results in false if one
of the operands is false. Logical XOR works like OR with an exception, that is, in case if both
the operands of an XOR operator are true then the answer is false. Logical NOT is just the
compliment of the boolean operand.
Conditional OR (||) and AND (&&) operators also known as short-circuit operators
conditionally evaluate the second operand or expression. In case of OR, if the first operand
is true, no matter what the second operand is, the answer is true. In case of AND, if the first
operand is false, no matter what the second operand is, the answer is false. So there is no need
to evaluate the second operand.

In addition to these operators, boolean compound assignment operators are also provided by
Java: &=, |=, ^=. For example,

a &= b; // evaluated as a = a & b;
a |= b; // evaluated as a = a | b;
a ^= b; // evaluated as a = a ^ b;

Example 3.3 Demonstration of Boolean Operators
class BooleanLogicalOperatorDemo
{
 public static void main(String args[])
 {
 boolean a = true,b = false;
 System.out.println("Logical OR: "+ a +" | "+b+": " +(a|b));
 System.out.println("Logical XOR: "+ a +" ^ "+b+": "+(a^b));
 System.out.println("Logical AND: "+ a +" & "+b+": "+(a&b));
 System.out.println("Logical NOT: !a : "+(!a));
 System.out.println("Conditional OR: "+ a +" || "+b+": "+(a||b));
 System.out.println("Conditional AND: "+ a +" && "+b+": "+(a&&b));
 // shortcut operator
 a |= b;
 System.out.println("Shortcut OR: "+ a +" | "+b+" = "+(a));
 }
}

52 Programming in Java

Output
Logical OR: true | false: true
Logical XOR: true ^ false: true
Logical AND: true & false: false
Logical NOT: !a : false
Conditional OR: true || false: true
Conditional AND: true && false: false
Shortcut OR: true | false = true

Bitwise Operators
Bitwise operators include and, or, xor, not, right shift, left shift, and unsigned right shift. In Java,
bitwise operators operate on int and long values. If any of the operand is shorter than an int, it
is automatically promoted to int before the operations are performed (see Section 3.8). Table
3.7 lists the bitwise operators and how they function.

Note It is important to understand how integers are represented in binary. For example, the decimal
number 4 is represented as 100 in binary and 5 is represented as 101. Negative integers are
always represented in 2’s complement form. For example, –4 is 1111 1111 1111 1111 1111
1111 1111 1100.

Bitwise shortcut operators are used in the same way as boolean operators. Bitwise shortcut
operators include the following:

AND: &=
OR: |=
XOR: ^=
Shift Operator: >>=,<<=,>>>=

Table 3.7 Bitwise Operators

a & b 1 if both bits are 1
a | b 1 if either of the bits is 1
a ^ b 1 if both bits are different
~a Complement the bits.
a << b Shift the bits left by b positions. Zero bits are added from the LSB side. Bits are discarded from the MSB side.
a >> b Shift the bits right by b positions. Sign bits are copied from the MSB side. Bits discarded from the LSB side.
a >>> b Shift the bits right by b positions. Zero bits are added from the MSB side. Bits are discarded from the LSB side.

Example 3.4 Demonstration of Bitwise Operators
class BitwiseOperatorDemo
{

public static void main(String args[])
{

int x = 2,y = 3;
System.out.println("Bitwise AND: " +x+ "&" +y+ " = " +(x&y));

Java Programming Constructs 53

System.out.println("Bitwise OR : " +x+ " | " +y+ " = " +(x|y));
System.out.println("Bitwise XOR: " +x+ " ̂ " +y+ " = " +(x^y));
System.out.println("Bitwise NOT: ~" +x+ " = " +(~x));

}
}

Output
Bitwise AND: 2&3 = 2
Bitwise OR : 2|3 = 3
Bitwise XOR: 2^3 = 1
Bitwise NOT: ~2 = –3

Shift operators shift the bits depending upon the type of operator. The left shift operator shifts
the numbers of bits specified towards the left. Bits are discarded from the left and added from
the right with the value of bits being zero. The right shift operator shifts the numbers of bits
specified towards right. Bits are discarded from the right and added from the left side with the
value of bits being that of the sign bit. The unsigned right shift shifts the numbers of bits specified
towards right. Bits are discarded from the right and added from the left side with the value of bits
being zero. For example, let us assume x = 4 and this x is to be shifted by the shift distance of 1.

int y = x >> 1;
//y has the value 2, value is halved in each successive right shift
 = 00000000 00000000 00000000 00000100 >> 1
 = 00000000 00000000 00000000 00000010 (which is 2)
int y = x << 1;
// y has the value 8, value is doubled in each successive left shift

int y = x >> 1; // same as right shift for positive numbers.

If we provide a negative number to be left or right shifted, then the negative numbers are
represented in 2’s compliment arithmetic and then shifted. If we provide an int negative shift
distance as shown in the following example, first the negative shift distance is ANDed with the
mask 11111 (i.e., 31) and the result is the new shift distance. If we provide a long negative shift
distance as shown in the following example, first the negative shift distance is ANDed with the
mask 111111 (i.e., 63), and the result is the new shift distance.

Example 3.5 Shift Operators
class ShiftOperatorDemo
{
 public static void main(String args[])
 {

int x = 5,y = 1;
System.out.println("Left shift: "+x+"<<"+y+"="+(x<<y));
System.out.println("Right shift: "+x+" >> "+y+"="+(x >> y));
System.out.println("Unsigned Right Shift: "+x+" >>> "+y+"="+(x >>> y));

//negative numbers

54 Programming in Java

System.out.println("Right Shift: −"+x+" >> "+y+"="+(−x >> y));
System.out.println("Unsigned Right Shift: −"+x+" >>> "+y+"="+(−x >>> y));
System.out.println("Left shift: −"+x+" << "+y+"="+(−x << y));

//negative shift distance of -31 actually means shifting 1 bit
 System.out.println("Left shift: "+x+" <<−31 ="+(x << −31));
 }
}

Output
Left shift: 5 << 1 = 10
Right shift: 5 >> 1 = 2
Unsigned Right Shift: 5 >>> 1 = 2
Right Shift: −5 >> 1 = −3
Unsigned Right Shift: −5 >>> 1 = 2147483645
Left shift: −5 << 1 = −10
Left shift: 5 << −31 = 10

Bitwise operators are particularly used where bit-level or low-level programming is required
such as writing device drivers, working with embedded systems, compression of data,
encryption and decryption of data, setting mask and flags, and creating networking protocols
for communication.

3.5.2 Unary Operators
Unary operators, as the name suggest, are applied to only one operand. They are as follows:
++, - -, !, and ~. The unary boolean logical not (!) and bitwise logical not (~) have already been
discussed.

Increment and Decrement Operators
Increment and decrement operators can be applied to all integers and floating-point types. They
can be used either in prefix (– –x, ++x) or postfix (x– –, x++) mode.

Prefix Increment/Decrement Operation
int x = 2;
int y = ++x; // x = 3, y = 3
int z = --x; // x = 1, z = 1

Postfix Increment/Decrement Operation

int x = 2;
int y = x++; // x == 3, y == 2
int z = x--; // x = 1, z = 2

We will discuss these operators in Example 3.6.

3.5.3 Ternary Operators
Ternary operators are applied to three operands. This conditional operator (? :) decides, on the
basis of the first expression, which of the two expressions to be evaluated.

operand1 ? operand2 : operand3

Java Programming Constructs 55

operand1 must be of boolean type or an expression producing a boolean result. If operand1
is true, then operand2 is returned. If operand1 is false, then operand3 is returned. This operator
is similar to an if conditional statement. For example,

String greater = x < y ? "Y is greater" : " X is greater";

If the value of x is less than y, “Y is greater” string is retuned and stored in the variable: greater,
else “X is greater” is retuned and stored in the variable: greater.

3.6 EXPRESSIONS
An expression is a combination of operators and/or operands. Java expressions are used to create
objects, arrays, pass values to methods and call them, assigning values to variables, and so on.
Expressions may contain identifiers, types, literals, variables, separators, and operators (we have
already discussed all these topics). For example,

int m = 2,n = 3,o = 4;
int y = m * n * o;

m=2 is an expression which assigns the value 2 to variable m. Similarly, n=3 and o=4 are expressions
where n and o are being assigned values 3 and 4. m * n * o is also an expression wherein the
values of m, n, and o are multiplied and the result is stored in the variable y.

3.7 PRECEDENCE RULES AND ASSOCIATIVITY
 Precedence rules are used to determine the order of evaluation priority in case there are two
operators with different precedence. Associativity rules are used to determine the order of
evaluation if the precedence of operators is same. Associativity is of two types: Left and Right.
Left associativity means operators are evaluated from left to right and vice versa for right
associativity. Precedence and associativity can be overridden with the help of parentheses.

Table 3.8 Precedence Rule and Associativity

Operators Associativity
., [], (args), i++, i-¬ L R
++i, --i, +i, -i, ~, ! R L

new, (type) R L
*, /, % L R
+, ¬ L R

<<, >>, >>> L R
<, >, <=, >=, instanceof Non Associative

= =, ! = L R
& L R
^ L R
| L R
&& L R
| | L R
? : R L

=, +=, -=, *=, /=, %=, <<=, >>=, >>>=, &=, ^=, |= R L

Table 3.8 lists the operators in Java according to their precedence (from highest to lowest) and
their respective associativity’s. Operators in a row have same precedence.

56 Programming in Java

Here L R indicates associativity from left to right and R L indicates associativity from
right to left.

Example 3.6 Precedence Rules
class AssociativityAndPrecedenceTest
{
public static void main(String[] args)
{
//precedence of * is more than that of +

L1 System.out.println(" 2 + 3 * 2 = \t " + (2 + 3 * 2));

 //Associativity applies in case of operators with equal
 //Precedence. below is a case of Left Associativity
L2 System.out.println(" 2 * 5 / 3 = \t " + (2 * 5 / 3));

 // Precedence overridden with help of parentheses
L3 System.out.println("(2 + 3) * 2 = \t " + ((2 + 3) * 2));
 int x;
 int y = 3;
 int z = 1;
 //Assignment associates from right to left

L4 x = y = z;
L5 System.out.println(" x = y = z: \t" + x);

 //+ and − have left associativity
L6 System.out.println(" 3 - 2 + 1 = \t " + (3 − 2 + 1));

 //evaluating long expressions to check Precedence and Associativity
 int i = 10;
 int j = 0;
 int result = 0;

L7 result = i-- + i / 2 - ++i + j++ + ++j;
 System.out.println("i: " +i+ " j " +j+ " result: "+result);

 // + operator has a left to right associativity
L8 System.out.println("Hello "+1+2);

 // First two numbers are added and the added result is concatenated with
 // String "Hello"

L9 System.out.println(1+2+" Hello");

 }
 }

Output
C:\Javabook\programs\chap3>Java AssociativityAndPrecedenceTest
2 + 3 * 2 = 8

Java Programming Constructs 57

2 * 5 / 3 = 3
(2 + 3) * 2 = 10
x = y = z: 1
3 − 2 + 1 = 2
i: 10 j 2 result: 6
Hello 12
3 Hello

Explanation
L1 Shows the precedence of * is more than +, that
is why 3 is first multiplied with 2 and the result (6)
is added with 2 and then printed.
L2 Shows two operators with equal precedence, *
and /. In this case, associativity plays a role instead of
precedence. As is evident from Table 3.9, * and / have
left associativity, so the operators will be evaluated
from the left side. That is why 2 is multiplied with 5
first and then the result (10) is divided by 3 to give
the integer quotient 3, which is then printed.
L3 Shows the precedence of (nudge) is more than
* and + (or any other operator, refer Table 3.9). In
this case, operation within parentheses is performed
first, that is, 2 is added to 3 and then the result (5) is
multiplied with 2 to give 10 which is then printed.
Also note that when no parentheses were used in L1,
the answer was 8.
L4 Shows the assignment operator which is right
associative, so first the value of z is assigned to y
and then the value of y is assigned to x.
L6 Portrays the case of same precedence, so
associativity is used for expression evaluation. Table
3.9 shows + and – have left associativity, so 2 is
subtracted from 3 first and then the result (1) is added
to 1 to output 2, which is then printed on the screen.

L7 In this expression, i-- + i / 2 - ++i + j++
+ ++j, the decremented value of i will be reflected
while evaluating the sub-expression i/2, i.e., i--+i/2
will be evaluated as 10 + 9/2 (result of sub-expression
is 14). At this point i will have the value 9. While
evaluating ++i, the value of i is incremented first
and then added, so the value of i becomes 10 again
(result of expression at this point is 14 –10 = 4). The
value of j (i.e. 0) is added to the expression first and
then incremented in the sub-expression j++. Now j
has the value 1 (result of expression at this point i--
+ i/2 - ++i + j++is 4). In the last sub-expression
++j, the value of j (which is 1 now) is incremented
first and then added to the expression (value of j is
now 2 which is added to 4 to produce 6 as the result).
L8 & 9 Show the usage of + operator between
different operands. The important point to note is
that associativity and not precedence will be used
for evaluating expression. The associativity of +
operator is from left to right, so the String “Hello”
is concatenated to 1 first and then String “Hello
1” is concatenated to the second number 2. In L9,
the numbers are added first and then the sum is
concatenated with the String.

3.8 PRIMITIVE TYPE CONVERSION AND CASTING

In Java, type conversions are performed automatically when the type of the expression on the
right-hand-side of an assignment operation can be safely promoted to the type of the variable
on the left-hand-side of the assignment.

Widening
conversion

 char

byte short int long float double

Conversions that are implicit in nature are termed as widening conversions. In an assignment
statement, the types of the left-hand-side and right-hand-side must be compatible. If the right-

58 Programming in Java

hand-side can fit inside the left-hand-side, the assignment is completed. For example, a smaller
box can be placed in a bigger box and so on. A byte value can be placed in short, short in an
int , int in long , and so on (see widening conversion). Any value can be assigned to a double.
Any value except a double can be assigned to a float. Any whole number value can be assigned
to a long; and int, short, byte, and char can all fit inside int. For example,

byte b = 10; // byte variable
int i = b; // implicit widening byte to int

Type conversion or promotion also takes place while evaluating the expressions involving
arithmetic operators. For example,

int i = 10; //int variable
double d = 20; //int literal assigned to a double variable
d = i + d; //automatic conversion int to double

In the previous statement, the int value i is promoted to double and then the two double values
(i & d) are added to produce a double result. The basic rule is that if either of the variables in a
binary operation (involving arithmetic, relational, equality) is double, then Java treats both values
as double. If neither value is a double but one is a float, then Java treats both values as float.
If neither is a float or a double but one is a long, then Java treats both values as long. Finally,
if there are no double, float, or long, then Java treats both values as an int, even if there are no
int in the expression. Therefore, the result will be a double, float, long or int depending on
the types of the operands. For example, consider the following declarations:

byte b = 10;
short s = 30;

The following statement is invalid because while evaluating the expression, byte and short
are automatically promoted to int, so the result is an int and short is used to store the result
which is smaller than int.

short z = b*s; //invalid
int i = b*s; //valid

In case of bitwise and, or, xor, if one of the operand is broader than int, then both operands
are converted to long; else both are converted to int. If bitwise not operator is applied to an
operand shorter than int, it is promoted to int automatically. In case of shift operators, if a single
operand has a type narrower than int then it is also promoted to int, otherwise not.

Let us take an interesting case

float f=3; // legal; int literal assigned to a float variable

The last declaration of a float variable shows that suffix f of F was not used while assigning
value and yet it was considered a legal statement. The reason is because 3 is an int and an int
value can be directly assigned to a float. But if the declaration would have been

float f = 3.0; // illegal;

Java Programming Constructs 59

Note Java treats all real numbers as double so 3.0 is treated as double, which cannot be assigned
directly to a float, as float is smaller than double. There are two possible solutions which can
be applied to the above statement: (a) suffix F or f with the literal i.e. 3.0f (b) cast it.

float f = 3.0f; // legal;

 Casting is also known as narrowing conversion (reverse of widening conversion).
 char

byte short int long float double Narrowing
conversion

If you want to assign long values to int variables or double values to float variables, then the
compiler will not allow you to do so unless you explicitly tell it that you really want to do so with
the help of a cast. When it is necessary to put a bigger value into a particular smaller type, use a
cast. For example, consider the reverse of the box example. A bigger box has to be placed in a
small box. Then the bigger box has to be chopped so that the bigger box (which has now become
smaller) can be placed in the small box. Casting is not implicit in nature. It has to be explicitly
mentioned by preceding it with the destination type specified in the parentheses. For instance,

int i = (int)(8.0/3.0);

A cast lets the compiler know that you are serious about the conversion you plan to make.
When a value is cast before assignment, the right hand side is chopped down to fit into the left
hand side. For casting a floating-point number to an int or a long, the fractional part is truncated
resulting in an integer. If the resulting integer is small enough to fit in the left hand side, the
assignment is completed. But if the number is too large, then the integer is set to the largest
possible value of its left-hand-side type. If the real number is too small, the integer is set to the
smallest possible value of its left-hand-side type. For byte and short, if the value is small enough
to fit in the byte and short destination, the assignment is completed. The dark side of casting is
that it may result in the loss of sign, magnitude, and precision.

One more point worth mentioning is that if you try to put a long value into float variable,
Java treats this as a legal statement. For example,

long x = 32l;
float y = x; // legal statement

The point worth pondering is that how can a long value, which is of 64 bits, be assigned to a
float variable which is of 32 bits? To understand why this is a legal statement we need to know
how floating point numbers are represented. A float or double value is represented using IEEE
754 binary floating point standard. A floating point number is represented in four components—
sign, mantissa, radix, and exponent. A sign bit is used to denote a positive number or a negative
number. A value of zero in sign bit indicates positive number and 1 in sign bit indicates a negative
number. Mantissa holds the significant digits of the floating point number and exponent is used
for indicating the power (positive or negative) of the radix. The first bit of the exponent indicates
its sign. The format of a floating point number is shown below:

60 Programming in Java

sign bit * mantissa * 2exponent

Java uses a radix of 2. A float variable has 23 bits for mantissa and 8 bits for exponent. A
double variable uses 52 bits for mantissa and 11 bits for exponent. The bit representation of
these variables is shown below:

Sign bit 8 exponent bits 23 mantissa bits

fl oat variable

Sign bit 11 exponent bits 52 mantissa bits

double variable

So you can easily imagine that a float variable can accommodate a lot more values that what
a long variable can because of its representation and format. For a more detailed discussion on
floating point standard refer to IEEE 754 floating point standard.)

Let us take an example to understand the concepts.

Example 3.7 Conversion and Casting
class CastingAndConversionExample
{

public static void main(String args[])
{

 //casting
L1 int i = (int)(8.0/3.0);
 // j will have the largest value of its type as 2147483648.0f is too large
L2 int j = (int)2147483648.0f;
 System.out.println("i = " +i+ " j = " +j);

 //casting: answer will contain 8 low order bits of the int value of 257
L3 byte b = (byte)257;
 //casting: answer will contain 16 low order bits of the int value of 65537
L4 short s = (short)65537;
 System.out.println("b =" +b+ " s = "+s);

 //casting int to char
L5 System.out.println("Converting int to char " +(char)75);

 //conversion: int * byte * short * double is double
L6 double d = i * b * s * 2.0;
 System.out.println("Conversion to double result is : "+d);

 //implicit conversion to int in case of shift operator
L7 i = b << 2;
 System.out.println("i = "+i);
 // compound operator automatically perform casting
 byte c = 0;

Java Programming Constructs 61

L8 //c = c + b; does not compile
L9 c += b; // complies
 System.out.println("Result: "+c);
 }
 }

Output
i = 2 j = 2147483647
b = 1 s = 1
Converting int to char K
Conversion to double result is : 4.0
i = 4
Result: 1

Explanation

L1 It shows the casting of a double expression
into an int. The result of dividing a double value by
a double value is a double, which is then casted into
an int.
L2 It shows the casting of a float literal into an
int, which is larger than the maximum value an int
variable can hold. So j is set to the maximum value
an int can hold.
L3 It shows the casting of an int literal into a
byte. It is again larger than the maximum a byte
can hold. In this case, byte variable will contain the
value which is present in the 8 low order bit of the
int literal 257. The int literal 257 has the binary
value 00000000 00000000 00000001 00000001.
After casting, byte will have the low order 8 bits
(00000001), which is the decimal value 1.
L4 It shows the casting of an int literal into a
short, which is larger than the maximum a short can
hold. In this case, the short variable will contain the
value that is present in the 16 low order bits of the
int literal 65537. int literal 65537 has the binary
value 00000000 00000001 0000000 00000001.
After casting, short will have the low order 16 bits
(00000000 00000001) which is the decimal value 1.
L5 It shows the casting of an integer into a char.
Characters are represented by integral ASCII values,

which can be casted back to character. An integer
variable can hold a character, e.g. int x ='K'. This
is a case of automatic promotion; here x will have
the value 75 which is the ASCII value of 'K'.
L6 It shows the multiplication automatic promotion.
The expression involves multiplication that is left
associative. First, byte variable b is automatically
promoted to int and multiplied with i giving an int
result (i.e., 2*1 = 2). Then short is automatically
promoted to an int and multiplied with the previous
int result to give a new int result (i.e., 2*1 = 2).
Now this int result is automatically promoted to
double because it has to be multiplied to a double
literal (i.e., 2.0) giving a double result of 4.0.
L7 It shows the left shifting of bits in the expression
b << 2. Before shifting, there is an automatic promo-
tion of byte variable b to an int and then the 32 bits
are shifted towards left by two places.
L8 It is commented, as it will not compile.
During evaluation of this expression c and b are
automatically promoted to int and added to produce
an int result. This result cannot be stored directly in
a byte variable.
L9 It complies because the operator used in this
case is a compound operator that automatically casts
the result into the destination type.

3.9 FLOW OF CONTROL

Control flow statements help programmers make decisions about which statements to execute
and to change the flow of execution in a program. The four categories of control flow statements
available in Java are conditional statement, loops, exception, and branch.

62 Programming in Java

3.9.1 Conditional Statements
Java programs accomplish their tasks by manipulating the program data using operators and
making decisions by testing the state of program data. When a program makes a decision, it
determines, based on the state of the program data whether certain lines of code should be
executed. For example, a program may examine a variable called flag to determine if it should
execute a block of code that saves data into a file on to the disk. If flag is true, the data is saved;
else the data is not saved. The two conditional statements provided by Java are: if … else and
switch-case.

 if…else
The syntax of if statement is as follows:

 if (x = = 0)
 {// Lines of code}
 else if(x = = 1)
 {// Lines of code}
 ………
 else
 {// Lines of code}

The arguments to a conditional statement like if must be a boolean value, which is something
that evaluates to true or false. You can have n number of else if (){} statements in your
program, as per your requirement. The if...else condition can also be nested as shown.

if (condition)
{
 if (condition)
 {//do something based on the condition}
}

The following example shows how if...else conditional statements can be used in Java.

Example 3.8 if...else

 class IFElseExample
 {

public static void main(String args[])
{

 int x=20,y=18,z=22;
L1 if (x < y) // x comes before y
L2 {
L3 if (z < x) // z comes first
L4 System.out.println(z + " " + x + " " + y);
L5 else if (z > y) // z comes last
L6 System.out.println(x + " " + y + " " + z);
L7 else // z is in the middle
L8 System.out.println(x + " " + z + " " + y);
L9 }
L10 else

Java Programming Constructs 63

L11 { // y comes before x
L12 if (z < y) // z comes first
L13 System.out.println(z + " " + y + " " + x);
L14 else if (z > x) // z comes last
L15 System.out.println(y + " " + x + " " + z);
L16 else // z is in the middle
L17 System.out.println(y + " " + z + " " + x);

 }
 }

 }

Output
C:\>Java IFElseExample
18 20 22

Explanation
L1 It shows if statement comparing x with y. If
x is less than y, then control passes into the enclosing
curly brackets starting from L2. But in our example,
x is greater than y, so the control passes to the else
statement in L10.
L3 It uses the nested if statement. This if clause
is within the if statement on L1. If condition in
L1 returns true, then the condition on this line is
checked. The condition checks whether z is less than
x, which is already less than y from L1. If (z < x)
is true, then z is the smallest of the three, y is the
largest, and x lies in between.
L4 It prints the facts of L3.
L5 If condition on L3 returns false, the control
passes on to L5, which means z is not less than x
and in L5, z is compared with y. If z is greater than
y, it means z is the largest, x is smallest, and y lies
in between. (We already know the fact from L1 that
x is less than y).
L6 It prints the facts of L5.

L7 If condition on L5 returns false, then the control
passes on to the else on L7, which means that x is
less than y (L1) and z is not less than x (L3) and
is not greater than y (L5). So x is the smallest, y is
the largest, and z lies in between.
L8 It prints the facts of L7.
L10 The else of if on L1. The control passes on
to this else if L1 returns false, which means x is
not less than y.
L11 The starting curly bracket of else.
L12 It checks if z is less than y. If true, z comes
first, then y, and x is the largest.
L13 It prints the facts of L12.
L14 It checks if z is greater than x. If true, y comes
first, then x, and z is the largest. In our example,
this case is executed as the value of x is 20, y is 18,
and z is 22.
L15 It prints the facts of L14.
L16 If z is not less than y (L12) and z is not greater
than x, i.e., z is in the middle, y is the smallest, and
x is the largest.
L17 It prints the facts of L16.

 Switch-case
Java has a shorthand for multiple if statement—the switch-case statement. Here is how we can
write the above program using a switch-case:

switch (x) {

case 0:
 // Lines of code

www.ebook3000.com

http://www.ebook3000.org

64 Programming in Java

 doSomething0();
 break;

case 1:
 // Lines of code

 doSomething1();
 break;
 . . .
case n:
 // Lines of code
 doSomethingN();
 break;

default:
 doSomethingElse();
}

switch-case works with byte, short, char, and int primitive type. It can also be an enum type
(see Chapter 6) or one of the four special wrapper classes (see Chapter 6) namely: Byte for byte,
Short for short, Character for char, Integer for int. We can use strings also with the switch-case
from Java 7 onwards. It means that x must be one of these int, byte, short, char, enum type,
String or (one of the four) wrapper classes. It can also be an expression that returns an int,
byte, short, char or String. The value in x is compared with the value of each case statement
until one matches. If no matching case is found, the default case is executed.

Once a case is matched, all subsequent statements are executed till the end of the switch
block or you break out of the block. Therefore, it is common to include the break statement at
the end of each case block, unless you explicitly want all subsequent statements to be executed.
The following example shows how switch-case can be used in Java. A switch-case is more
efficient than an if-then-else statement, as it produces a much efficient byte code.

Example 3.9 switch-case

 class SwitchCaseDemo
 {

public static void main(String args[])
{

L1 char c='B';
L2 switch(c)
L3 {
L4 case 'A':
L5 System.out.println("You entered Sunday");
L6 break;
L7 case 'B':
 System.out.println("You entered Monday");
 break;
L8 case 'C':
 System.out.println("You entered Tuesday");
 break;
L9 case 'D':

Java Programming Constructs 65

 System.out.println("You entered Wednesday");
 break;
L10 case 'E':
 System.out.println("You entered Thursday");
 break;
L11 case 'F':
 System.out.println("You entered Friday");
 break;
L12 case 'G':
 System.out.println("You entered Saturday");
 break;
L13 default:
L14 System.out.println("Wrong choice");
L15 }
L16 }
 }

Output

You entered Monday

Explanation

L1 It declares a character variable c with the
value ‘B’. \
L2 It switches the control the case where a match
was found. In our case, the control passes to L7.
L3 It is the start of switch statement.
L4–6 These show the first case, that is, case ‘A’.
If the value in the character variable is ‘A’, then this
case is executed, and the output will be You entered
Sunday. L6 shows the break statement, to break out
of the switch-case statement. If the break statement
is not included in the code, then subsequent cases
will also be executed.

L7 It shows the second case similar to L4. In our
example, the value of the char variable is ‘B’, so
L2 switches control to this line and the output will
be You entered Monday. After printing the output,
the control moves out of the switch-case because
a break statement is included in the case.
L8–12 These are similar to L7 but will only be
executed in case the value of the char variable is
‘C’ (L8), ‘D’ (L9), ‘E’ (L10), ‘F’ (L11), and ‘G’
(L12), respectively.
L13 It shows the default case. It is executed in case
the char variable takes a value other than A to G.

Note The value of character ‘c’ is fixed as ‘B’ in our example. This value should be set based on
the user’s input. But taking user’s input is not yet discussed; so we have fixed the value of
character ‘c’. We will discuss it in Chapter 9.

3.9.2 Loops
The purpose of loop statements is to execute Java statements many times. There are three types
of loops in Java—for, while, and do-while.

 for Loop
The for loop groups the following three common parts together into one statement:

 (a) Initialization
 (b) Condition
 (c) Increment or decrement

66 Programming in Java

To execute a code for a known number of times, for loop is the right choice. The syntax of
for loop is

for (int i = 0; i < 5; i ++)

Declaration and initialization Condition next iteration

Example 3.10 for loop

 class ForDemo
 {

public static void main(String args[])
{

L1 for(int i = 1;i <= 5;i++)
L2 System.out.println("Square of "+i+" is "+ (i*i));

 }
 }

Output

Square of 1 is 1
Square of 2 is 4
Square of 3 is 9
Square of 4 is 16
Square of 5 is 25

Explanation

L1 It shows the for loop with its three parts:
initialization (i is initialized to 1), condition (i is less
than or equal to 5) and the third is increment (i++).
The loop will be executed five times. This loop has
only one statement. Initially the value of i will be 1,

for which the print statement in L2 will be executed
and likewise for i = 2, 3, 4, and 5.
L2 It prints the square of i (i.e., i*i). This line
will be executed five times, once for each value of i.

while Loop
The while loop is used to repeatedly execute a block of statements based on a condition. The
condition will be evaluated before the iteration starts. A for loop is useful when you know the
exact number of iterations. If you want to execute some statements for an indefinite number
of times (i.e., number of iterations is unknown), a while loop may be the better choice. For
example, if you execute a query to fetch data from a database, you will not know the exact
numbers of records (rows or columns) returned by the query. A for loop cannot be used to iterate
the returned records in this case.

Java Programming Constructs 67

The while statement has the following syntax:
while (condition)
{
 Statements to execute while the condition is true
}
The program in Example 3.10 can also be written using a while loop.

Example 3.11 while Loop
 class WhileDemo
 {
 public static void main(String args[])
 {
L1 int i = 1;
L2 while(i <= 5)
L3 {
L4 System.out.println("Square of " +i+ "is" +(i*i));
L5 i++;
L6 }
 }
 }

Output
Square of 1 is 1
Square of 2 is 4
Square of 3 is 9
Square of 4 is 16
Square of 5 is 25

Explanation

L1 It initializes an int variable i to 1.
L2 It demonstrates the while loop. In this loop,
the value of i is checked to be less than or equal
to 5, which in the first iteration is 1 (less than 5),
so the control passes into the loop. After executing
the statements within the enclosing curly brackets
of the while loop, again the condition of the while

loop is checked. It goes on until the condition in the
while returns false (i.e., when value of i becomes
6), in which case the control comes out of the loop.
L3 Curly bracket to denote the start of while loop.
L4 It prints the square of i.
L5 It increments the value of i.
L6 Curly bracket denoting the end of while loop.

do-while Loop
A do-while loop is also used to repeatedly execute (iterate) a block of statements. But, in a
do-while loop the condition is evaluated at the end of the iteration. So the do-while loop (unlike
the while loop) will execute at least once and after that depending upon the condition.

The general form of a do-while loop is
do
{
 Statements to execute once and thereafter while the condition is true

 } while (test);
 Next-statement;

68 Programming in Java

Example 3.12 do-while Loop
class DoWhileDemo
{
 public static void main(String args[])
L1 { int i = 1;
L2 do
L3 {
L4 System.out.println("Square of" +i+ "is" + (i*i));
L5 i++;
L6 }while(i <= 5);
 }
 }

Output
Square of 1 is 1
Square of 2 is 4
Square of 3 is 9
Square of 4 is 16
Square of 5 is 25

Explanation

L1 It initializes an int variable i to 1.
L2 It shows the starting do statement of the do-
while loop.
L4 to 6 The statement on L4 and L5 will be

executed at least once and later it depends on the
condition specified in the while loop on L6. In this
case, the statements on L4 and L5 will be executed
not only once, but five times (value of i loops from
1 to 5 inclusive).

 for-each Loop
Java 5 introduced what is sometimes called a for-each statement that accesses each successive
element of an array, list, or set without being associated with iterators or indexing. This new
for statement is called the enhanced for or for-each. This loop is used to access each value
successively in a collection of values (like array). It is commonly used to iterate over an array
or a collections class (e.g., ArrayList). Like for loops, these loops perform a fixed number of
iterations. But unlike them, the for-each loop determines its number of steps from the size of
the collection.

 The general form of for-each loop is
for (type var : arr)
{
 // Statements to repeat
}

We will return to for-each loop when we discuss arrays and collections in Java.

3.9.3 Branching Mechanism
Java does not offer a go to type of statement as in some older languages, because it leads to
unreadable code. However, Java supports other ways to jump from one statement to another.
Two types of branching statements are available in Java—break and continue.

Java Programming Constructs 69

 break Statement
break statement is used in case the user needs to jump out of a loop, while the continue statement
is used where the user wants to go back to the top of the loop. A break statement is used to jump
out of a loop when a particular condition occurs, as shown below:

while (i < 5) {
 //do Something;
 if(i < 0) break; // jump out of the loop
}

The break will result in the program flow moving out of the loop to the next statement following
the loop statement. The following example is a program statement to choose prime numbers
within a given range.

Example 3.13 Usage of break
class PrimeDemo{
public static void main(String[] args){

int j,k;
System.out.print("Prime numbers between 1 to 30 : ");

L1 for (j = 1; j < 30; j++){
L2 for (k = 2; k < j; k++){
L3 if(j % k == 0) break;
 }
L4 if(j == k) {
L5 System.out.print(j+ " ");
 }
 }
 }}

Output
C:\Javabook\programs\chap3>Java PrimeDemo
Prime numbers between 1 to 30 : 2 3 5 7 11 13 17 19 23 29

Explanation

L1 It creates a for loop which ranges from 1 to
30 (as we need to find primes between 1 and 30).
L2 It creates an inner for loop which starts from
2 (as 1 is not a prime number) to j.
L3–5 Condition to check whether j is divisible
by any number in the range 2 to j-1. If it is divisible

by any number in this range (i.e., remainder is 0),
break out of the inner for loop and check (in L4)
whether the numerator (j) and denominator (k) are
same. (Prime numbers are divisible by 1 and itself).
If both are same, it is a prime number.

If, instead, you want the flow to jump out of both the loops, use the labeled break as shown
in the next example.

Example 3.14 Labeled break

class LabeledBreakDemo{
public static void main(String args[])

70 Programming in Java

{
L1 Outer : for(int i = 0; i < 4; i++){
L2 for(int j = 1; j < 4; j++){
L3 System.out.println("i:" + i + " j:" + j);
L4 if(i == 2) break Outer;
 }}}}

Output
C:\Javabook\programs\chap3>Java LabeledBreakDemo
i:0 j:1
i:0 j:2
i:0 j:3
i:1 j:1
i:1 j:2
i:1 j:3
i:2 j:1

Explanation
L1 A label named Outer is placed on the outer for
loop with a colon after the label name.
L2 An inner for loop is created.

L3 Prints the value of i and j.
L4 If the value of i is equal to 2, the control comes
out of both the loops and the program terminates.

 Continue Statement
Situations can occur where you do not want to jump out of a loop, but simply stop the current
iteration and go back to the top and continue with the next iteration, as shown in the following
code.

Example 3.15 Code Snippet for continue
L1 while (i < 5){
L2 //doSomething1;
L3 if(i < 4) continue;
L4 //doSomething2;
 }

Explanation

Example 3.16 Code Snippet for Labeled continue
L1 jmp0: while (i < 5){
L2 for (int i = 0; i < 4; i++){
L3 if(i = = 2) continue jmp0; //do something;
 }
 }

L1 Beginning of while loop.
L2 Inside the loop, there are some statements
shown in comments (//do something1).
L3 If i is less than 4, continue to the top of the
loop for next iteration.
L4 The doSomething2 statement will not execute
until i equals 4 because the continue statement

keeps sending the program flow back to the next
iteration of the loop.
Sometimes you may want to jump out of not only the
inner loop but the outer loop as well. In that case, you
can put a label (similar to label in break) on the outer
loop and jump to it and continue its next iteration, as
in the following example.

Java Programming Constructs 71

SUMMARY

L1 Labelled continue (i.e., jmp0) on the beginning
of while loop.
L2 Inner for loop.

L3 The if statement inside the inner for loop
states to jump to the outer while loop if i is equal
to 2, else execute the statements (do something).

Java is an object-oriented programming language that
can be used to solve problems. All the Java keywords
have a fixed meaning and form the building block for
program statements.
 Variables hold data at memory locations allocated to
them. There are eight basic data types in Java, namely
byte, short, int, long, float, double, boolean, and char.
Java is portable across computer platforms. Java does
not leave the size of data types to the machine and
the compiler, but specifies everything. All integer (byte,
short, int, long) and floating-point types (float, double)
are signed in Java. Java 7 introduced binary literals
to be assigned to numeric variables and underscores

to be used with literals. Apart from this, Java 7 added
strings to be used with switch case statements.
 There are several operators in Java that can be
classified as arithmetic, relational, logical, assignment,
increment and decrement, conditional, bit-wise, and
special. Expressions are formed with variables and
operators. Operators in Java have certain precedence
and associativity rules that are followed while
evaluating expressions. Automatic-type conversion
takes place according to a set of rules in expressions
with mixed types. Explicit type conversion (casting) is
also possible in Java.

EXERCISES

Objective Questions
 1. In the following class defi nition, which is the fi rst

line (if any) that causes a compilation error?
Select the correct answer.

 public class CastTest {
 public static void main(String args[]){
 char a;
 int j;
 a = 'A'; //1
 j = a; //2
 a = j + 1; //3
 a++; //4
 }

 }

 (a) The line labelled 1.
 (b) The line labelled 2.
 (c) The line labelled 3.
 (d) The line labelled 4.
 2. Which of these assignments are valid?
 (a) short s = 48; (b) fl oat f = 4.3;
 (c) double d = 4.3; (d) int I = ‘1’;

 3. What is the output when the following program
is compiled and run?

 class test {
 public static void main(String args[]){
 int i,j,k,l=0;
 k = l++;
 j = ++k;
 i = j++;
 System.out.println(i);

 } }

 (a) 0 (b) 1 (c) 2 (d) 3
 4. What gets printed on the standard output when

the following class is compiled and executed?
Select the correct answer.

 public class SCkt {
 public static void main(String args[]) {
 int i = 0;
 boolean t = true;
 boolean f = false, b;
 b = (t && ((i++) == 0));

Explanation

72 Programming in Java

 b = (f && ((i+=2) > 0));
 System.out.println(i);
 }

 }

 (a) 0 (b) 1 (c) 2 (d) 3
 5. Which operator is used to perform bitwise

inversion in Java?
 (a) . ~ (b) ! (c) & (d) |
 6. Which of the following statement(s) are correct?
 (a) Java provides two operators to do left shift

– << and <<<.
 (b) >> is the zero fi ll right shift operator.
 (c) >>> is the signed right shift operator.
 (d) For positive numbers, results of operators

>> and >>> are same.
 7. What is the result of compiling and running the

following program?

 public class test {
 public static void main(String args[]){
 int i = -1;
 i = i >> 1;
 System.out.println(i);
 }

 }

 (a) 63 (b) –1 (c) 0 (d) 1
 8. What is the output when the following class gets

compiled and run?

 public class example{
 public static void main(String args[]){
 int x = 0;
 if(x > 0) x = 1;
 switch(x){
 case 1:
 System.out.println(1);
 case 0:
 System.out.println(0);
 case 2:

 System.out.println(2);
 break;
 case 3:
 System.out.println(3);
 default:
 System.out.println(4);
 break;
 }}}

 (a) 0 (b) 1 (c) 2 (d) 3
 9. Select the lines that form a part of the output

when the following code is compiled and run.

 public class test{
 public static void main(String args[]){
 for(int i = 0; i < 3; i++)
 {
 for(int j = 3; j >= 0; j--)
 {
 if(i == j) continue;
 System.out.println(i + " " + j);
 }
 }

 }}

 (a) 0 0 (b) 0 1 (c) 0 2 (d) 0 3
 10. Select the lines that form a part of the output

when the following code is compiled and run.

 public class test {
 public static void main(String args[]){
 for(int i = 0; i < 3; i++)
 {
 for(int j = 3; j >= 0; j--)
 {
 if(i == j) break;
 System.out.println(i + " " + j);
 }
 }

 }}

 (a) 0 0 (b) 0 1 (c) 0 2 (d) 0 3

Review Questions

 1. What are the rules for naming an identifi er in
Java?

 2. Explain conversion. How is it different from
casting?

 3. What are shift operators? How many types of
shift operators are available in Java?

 4. What are the differences between for, while
and do...while loops?

Java Programming Constructs 73

 5. What is the difference between right shift and
unsigned right shift operator?

 6. What is precedence? Explain how precedence
and associativity are useful in evaluating
expressions.

 7. Explain the following:
 (a) variable
 (b) literal
 (c) keywords in Java
 (d) data types in Java

 (e) break
 (f) continue
 8. What are binary literals and how are they used

in Java?
 9. Explain how underscores are used with literals

along with their purpose.
 10. Explain why long having 64 bits gets automatically

converted to a fl oat, which is only 32 bits in size,
when we try to assign a long value to a fl oat
variable.

Programming Exercises

 1. Write a program Pattern.Java that takes an
integer, N and prints out a two-dimensional
N-by-N pattern with alternating spaces and
asterisks, like the following 4-by-4 pattern.

 * * * *
 * * * *
 * * * *
 * * * *
 2. Write a program that does binary-to-decimal and

decimal-to-binary conversions. (Do not use the
predefi ned methods.)

 3. Write a program that takes a price and prints out
the appropriate tax along with the total purchase
price assuming the sales tax in your city is
12.35%.

 4. Write a program that takes the number of hours
worked by an employee and the basic hourly pay,
and outputs the total pay due.

 5. Write a program that takes an integer n and
calculates n!.

 6. Write a program that converts inches to centime-
tres.

 7. Write a program that converts acres to hectares
and vice versa.

 8. Write a program that accepts resistances and
outputs the equivalent resistance when they are
connected in series. (Assuming the Resistance
R1=12, R2=14, R3=15).

 9. Write a program that calculates the equivalent
resistance arranged in parallel. The formula for
calculating the equivalent resistance arranged in
parallel is

 Re quiv = 1
1
1

1
2R R



 10. Write a program that calculates how much a
$10,000 investment would be worth if it increased
in value by 20% during the fi rst year, lost $500
in value in the second year, and increased 16%
in the third year.

Answers to Objective Questions
 1. (c), integer cannot be assigned to a character without a cast.
 2. (a), (c), (d), the value 4.3 is of type double, so it cannot be assigned to a fl oat without a cast.
 3. (b)
 4. (b), in the second assignment to variable b, the expression (i += 2) does not get evaluated.
 5. (a) 6. (d) 7. (b) 8. (a), (c)
 9. (b), (c), (d) 10. (b), (c), (d)

 Space is big. You just won’t believe how vastly, hugely, mind-bogglingly big it is.
I mean, you may think it’s a long way down the road to the chemist’s, but that’s just
peanuts to space. Douglas Adams

After reading this chapter, the readers will be able to
  know how classes and objects are created and applied in Java
  know how methods are created and used
  understand the concepts of polymorphism and overloading
  understand what is a constructor
  establish familiarity with static keyword
  know about arrays and command-line arguments
  understand inner classes
  understand and use arrays

4.1 CLASSES
Java is an object-oriented language. In the first chapter, we have learnt the concepts of object-
oriented programming (OOP). Before applying these concepts in Java, we must understand the
basic building blocks of OOP, i.e., classes and objects.

In the real physical world, everyday we come across various objects of the same kind. One
of the many things we come across are motorbikes. In terms of object-oriented language, we
can say that the bike object is one instance of a class of objects known as ‘motorbikes.’ Bikes
have gears, brakes, wheels, etc. They also follow certain behaviors, when functions are applied
on them, e.g., bikes slow down when brakes are applied, they accelerate when geared up and
acceleration is applied, and so on.

Manufacturers produce many bikes from the same blueprint by taking advantage of the fact
that bikes share similar characteristics. It would be very inefficient to produce a new blueprint
for every individual bike they manufactured.

In the object-oriented software, there are many objects of the same kind, i.e., belonging to
the same classes that share certain characteristics. Like the bike manufacturer, we can take
advantage of the fact that objects of the same kind are similar and a blueprint for those objects
can be created. Software ‘blueprints’ for objects are called classes.

Classes and Objects 44

Classes and Objects 75

Let us come back to our bike class, which would also declare and provide
implementations for the instance methods or functions that allow the rider to
change gears, apply brakes, and accelerate. Figure. 4.1 shows the bike class.

Note A class is a blueprint or prototype that defines the variables and
methods common to all objects of a certain kind. In other words, a
class can be thought of as a user-defined data type and an object as
a variable of that data type that can contain data and methods, i.e.,
functions working on that data.

4.2 OBJECTS

The object-oriented technology revolves around objects. We see many objects around us
such as table, chair, dog, fan, computer, pen, and car. These objects need not be tangible
ones only, but can be intangible also, e.g., bank accounts, marks, fees, etc. All these real-
world objects have different states and behaviors. The state of an object is defined by the
values of the attributes at any instant. Bikes have attributes (speed, engine capacity, number
of wheels, number of gears, brakes), behaviors (braking, accelerating, slowing down, and
changing gears) and on application of this behavior on attributes, the state of the object will
change. Bike object can be in various states, it can be stationary, moving etc. For example,
when we apply brakes, the speed will reduce and when we accelerate speed increases. A
state will change over time and at any instant a state would be somewhat like current speed
= 60 km/hr and current gear = 4th. Similarly, the state of a fan would be either off or on.

We can conceptualize these real-time objects as software objects. They are similar natured
in the sense they too have states and behaviors. The state in software objects is maintained in
variables and the behavior can be implemented using methods. It is interesting to know that
these real-world objects can be represented using software objects.

Note An object is a software bundle that encapsulates variables and methods operating on those
variables.

You might want to represent a real-world bike as a software object in a gaming application.
Abstract objects representing abstract concepts can also be modeled using
software objects. For example, a bank account is a common object used in banking
solutions to represent the details of bank accounts of various customers of a bank.

Figure. 4.2 shows a common visual representation of a software object.
It would be correct to say that everything the software object knows (state) and

can do (behavior) is expressed by the variables and methods within that object.
A software object that models the real-world bike would have variables that
indicate the bike’s current state: its speed is 10 mph, its acceleration in terms of
revolutions per minute is 5000 rpm, and its current gear is 4th. These variables
are known as instance variables.

Bike

boolean kickStart

boolean buttonStart

int gears

accelerate()

applyBrake()

changeGear()

Fig. 4.1 Bike Class

:Bike

kickStart = false

buttonStart = true

gear = 4

accelerate()

applyBrake()

changeGear()

Fig. 4.2 Bike Object

76 Programming in Java

The object bike would also have methods to brake, accelerate, and change gears. These are
known as instance methods. Only relevant fields and behaviors are added into a class. For
example, a bike does not have a surname, and it cannot speak or sleep. A bike class can be
created that declares several instance variables to contain the gears, the brakes, and so on, for
each bike object and every bike will have its own brakes, gears, etc.

It is worth noting here that all object instances have their own copies of instance variables.
This means that if there are five object instances of a bike class, there are five copies of each
instance variable defined in that class. Each object has its own copy of instance variables which
is different from other objects created out of the same class.

The values of the instance variables are provided by each instance of the class. So, after you
have created the bike class, you must instantiate it (create an object of it) before you can use it.
When an instance of a class is created, an object of that type is created and memory is allocated
by the system for the instance variables declared by the class. Then the object’s instance methods
can be invoked to perform operations.

Note Instances of the same class share the instance method implementations (method
implementations are not duplicated on a per object basis).

 In addition to instance variables and methods, classes can define their own class variables
and methods. Every object will have its own instance variables but class variables will be shared
by all the objects of the class. You can access class variables and methods using an instance
of the class or using the class name. You need not instantiate a class to use its class variables
and methods. Class methods can only access the class variables directly. They don’t have direct
access to instance variables or methods. A single copy of all class variables is created and all
instances of that class share it. For example, suppose all cars had the same number of gears. In
such a situation, a class variable can be created that defines the number of gears. All instances
of the class will share this variable. If any object manipulates the class variable, then it changes
for all objects of that class.

4.2.1 Difference Between Objects and Classes
Both objects and classes look the same. Yes, it is a fact that the difference between classes and
objects is often the source of some confusion. In the real world, it is obvious that classes are
not themselves the objects that they describe—a blueprint of a bike is not a bike. However, it is
difficult to differentiate between classes and objects in programming. This is partially because
objects in programming are merely the electronic models of real-world objects or abstract
concepts. Classes have logical existence, whereas objects have physical existence, e.g., furniture
itself does not have any physical existence, but chairs, tables, etc. do have.

4.2.2 Why Should we Use Objects and Classes?
Modularity, information hiding, i.e., data encapsulation, can be incorporated using objects.
Classes, being blueprints, also provide the benefit of reusability along with the ease of changing
and debugging code. For example, bike manufacturers reuse the same blueprint over and over
again to build lots of bikes. Programmers use the same class repeatedly to create many objects.

Classes and Objects 77

4.3 CLASS DECLARATION IN JAVA

Declaring a class is simple. A class can be declared using the keyword class followed by the
name of the class that you want to define. Giving a name to a class is something which is totally
in the hands of the programmer. But while doing so, he must take care of the relevance of the
class name, the legality of Java identifiers used as the class name, and the naming convention
used in Java. Thus, the simplest class declaration looks as follows:
class Bike
{
 //Variables declaration
 //Methods declaration
}

Example 4.1 Class Declaration
 class GoodbyeWorld
 {
 public static void main (String args[])
 {
 System.out.println("Goodbye World!");
 }
 }

Here the name of the class is GoodbyeWorld. The class just contains the main() method, which
is responsible for displaying GoodbyeWorld on the screen.
 To sum up, all the action in a Java program takes place inside the class. Methods and variables
are defined inside the classes. The class is the fundamental unit of programming in Java. The
class declaration can specify more about the class, like you can:

  declare the superclass of a class
  list the interfaces implemented by the class
  declare whether the class is public, abstract, or fi nal

For each of the cases above, the class declaration will differ accordingly. We will talk about that
as and when we cover the related concepts. Taking all the possibilities of class declaration in
Java, we can summarize the class declaration syntax as

 [modifi ers] class ClassName [extends SuperClassName] [implements InterfaceNames]
 { . . . }
 The items enclosed inside [] are optional. A class declaration defines the following aspects
of the class:

  modifi ers declare whether the class is public, protected, default, abstract or fi nal
  ClassName sets the name of the class you are declaring
  SuperClassName is the name of the ClassName's superclass
  InterfaceNames is a comma-delimited list of the interfaces implemented by ClassName

Only the class keyword and the class name are mandatory. Other parameters are optional.

78 Programming in Java

Note The Java compiler assumes the class to be non-final, non-public, non-abstract, subclass of objects
(discussed in Chapter 6) that implements no interfaces if no explicit declaration is specified.

 Certain terms in the above syntax such as modifiers, extending superclasses, and
implementing interfaces, which are presently unfamiliar, will be discussed in the later chapters.

4.3.1 Class Body
The class contains two different sections: variable declarations and method declarations. The
variables of a class describe its state, and methods describe its behavior. All the member variables
and methods are declared within the class. There are three types of variables in Java: local
variables, instance variables, and class variables. Local variables are defined inside a method.
Instance variable is defined inside the class but outside the methods, and class variables are
declared with the static modifier inside the class and outside the methods. For now, we will
concentrate on instance variables.

 Instance Variables
It is important to understand that a class can have many instances (i.e., objects) and each instance
will have its own set of instance variables. Any change made in a variable of one particular
instance will not have any effect on the variables of another instance. For more details on class
variables, local variables, and instance variables, see Section 4.7.
 Normally, you declare the member variables first followed by the method declarations and
implementations.
classDeclaration
{
 memberVariableDeclarations
 methodDeclarations
}

Let us see how you can declare instance variables in a class. Example 4.2 shows a sample class
declaration with two instance variables. We will return to the discussion of instance variables
later in the chapter. Please note that if you try to run this example it won’t show any output
because it is not fully functional and there are certain statements/methods that we need to add
so that this program can display any output, which will follow later in the chapter.

Example 4.2 Class Declaration
 L1 class SalesTaxCalculator {
 L2 fl oat amount = 100.0f; // instance variable
 L3 fl oat taxRate = 10.2f; // instance variable
 L4 }

Explanation
L1 Class declared with the keyword class followed
by the name of the class SalesTaxCalculator.
L2 A instance variable amount is declared to denote
the amount on which sales tax has to be calculated.

L3 Declares another float instance variable taxRate
to denote the rate of tax on the sale amount.
L4 End of the class.

Classes and Objects 79

The above example shows a class with two instance variables. Instance variables are part of
the instance of the class (object). These instance variables will be created when the instance
is created. In order to be able to access/manipulate these instance variables, we need to create
objects of this class. We have already seen what objects are. Let us see how objects are created
and used in Java.

4.4 CREATING OBJECTS

In Java, you create an object by creating an instance of a class or, in other words, instantiating a
class. A Java object is defined as an instance of a class. The type of the object is the class itself.
Often, you will see a Java object created with a statement like

 SalesTaxCalculator obj1 = new SalesTaxCalculator();

This statement creates a new SalesTaxCalculator object. This single statement declares,
instantiates, and initializes the object. SalesTaxCalculator obj1 is a reference variable declaration
which simply declares to the compiler that the variable obj1 will be used to refer to an object
whose type is SalesTaxCalculator. The new operator instantiates the SalesTaxCalculator
class (thereby allocating memory and creating a new SalesTaxCalculator object), and
SalesTaxCalculator() initializes the object.

4.4.1 Declaring an Object
Object declarations are same as variable declarations. For example,

 SalesTaxCalculator obj1;

Generally, the declaration is as follows:

 type name

where type is the type of the object (i.e., class name) and name is the name of the reference
variable used to refer the object. Classes are like new data types. So type can be any class such
as the SalesTaxCalculator class or the name of an interface.

Note A variable holds a single type of literal, i.e., 1, bat, 345, etc. An object is defined as an instance
of a class with a set of instance variables and methods that perform certain tasks depending
on what methods have been defined for. A reference variable is used to refer/access an object.
A reference variable is of a specific type name of the class is its type. Unlike normal variable,
reference variables can be static, instance or local variables as well as they can be passed to
or returned from the method.

The above declaration won’t create an object. It will create a variable with a name and specify
its type. For example, SalesTaxCalculator is the type and obj1 is the reference variable.

4.4.2 Instantiating an Object
After declaring a variable to refer to an object, an actual, physical copy of the object must be
acquired and assigned to that variable. This can be achieved by the new operator. The new operator
instantiates a class by dynamically allocating (i.e., at runtime) memory for an object of the class

80 Programming in Java

type and returns a reference to it. This reference is nothing but the address in the memory of the
object allocated by new. This reference or memory address is then stored in the variable declared.
The new operator requires a single argument, i.e., a constructor call. The new operator creates
the object or instantiates an object and the constructor initializes it.

 SalesTaxCalculator obj1 = new SalesTaxCalculator()

The above statement just creates an instance of a class, SalesTaxCalculator. In other words, the
new operator creates an object obj1 by allocating memory for its member variables, i.e., amount
and taxRate (Example 4.2) and few other items.

4.4.3 Initializing an Object
By initializing an object, we mean the instance variables are assigned initial values. The instance
variables of a particular object will have different values during the lifetime of an object. But to
start with, initial values are required. If no value is specified for the instance variables, then the
default values will be assigned to those variables based on their respective types. Initial values
can be provided by instance variable initializers and constructors.
 Instance variable initializers are values directly assigned to the instance variable outside any
method/constructor but within the class. [As shown in L2 and L3 of Example 4.2(a)].
 The best and convenient approach is to create your own constructor. Constructors should be
provided within classes to initialize objects. Constructors have the same name as that of the class.
Constructors are invoked as soon as the object is created. In case you do not create a constructor
for your class, Java compiler provides a default constructor for your class automatically. The
default constructor is a zero argument constructor with an empty body. The implicitly created
default constructor is invoked as soon as the object is instantiated with new keyword as shown
below.

 new SalesTaxCalculator()

We will come back to the concepts of constructors along with the examples explaining them in
Section 4.6.

obj1 Null

SalesTaxCalculator obj1; // Object declaration is done

obj1 = new SalesTaxCalculator();

amount = 100.0

taxRate = 10.2

obj1 obj1 stores a

reference to the

object.

SalesTaxCalculator

Fig. 4.3 Steps in Object Creation

Classes and Objects 81

 To sum up, the final object creation can be said as complete, when the objects are initialized,
either with an implicit constructor or an explicit constructor. This object creation can be used in
a programming code in two ways:

 SalesTaxCalculator obj1 = new SalesTaxCalculator();

Here all the three operations, object declaration, object instantiation, and object initialization are
done by a single statement. The above process takes place in the following way:
 Now that we know how to create a class and objects for that class, we can rewrite Example
4.2 where we can do these things in one program only. The following program displays a class
SalesTaxCalculator, with two instance variable (initialized to some values) and two objects of
the class SalesTaxCalculator, obj1 and obj2 (created inside the main method). Instance variable
initializers are used in this example to initialize objects: obj1 and obj2 (Fig. 4.3).

Example 4.2 (a) Object and Classes

 L1 class SalesTaxCalculator {

 // instance variable initializer

 L2 fl oat amount = 100.0f;

 // instance variable initializer

 L3 fl oat taxRate = 10.2f; //instance variable

 // instance method

 L4 public static void main (String args[])

 {

 L5 SalesTaxCalculator obj1 = new SalesTaxCalculator();

 L6 SalesTaxCalculator obj2 = new SalesTaxCalculator();

 L7 System.out.println("Amount in Object 1: "+ obj1.amount);

 L8 System.out.println("Tax Rate in Object 1: "+ obj1.taxRate);

 L9 System.out.println("Amount in Object 2: "+ obj2.amount);

 L10 System.out.println("Tax Rate in Object 2: "+ obj2.taxRate);

 }}

Output
 D:\javabook\programs\chap4\java SalesTaxCalculator
 Amount in Object 1: 100.0
 Tax Rate in Object 1: 10.2
 Amount in Object 2: 100.0
 Tax Rate in Object 2: 10.2

Explanation

L1 Class declaration.
L2 & L3 Instance variable have been declared with
their initializer.
L4 Main method declared.
L5 & L6 Two objects of this class are created in
these lines. As already discussed, the new keyword

allocates memory to these objects according to the size
of instance variables (plus a few more bits for some
more items). Note that no constructor has been created
in this class, so the Java compiler will automatically
provide a default constructor for this class which
is being invoked while creating object in these

82 Programming in Java

statements. The default constructor is empty, so it is
the responsibility of the Java compiler to ensure that
the instance variable are initialized to their respective
values (amount = 100.0f and taxRate = 10.2f)
according to their initializer (mentioned in L2 and
L3) by the JVM at runtime. (How does it ensure
this? We will discuss it later in the chapter). For
instance, we will consider that the instance variable
initializers are used by the Java compiler to initialize
these instance variables.

L7 Is a print statement that prints the value of
the instance variable present in obj1. The variable
can be accessed through the object followed by the
dot operator from main method or outside the class
(depends on access and scope of the object).obj1.
amount will return the value of amount stored in
the instance obj1. The value of the variable can be
changed by using the following syntax:
 obj1.amount=200.0f;

L8, 9 & 10 Similar to L7.

Note Setter methods can also be used for assigning or modifying values of instance variables (i.e.,
set X() or set Y() where x and y are the names of the instance variables) They are declared
inside a class, as shown in Examples 4.3 and 4.5 (methods will be discussed in the next section).

The above program has a limitation that all objects created will have the same value for amount
and taxRate. Later on it can be changed using object references. But it would be wiser to let all
objects have their own different amount and tax rates as soon as they are created. This problem
will be solved using constructors (Section 4.6).

4.5 METHODS

The word method is commonly used in object-oriented programming. It is similar to a function
in any other programming language. Many programmers use different terms, especially function,
but we will stick to the term methods. None of the methods can be declared outside the class.
All methods have a name that starts with a lowercase character.

4.5.1 Why Use Methods?
  To Make the Code Reusable If you need to do the same thing or almost the same

thing, many times, write a method to do it and then call the method each time you have
to do that task.

  To Parameterize the Code You will often use parameters to change the way the method
behaves.

 For Top-down Programming You can easily solve a bigger problem or a complex one
(the ‘top’) by breaking it into smaller parts. For the same purpose, we write methods.
The entire complex problem (functionality) can be broken down into methods.

  To Simplify the Code Because the complex code inside a method is hidden from other
parts of the program, it prevents accidental errors or confusion.

4.5.2 Method Type
There are two types of methods in Java: instance methods and class methods. Instance methods
are used to access/manipulate the instance variables but can also access class variables. Class

Classes and Objects 83

methods can access/manipulate class variables but cannot access the instance variables unless
and until they use an object for that purpose.

4.5.3 Method Declaration
The combined name and parameter list for each method in a class must be unique. The
uniqueness of a parameter is decided based on the number of parameters as well as the order
of the parameters. So,
 int methodOne (int x, String y)

is unique from

 int methodOne (String y, int x).

Let us take a look at the general syntax of a method declaration:
 [modifi ers] return_typemethod_name (parameter_list)
 [throws_clause] {
 [statement_list]
 }

 The parameters enclosed within square brackets [] are optional. The square brackets are
not a part of the code; they are included here to indicate optional items. We will discuss only
those parts that are required at the moment and leave the rest for the later chapters. The method
declaration includes

  Modifi ers If you see the syntax of the method declaration carefully, there is an optional part
of it, modifi ers. There are a number of modifi ers (optional) that can be used with a method
declaration. They are listed in Table 4.1.

Table 4.1 Optional Modifi ers used While Declaring Methods

Modifi er Description

public, protected,
default or private

Can be one of these values. Defi nes the scope—what class can invoke
which method?

static Used for declaring class methods and variables. The method can be invoked
on the class without creating an instance of the class.

abstract The class must be extended and the abstract method must be overridden
in the subclass.

fi nal The method cannot be overridden in a subclass.

native The method is implemented in another language (out of the scope of this
book).

synchronized The method requires that a monitor (lock) be obtained by calling the code
before the method is executed.

throws A list of exceptions is thrown from this method.

84 Programming in Java

  Return Type It can be either void (if no value is returned) or if a value is returned, it can
be either a primitive type or a class. If the method declares a return type, then before it exits,
it must have a return statement.

  Method Name The method name must be a valid Java identifi er. We have already discussed
Java identifi ers in Section 3.3.

  Parameter List Zero or more type/identifi er pairs make up a parameter list. Each parameter
in the parameter list is separated by a comma.

  Curly Braces The method body is contained in a set of curly braces. Methods contain a
sequence of statements that are executed sequentially. The method body can also be empty.

 In Example 4.2(a), we have stored data: amount and taxRate but we have not calculated the
tax amount based on the rate. We need to calculate the tax amount. This operation would require
some calculation (operations) to be performed on the data variables. These operations will be
performed inside a method so we need to add a method to that class and revise the class. The
method added is calculateTax()(L4) which calculates the taxed amount. This method is invoked
in L10 and 11 by the two objects using the dot operator. Note that the answer in both cases is the
same because the data in both cases is same, i.e., amount and tax rate are same for both objects
so the taxed amount is same.

Example 4.2 (b) Added Instance Method
 L1 class SalesTaxCalculator {
 // instance variable initializer
 L2 fl oat amount = 100.0f;
 // instance variable initializer
 L3 fl oat taxRate = 10.2f; //instance variable
 // instance method
 L4 void calculateTax() {
 L5 fl oat taxAmt = amount*taxRate/100;
 L6 System.out.println("The Taxed Amount is: "+taxAmt);
 }
 L7 public static void main (String args[])
 {
 L8 SalesTaxCalculator obj1 = new SalesTaxCalculator();
 L9 SalesTaxCalculator obj2 = new SalesTaxCalculator();
 L10 obj1.calculateTax();
 L11 obj2.calculateTax();
 }}

Output
 The Taxed Amount is: 10.2
 The Taxed Amount is: 10.2

Let us take a different example to explain the concepts in more detail. The following example
has a couple of instance methods, setRadius() and calculateArea(), declared inside the class,
Circle. The word instance has been particularly used to distinguish between instance and
class methods. The modifier static has not been used while declaring methods so the methods
become instance methods.

Classes and Objects 85

Example 4.3 Instance Method Declaration

 L1 class Circle
 L2 {
 L3 fl oat pi = 3.14f;
 L4 fl oat radius;
 //setter method to change the instance variable: radius
 L5 void setRadius(fl oat rad)
 L6 {
 L7 radius = rad;}
 L8 fl oat calculateArea()
 L9 {
 L10 fl oat area = pi * radius * radius;
 L11 return (area);
 L12 } }

Explanation
 L1 Class declaration.
L3 & 4 Instance variable declaration.
L5 Declares an instance method popularly known
as setter or mutator methods (note that static
modifier is not used in this declaration). They are
known as setter or mutator methods because they set
or change (mutate) the values of instance variables.
The data type void indicates that this method will not
return any value. The name of the instance method
is setRadius()and it accepts a float parameter
rad. This method is used to assign a value to the
instance variableradius. The method argument
rad is assigned to the instance variable radius
in this method on L7. It also shows that instance
methods can access instance variables directly.
Instance methods are invoked using objects, so data
residing in objects can be easily accessed (set or get)
by instance methods.
L6 The body of the method starts with the left
brace, “{”.
L7 rad is assigned to an instance variable radius
of type float. The right brace “}” signifies the end
of the method.

L8 Declares another instance method. The instance
method calculateArea() has been declared to return
a value of type float.
L9 “{” signifies the start of the method body.
L10 Instance variables pi and radius are multiplied
to calculate the area of the circle. As shown, instance
variables can be used by instance methods directly
to produce result. An important point to note is that
different Circle objects will have different values
of radius and obviously the calculated area will
be different but the instance methods remains the
same. In other words, instance methods are not
implemented on a per object basis as is the case with
instance variables. The area of the circle is stored in
the local variable, area, declared as float.
L11 The value stored in the variable area is returned
by the return statement.
L12 The first right brace “}” signifies the end of
method, calculateArea(), and the second brace “}”
signifies the end of class, Circle.

Note The responsibility of providing initial values is that of constructors, and constructors are called
only once, i.e., during object creation. If the value of instance variables has to be changed,
setter methods should be used and that too can be invoked any number of times.

86 Programming in Java

4.5.4 Instance Method Invocation
If you run Examples 4.2, 4.2(a), and even Example 4.3, you won’t see any output for a very
simple reason that we have created methods but we have not invoked (called) them. Methods
(instance or class methods) cannot run on their own, they need to be invoked. Instance methods
will be invoked by the objects of the class they are a part of. Class methods invocation will be
discussed later in this chapter.
 When an object calls a method, it can pass on certain values to the methods (if methods accept
them) and the methods can also return values from themselves if they wish to. Data that are
passed to a method are known as arguments or parameters; the required arguments for a method
are defined by a method’s parameter list (method signature). Let us take an example and see
how invoking is done.

Example 4.4 Instance Method Invocation
 L1 class CallMethod
 L2 {
 L3 public static void main (String args[])
 L4 {
 L5 fl oat area1;
 L6 Circle circleobj = new Circle();
 L7 circleobj.setRadius(3.0f);
 L8 area1 = circleobj.calculateArea();
 L9 System.out.println("Area of Circle = " + area1);
 L10 }}

Output
 Area of Circle = 28.26

Explanation
L6 Creates an object of Circle class. setRadius()
and calculateArea() are instance methods of the
class, Circle. So an instance is required to invoke
these instance methods and that instance must be
of the class the methods are a part of, i.e., Circle
(Example 4.3). That’s why an object of the Circle
class named circleobj is created.
L7 & 8 Using the instance created in L6, we call
the methods setData() and calculateArea() with

the help of a dot operator. A value 3.0f (f to
indicate float value) is passed as an argument in the
setRadius() method invocation. This value 3.0f
is assigned to the local float variable rad, which is
actually an argument in the method declaration (see
Example 4.3, L5). The calculateArea()method
calculates the area and returns the value which is
captured in a float variable area1.

The following defi nitions are useful in the above context.
 Formal Parameter The identifier used in a method to stand for the value that is passed into
the method by a caller. For example, the parameter defined for setRadius(), i.e., rad in L5 of
Example 4.3 is a formal parameter, as it will be bound to the actual value sent by the caller
method. These formal parameters come in the category of local variables which can be used in
their respective methods only.
 Actual Parameter The actual value that is passed into the method by a caller. For example, in
L7 of Example 4.4, 3.0f, passed to setRadius(), is the actual parameter.

Classes and Objects 87

Note The number and type of the actual and formal parameters should be same for a method. Also
note that the class having the main() method is to be executed first by the Java interpreter.

 In Example 4.3, we have created a class (Circle) and two methods in that class.
Example 4.4 shows how the methods of Circle class (Example 4.3) are called from another
class, i.e., CallMethod. The methods can also be called from within the class, as shown in
Example 4.5.

Example 4.5 Adding Instance Variable(s) and Instance Method(s)
 L1 class Circle
 L2 { fl oat pi=3.14f;
 L3 fl oat radius;
 L4 void setRadius(fl oat rad){
 L5 radius = rad;
 L6 }
 L7 fl oat calculateArea(){
 L8 fl oat area = pi* radius*radius;
 L9 return (area);
 L10 }
 L11 public static void main (String args[]) {
 L12 Circle circleobj = new Circle();
 L13 circleobj.setRadius(3.0f);
 L14 System.out.println("Area of Circle = " + circleobj.calculateArea());
 // The above two lines can be compressed to one, i.e.
 // System.out.println(circleobj.setRadius(3.0f).calculateArea());
 L15 }}

Explanation
The example is entirely same as that of Example 4.3
up to L10. (The output is entirely same as that of the
previous program.)
L11 The execution begins at main(). Because
main() is defined in this class, it can execute on
its own and there is no need of a separate class like
CallMethod (Example 4.4) for invoking the methods
of the Circle class. The main method from that class

has been squeezed out and inserted in the class Circle
as shown in the lines 11–15.
L12 An object of the Circle class, named
circleobj, is created using the new operator.
L13 setRadius()is called with the help of an
object of the Circle class and a float argument is
passed to it.
L14 calculateArea()is called using the object
created in L12.

Note In Java, all values are passed by value. This is unlike some other programming languages that
allow pointers to memory addresses to be passed into methods. When a primitive type value
is passed to a method, the value is copied. The copied value, if changed inside the method,
does not affect the original value. When an object is passed, only the reference is copied.
There is just one object that has two references now on it. The changes made to the object
through one reference will be reflected when the object is accessed through other references.

4.5.5 Method Overloading
 Method overloading is one way of achieving polymorphism in Java. Each method in a class is
uniquely identified by its name and parameter list. What it means is that you can have two or

88 Programming in Java

more methods with the same name, but each with a different parameter list. This is a powerful
feature of the Java language called method overloading. Overloading allows you to perform
the same action on different types of inputs. In Java whenever a method is being called, first
the name of the method is matched and then, the number and type of arguments passed to that
method are matched.
 In method overloading, two methods can have the same name but different signatures, i.e.,
different number or type of parameters. The concept is advantageous where similar activities
are to be performed but with different input parameters. Example 4.6 shows an example of
overloading a method max() in order to calculate the maximum value for different combinations
of inputs.

Example 4.6 Method Overloading
 class OverloadDemo
 {
 L1 void max(fl oat a, fl oat b)
 L2 {
 L3 System.out.println("max method with fl oat argument invoked");
 L4 if(a > b)
 L5 System.out.println(a + " is greater");
 L6
 else
 L7 System.out.println(b + " is greater");
 }
 L8 void max(double a, double b)
 {
 System.out.println("max method with double argument invoked");
 if(a>b)
 System.out.println(a + " is greater");
 else
 System.out.println(b + " is greater");
 L9 }
 L10 void max(long a, long b)
 {
 System.out.println("max method with long argument invoked");
 if(a>b)
 System.out.println(a + " is greater");
 else
 System.out.println(b + " is greater");
 L11 }
 L12 public static void main(String args[])
 L13 {
 L14 OverloadDemo o = new OverloadDemo();
 L15 o.max(23L,12L);
 L16 o.max(2,3);
 L17 o.max(54.0,35f);
 L18 o.max(43f,35f);
 }}

Classes and Objects 89

Output
C:\javabook\programs\chap4>java OverloadDemo

 max method with long argument invoked
 23 is greater
 max method with long argument invoked
 3 is greater
 max method with double argument invoked
 54.0 is greater
 max method with fl oat argument invoked
 43.0 is greater

Explanation

L1 Method max is defined inside class OverloadDemo
with two arguments of type float.
L2 Marks the beginning of the method.
L3 Shows a print statement describing the method
that has been invoked.
L4 if statement is used to check whether the float
argument a is greater than b. If a is greater, then L5
prints a is greater, else L7 prints b is greater.
L8 & 9 Overloaded method max is defined in these
lines. This overloaded version of the method accepts
two arguments of type double. This is different
from the max method defined in L1. The processing
inside this method is entirely similar to the previous
method with the exception that now the maximum
will be chosen from two double values instead of
float values.
L10 & 11 Another version of overloaded method
max is defined in these lines. This overloaded version
of the method accepts two arguments of type long.
This is different from the max method defined in
lines L1 and L8. The processing inside this method
is entirely similar to the previous method with the
exception that now the maximum will be chosen from
two double values instead of float values.
L12 main method has been defined. Execution
starts from main method.
L13 Marks the beginning of the main method.
L14 An object of the class is created to invoke the
instance methods.
L15 Shows the invocation of the method, max, and
two arguments that are passed to it. The question
arises, which version of the max method will be
invoked? (Remember: The invocation will be based

upon the number and type of arguments). In our case,
we have only two arguments in all the overloaded
methods. So the decision is taken according to the
type of arguments. In this particular statement, two
long arguments are passed. First of all, Java tries to
find an exact match, i.e., a method named max in class
OverloadDemo which accepts two long arguments.
Java finds the method in L10. The method is called. If
an exact match could not be found (say for example,
the method max with long arguments is not present
in the OverloadDemo class), then Java looks for a
method named max which has the arguments to
accommodate these long values (Remember: long
values can be accommodated implicitly only in float
and double). This example has max methods with
both float and double arguments. So which method
will be called? The max method with float arguments
will be called (long values are promoted to float and
passed). And in case the max with float arguments
is also not available, then the method with double
arguments will be called (long values are promoted
to double and passed).
L16 max method is called with two int arguments
passed to it. In OverloadDemo class, Java does not find
a method which accepts two int arguments, but it
finds a method max that accepts two long arguments.
These two int arguments are automatically promoted
to long and passed to the method with the name
max accepting two long arguments (automatic type
promotion has taken place here).
L17 Shows the invocation of max method with a
double argument and a float argument. In this case,
Java does not find an exact match, as there is no such

90 Programming in Java

method named max that accepts a double argument
and a float argument. So, automatic promotion takes
place in this case also. The question arises that which
overloaded method will be called? The max method
with both float arguments cannot be called, as
the first argument that is being passed is a double.
Similarly, the max method with both long arguments

cannot be called, as both the arguments are bigger
than long. So, the max method with both double
arguments will be called, as the first argument is a
perfect match and the second will be automatically
promoted to double (see output).
L18 The max method with both float arguments
will be called in this case.

Note As a general rule, automatic type promotion takes place while passing parameter values to
methods. In overloading, the decision of choosing which method to invoke is resolved by the
Java compiler at compile time (early-binding) rather than delaying it till runtime because
(a) Java is a strongly typed language.
(b) Resolving all these issues at compile time will avoid unnecessary exceptions at runtime.
(c) Enhanced performance.

4.6 CONSTRUCTORS
Whenever an object is created for a class, the instance variables of the class needs to be initialized,
i.e., they need to be given initial values. It can be done through instance variable initializers
(as shown in L2 and L3 [Examples 4.2 and 4.2(a)], L3 (Example 4.3) and L2 (Example 4.5)) and
instance initialization blocks. An instance initialization block is a block of statement enclosed
in parenthesis with initialization placed in it as shown below:
 class Rectangle
 {
 // Instance initialization blocks
 {
 length=10;
 width=10;
 }
 }

But Java has a simple and concise method of doing it. It has a mechanism for automatically
initializing the values for an object, as soon as the object is created. The mechanism is to use
constructors.
 Constructors have the same name as the class they reside in and they are syntactically similar
to a method. Constructors are automatically called immediately after the object for the class is
created by a new operator. Constructors have no return type, not even void, as the implicit return
type of a constructor is the class type itself.
 In Section 4.4.3, we discussed a little about constructors, promising that we would come
back to this topic. Now it is time to recall that section on object creation. An implicit or default
constructor is used as a parameter to the new operator, just as shown below.
 SalesTaxCalculator r1 = new SalesTaxCalculator ();

Here, the new operator is calling the SalesTaxCalculator() constructor. If the constructor is
explicitly defined within the class just as shown in Example 4.7, it is known as explicit constructor,
otherwise Java automatically creates a default constructor as soon as the object is instantiated
by the new operator. They are known as implicit or default or no-argument constructors. In

Classes and Objects 91

earlier examples, no constructor was explicitly provided, so Java provided them with a default
constructor. But in case you define your own constructor within the class (Example 4.7), the
default constructor will not be provided by Java. In that case, the constructor defined within the
class will be called.
 The default constructor, provided by Java compiler, is a no-argument constructor with empty
body. The only question that would arise now is that if the default constructor is an empty
constructor, then how are the variables initialized to the user specific values or default values
and who does it? For example in case of Examples 4.2, 4.2(a), and 4.2(b), when instance variable
initializers are used and no constructors has been defined in the SalesTaxCalculator class, how
are the objects obj1 and obj2 initialized with the values specified in instance variable initializers
as the default constructor is an empty constructor. What happens in the background is that Java
compiler creates a special method known as <init> method for each of the constructors specified
in the class. The code explicitly written in the constructors is placed within the <init> method
after some operations like calling the superclass constructor, instance variable initializers and
instance initialization blocks in the order in which they appear in the source code. When no
constructors have been specified, the Java compiler creates a default constructor and an <init>
method for the default constructor. This method will also include a call to superclass constructor
as well as the instance variable initializers and instance initialization block (if any mentioned in
the class and in the order mentioned in the source code).When no constructors and no instance
variable initializer or block have been specified, the Java compiler creates a default constructor
and <init> method for the default constructor, which initializes the instance variables with their
respective default values.

Note <init> is a special method, meant for the JVM (to initialize objects) and not the programmer.
So you cannot create a method by this name in your program. Also note that the arguments of
this method would be same as that of the constructors and the return type would be void. This
init mechanism was created in Java to ensure that memory allocated is initialized properly
and any bugs should not arise due to garbage values in memory as in the case of other
languages like C and C++.

 Table 4.2 provides a summary on constructors versus methods.

Table 4.2 Constructors vs Methods

Constructor Methods
Do not have any return type not even void Will have a return type
Will have the same name as that of class Can have any name even the name of class (although should not

be used)
Invoked as soon as the object is created
and not thereafter

Invoked after the object is created (instance methods) and can be
called any number of times thereafter

Constructors cannot be inherited Methods can be inherited
Constructors can be overloaded Methods can also be overloaded
Constructors can be private, protected,
default or public

Methods can also be private, protected, default or public

Role of constructor is to initialize object Role of method is to perform operations
Constructors cannot be abstract, fi nal,
static or synchronized

Methods can be abstract, fi nal, static or synchronized

92 Programming in Java

 Let us take an example to illustrate the usage of constructor. L3 of Example 4.7 defines an
explicit default constructor that does not accept any argument but initializes the instance variables
to the specified values.

Example 4.7 Constructor
 L1 class Room{
 L2 double length, breadth, height, volume;
 No Argument Constructor
 L3 Room(){
 L1 length = 14;
 L5 breadth = 12;
 L6 height = 10;
 L7 }

 L8 // Computation of volume of the room
 L9 double volComp(){
 L10 volume = length * breadth * height;
 L11 return volume;
 L12 }
 L13 public static void main (String args[]){
 L14 Room r1 = new Room();
 L15 Room r2 = new Room();
 L16 System.out.println("The volume of the room is " +r1.volComp());
 L17 System.out.println("The volume of the room is " +r2.volComp());
 L18 }
 L19 }

Output
 D:\javabook\programs\chap 4>java Room
 The volume of the room is 1680.0
 The volume of the room is 1680.0

Explanation
L3 A constructor with the name of the class, Room,
is defined. It should be noted that the constructor
declaration is very much like a method declaration
but does not have a return type.
L4 & 6 Various instance variables are initialized
with certain values.
L9 & 12 Instance method volComp()is defined
and implemented for calculating and returning the
volume of the room to the caller. The return type of
the method is specified as double. Return values
are expected from methods when you would like to
perform more operations on the returned values or
want to pass them further. Here volume is returned
specifically to denote how values are returned from
methods. The volume calculated is stored in the
instance variable volume, which is returned at the

end of the method with the help of return keyword.
Please note that if a method specifies a return type
then it must return a value of that type using a return
keyword.
L14 & 15 Two objects, r1 and r2, are created
or instantiated using new operator. As soon as
this is done, the constructor Room()on L3 is called
automatically, which in turn initializes all the
variables that it is defined for. The default constructor
will not be provided by Java because we have defined
a constructor for our class. So when we create object
our defined constructors will be invoked which would
initialize the objects. Obviously, in the background
this task will be achieved using <init> method.
L16 & 17 The volume of both the objects of the
room class is printed. Note that, volComp()is called

Classes and Objects 93

by their respective objects, in order to return the value
of volume. Here, the volume for both the instances
will be same, because both the objects call the method
volComp(), which uses the same set of dimensions

Note Instance method, volComp(), directly uses the instance variable: length, breadth, height,
and volume. A very common mistake that many novice OOP programmers make, is to pass
arguments to methods, multiply them and return the result. Although this might produce
correct result but would not be correct OOPs approach as you are working with local variable
rather than instance variables. Suppose if you create the volComp() method as shown below:

 double volComp (double length, double breadth, double height){
 volume = length * breadth * height;
 return volume;
 }

In this case, you are using local variables for calculating volume. The purpose is to calculate
the volume of the room whose dimensions are already encapsulated in the Room object. So
for that we need to access the instance variables as shown in Example 4.7 and not local vari-
ables. The usage of local variables defeats our purpose.

 4.6.1 Parameterized Constructors
Just like methods, arguments can be passed to the constructors, in order to initialize the instance
variables of an object. The above example had a limitation. Each Room has its own length, breadth,
and height and it is very unlikely that each room is of the same size. In the previous example,
all objects of Room class will have the same volume because the values for length, breadth and
height are fixed for all objects. You can explicitly change them using an object instance, e.g.,

 r1.length = 30

and then invoke the method volComp for calculating volume of the Room. But there should be a
mechanism for specifying different values of instance variables for different objects of a class,
as soon as the object is created. For example, if different dimensions can be specified for a Room
then each Room will have its own volume. For this, the instance variables should be assigned a
different set of values for different objects of the class. Hence we need to create a parameterized
constructor that accepts arguments to initialize the instance variables with the arguments. Let us
take an example to see how parameterized constructors can be used.

Example 4.8 Parameterized Constructor
 L1 class Room2 {
 L2 double length, breadth, height, volume;
 L3 Room2(double l, double b, double h) {
 L4 length = l;
 L5 breadth = b;
 L6 height = h;
 L7 }
 L8 // Computation of volume of the room
 L9 double volComp(){

for the volume calculation. It is so because both the
objects are initialized with the same set of values,
while being instantiated by the new operator.

94 Programming in Java

 L10 volume = length * breadth * height;
 L11 return volume;
 L12 }
 L13 public static void main (String args[]) {
 L14 Room2 r1 = new Room2(14, 12, 10);
 L15 Room2 r2 = new Room2(16, 15, 11);
 L16 System.out.println("The volume of the room is " +r1.volComp());
 L17 System.out.println("The volume of the room is " +r2.volComp());
 L18 }
 L19 }

Output
 The volume of the room is 1680.0
 The volume of the room is 2640.0

Explanation
Here we will explain only the relevant lines of the
above example.
L3–7 The constructor Room2 is defined, which has
three arguments: l, b, and h, of type double. These
are assigned to instance variables, length, breadth
and height, respectively.
L13 Instance r1 of class Room2 is created. The values
for the parameters are passed to the constructor in L3,
with the invocation of the explicit constructor.

L14 Second instance r2 of class Room2 is created.
Another set of values for the parameters is passed
to the constructor in L3, with the invocation of the
explicit constructor.
L15 & 16 The volumes for both the instances of
Room are printed. You can see in the output that both
the volumes are different, because different sets of
parameters are used to calculate the volumes.

Note In the above program, we have created a parameterized constructor. If we create an object
as shown below:

Room2 r3 = new Room2();

Instead of
Room2 r1 = new Room2(14, 12, 10);

 The compiler will not compile this program. The obvious reason is that we have created a
parameterized constructor in this class and we are trying to call the default constructor. Java states
that if you provide a constructor for your class, the (automatically created) default constructor
will not be provided to your class. And here we are invoking a no argument constructor which
is neither explicitly created in our class nor will it be implicitly provided by Java.

4.6.2 Constructor Overloading
Just like methods, constructors can also be overloaded. Constructors are declared just as we
declare methods, except that the constructors don’t have any return type. Constructors for a class
have the same name as that of the class, but they can have different signatures, i.e., different
types of arguments or different number of arguments.
 Such constructors can be termed as overloaded constructors. Constructors are differentiated
on the basis of arguments passed to them.
 In the example below, we have used two overloaded constructors, each having a different
number of arguments, so that the JVM can differentiate between the various constructors.

Classes and Objects 95

 Here we have two different classes, Rectangle and ConstOverloading. The Rectangle class
has two constructors, both with the same name but different signatures. Each constructor is used
for the initialization of instance variables.

Example 4.9 Rectangle Class Depicting Constructor Overloading
 L1 Class Rectangle{
 L2 int l, b;
 L3 Rectangle(){
 L4 l = 10;
 L5 b = 20;
 L6 }
 L7 Rectangle(int x, int y){
 L8 l = x;
 L9 b = y;
 L10 }
 L11 int area()
 L12 {
 L13 return l * b;
 L14 }
 L15 }

Explanation
L3–5 Explicit default constructor is defined for
the Rectangle class. This constructor initializes the
instance variables with integer values.
L7–10 An overloaded constructor is defined for

the Rectangle class, which accepts two integer
values for initializing two instance variables.
L11–14 An instance method area() is defined to
return the area of the rectangel.

Example 4.10 shows the second class ConstOverloading, which has the main()method inside it. While
creating different instances of the Rectangle class, different overloaded constructors of the class are in-
voked with different number of parameters passed through the constructors. The values passed through
the various constructors are used to initialize different instances of the Rectangle class.

Example 4.10 Testing the Overloaded Constructors
 L1 class ConstOverloading {
 L2 public static void main(String args[]) {
 L3 Rectangle rectangle1 = new Rectangle();
 L4 System.out.println("Area using fi rst constructor:" +rectangle1.area());
 L5 Rectangle rectangle2 = new Rectangle(4,5);
 L6 System.out.println("Area using second constructor:" +rectangle2.area());

 }}

Output
 Area using fi rst constructor: 200
 Area using second constructor: 20

Explanation

L3 The Rectangle object is created and the default
constructor (i.e., no argument constructor, explicitly
provided) is called.

L5 Another Rectangle object is created and the
parameterized constructor is invoked. If there are a
number of parameterized constructors in the class,

96 Programming in Java

then which constructor will be invoked will depend
upon the exact matching of the number of argument
and the type of arguments in order. In our case, two

integer arguments are passed, so a constructor is
searched which accepts two integer arguments which
is already defined in L7, Example 4.9.

The above example shows a case of overloaded constructors with differing number of arguments.
Another case would be where different type of arguments can also be passed into the overloaded
constructors.

4.7 CLEANING UP UNUSED OBJECTS

Many other object-oriented languages require that you keep a track of all the objects you create
and that you destroy them when they are no longer needed. Objects are allocated memory from
the heap memory and when they are not needed their allocated memory should be reclaimed.
The clean-up code is tedious and often error-prone. Java allows programmer to create as many
objects as they want, but frees them from worrying about destroying (deallocating memory)
objects. The Java runtime environment deletes objects when it determines that they are no longer
required. It has its own set of algorithms for deciding when the memory allocated to an object
must be reclaimed. This automated process is known as garbage collection.
 An object is eligible for garbage collection when no references exist on that object. References
can be either implicitly dropped when it goes out of scope or explicitly dropped by assigning
null to an object reference.

4.7.1 Garbage Collector
The Java runtime environment has a garbage collector that periodically frees the memory used by
objects that are no longer needed. Two basic approaches used by garbage collectors are Reference
counting and tracing. Reference counting maintains a reference count for every object. A newly
created object will have count as 1. Throughout its lifetime, the object will be referred to by many
other object thus incrementing the reference count and as the referencing object move to other
objects, the reference count for that particular object is decremented. When reference count for
a particular object is 0, the object can be garbage collected.
 Tracing technique traces the entire set of objects (starting from root) and all objects having
reference on them are marked in some way. Tracing garbage collector algorithm popularly
known as is mark and sweep garbage collector scans Java’s dynamic memory areas for objects,
marking those objects that are referenced. After all the objects are investigated, the objects that
are not marked (not referenced) are assumed to be garbage and their memory is reclaimed. Mark
and sweep collectors further use the techniques of Compaction and Copying for fragmentation
problems (refer to memory management in operating system for details) that may arise once
you sweep the unreferenced objects. Compaction moves all the live objects towards one end
making the other end a large free space and copying techniques copies all live objects besides
each other into a new space and the old space is considered free now.
 The garbage collector runs either synchronously or asynchronously in a low priority daemon
thread. The garbage collector executes synchronously when the system runs out of memory or
asynchronously when the system is idle. The garbage collector can be invoked to run at any
time by calling System.gc() or Runtime.gc(). But asking the garbage collector to run does not
guarantee that your objects will be garbage collected.

Classes and Objects 97

4.7.2 Finalization
Before an object gets garbage collected, the garbage collector gives the object an opportunity to clean
up itself through a call to the object’s finalize() method. This process is known as finalization.
 All occupied resources (sockets, files, etc.) can be freed in this method. The finalize()
method is a member function of the predefined java.lang.Object class. A class must override
the finalize()method to perform any clean up if required by the object.

4.7.3 Advantages and Disadvantages
There are many advantages of using garbage collection apart from freeing the programmer from
worrying about deallocation of memory. It also helps in ensuring integrity of programs. There
is no way by which Java programmers can knowingly or unknowingly free memory incorrectly.
 The disadvantage of garbage collection is the overhead to keep track of which objects are being
referenced by the executing program and which are not being referenced. The overhead is also
incurred on finalization and freeing memory of the unreferenced objects. These activities will
incur more CPU time than would have been incurred if the programmers would have explicitly
deallocated memory.

4.8 CLASS VARIABLES AND METHODS—static KEYWORD

When we create an object, a primitive type variable, or call a method, some amount of memory
is set aside for the said object, variable, or method. Different objects, variables, and methods
will occupy different areas of memory when created/called. Sometimes we would like to have
multiple objects, shared variables, or methods. The static keyword effectively does this for us.
It is possible to have static methods and variables.
 Before going further, we must discuss the kind of variables Java supports. These include: local
variables, instance variables, and class/static variables.
 Local Variables Local variables are declared inside a method, constructor, or a block of code.
When a method is entered, its contents (values of local variables) are pushed onto the call stack.
When the method exits, its contents are popped off the stack and the memory in stack is now
available for the next method. Parameters passed to the method are also local variables which
are initialized from the actual parameters. The scope of local variables is limited to the method
in which they have been defined. They have to be declared and initialized before they are used.
Access specifiers like private, public, and protected cannot be used with local variables.
 Instance Variables Instance variables are declared inside a class, but outside a method. They
are also called data member, field, or attributes. An object is allotted memory for all its instance
variables on the heap memory. As objects instance variables remain live as long as the object is
active. They are accessible directly in all the instance methods and constructors of the class in
which they have been defined. By default, they are initialized to their default values according
to their respective types.
 Class/static Variables Class/static variables declaration is preceded with the keyword static.
They are also declared inside a class, but outside a method. The most important point about
static variables is that there exists only a single copy of static variables per class. All objects of
the class share this variable. Static variables are normally used for constants. By default, static
variables are initialized to their default values according to their respective types.

98 Programming in Java

Note No variable can have an undefined value. Instance or class variables are implicitly initialized
to their respective default values, whereas local variables are not implicitly initialized to a
default value and must be explicitly initialized in Java.

4.8.1 Static Variables
Java does not allow global variables. The closest thing we can get to a global variable in Java
is to make the instance variable in the class static. The effect of doing this is that when we
create multiple objects of that class, every object shares the static variable, i.e. there is only one
copy of the variable declared as static. To make an instance variable static we simply precede
the declaration with the keyword static.

 static int var = 0;

 In effect, what we are really doing is that this instance variable, var, no matter how many
objects are created, should always reside in the same memory location, regardless of the object.
This then simulates like a ‘global variable.’ We usually declare a variable as final and static as
well, since it makes sense to have only one instance of a constant. It is worthwhile to note that
people refer to static instance variables as ‘class variables.’ Before proceeding further, let us
take an example to depict how static variables are declared.

Note Instance Variables vs Class Variables
Class variables can be declared with the ‘static’ keyword. For example,

static int y = 0;

All instances of the class share the static variables of the class. A class variable can be
accessed directly with the class name, without the need to create an instance.

Without the ‘static’ keyword, it is called an ‘instance variable’ and each instance of the class
has its own copy of the variable.

Example 4.11 Instance and Class Variables

In the following code, the class Test1 has two variables, x and y.
 L1 class Test1 {
 L2 int x = 0; // instance variable
 L3 static int y = 0; // class variable

 //setter methods
 L4 void setX (int n) {x = n;}
 L5 void setY (int n) {y = n;}

 //getter methods
 L6 int getX() { return x;}
 L7 int getY() { return y;}
 }

 We could have another class Test2 having the main()function where the use of static variable
declared in the class Test1 can be shown:

Classes and Objects 99

Example 4.12 A Class Showing the Use of Class (Static) Variables
 L1 class Test2 {
 L2 public static void main(String[] arg){
 L3 Test1 t1 = new Test1();
 L4 Test1 t2 = new Test1();
 L5 t1.setX(9);
 L6 t2.setX(10); // object t1 and t2 have separate copies of x
 L7 System.out.println("Instance variable of object t1 : " +t1.getX());
 L8 System.out.println("Instance variable of object t2 : " +t2.getX());
 // class variable can be accessed directly through Class Name
 // (if changed to Test2.x, it won't compile)
 L9 System.out.println("Value of y accessed through class Name: " +Test1.y);
 L10 Test1.y = 7;
 L11 System.out.println("Changed value of y accessed through class Name: " +Test1.y);
 // class variable can be manipulated thru methods as usual
 L12 t1.setY(Test1.y+1);
 // class variable can be accessed through objects also
 L13 System.out.println("Value of y accessed through object t2:" +t2.getY());
 L14 }
 L15 }

Output
 Instance variable of object t1 : 9
 Instance variable of object t2 : 10
 Value of y accessed through class Name: 0
 Changed value of y accessed through class Name: 7
 Value of y accessed through object t2: 8

Explanation
L7 Output printed is 9, i.e., the instance variable is
printed with the help of the object.
L8 Output printed is 10, i.e., another instance
variable is printed with the help of the object.
L9 Output printed is 0. It is important to note that
here, we need not have an object for class Test 1 to
access the static variable of Test 1 (refer to L3 of
class Test 1).
L10 Static variable is assigned a value 7 using the
class name itself.

L11 Output printed is 7.
L12 Instance method setY() is invoked using the
object t1, where the value of static variable, y (i.e., 7),
accessed through class name Test1 is incremented
by 1 and passed as argument.
L13 Output printed is 8, as t2.getY()returns the
value set by t1.setY()in L12. This is done to show
that the value of y is being shared by all the objects
of the class, as it is a static variable.

4.8.2 Static Methods
Like static variables, we do not need to create an object to call our static method. Simply using
the class name will suffice. Static methods however can only access static variables directly.
Variables that have not been declared static cannot be accessed by the static method directly,
i.e., the reason why we create an object of the class within the main (which is static) method to
access instance variables and call instance methods. To make a method static, we simply precede
the method declaration with the keyword static.

100 Programming in Java

static void a Method(int param1) { }

Note Instance Method vs Class Method
static methods can be accessed through the class name itself. Methods declared without the
static keyword (instance methods) can be accessed using the object/instance of the residing
class. static methods are also known as class methods.

static methods can call other static methods directly. If a static method to be invoked is
within the same class, then only the static method name can be mentioned to invoke it. Else
if the static method is outside the class, then the class name has to be prefixed with the
static method name to invoke it. But invoking non-static methods (instance methods) from
static methods requires an instance of the class. Also note that methods declared as static
cannot access the variables declared without the static keyword. It is quite evident in the
following example where it gives a compilation error, un less x is also static.

class Test {

int x = 3;

static int returnX(){

return x;

}

public static void main(String args[])

{

System.out.println(returnX()); // static method invoked directly

}}

Let us take an example to show the use of static methods.

Example 4.13 A Class Having Static Members

 L1 class Area {
 L2 static int area; // class variable
 L3 static int computeArea (int width, int height){
 L4 area = width * height;
 L5 return area;
 L6 }
 L7 }

The above class Area has a class variable declared in L2 and a static method, computeArea()
with two arguments in L3.

Example 4.14 Calling Static Method from Another Class
 L1 class CallArea{
 L2 public static void main(String args[]){
 L3 System.out.println(Area.computeArea(4,3));
 L4 }
 L5 }

Classes and Objects 101

Output
 12

Explanation

4.8.3 Static Initialization Block
A block of statements can be enclosed in parenthesis with static keyword applied to it.
This block of statement is used for initializing static or class variables. If the initialization
logic is simple, the class variables can be assigned values directly but in case some logic is
used for assigning values to the variables, static blocks can be used. The syntax for static
block is as follows:

 static

 {

 ...

 }

The static executes as soon as the class loads even before the JVM executes the main method.
There can be any number of static blocks within the class and they will be executed in the
order in which they have appeared in the source code.

Note In case the static keyword is dropped from this block, it becomes an instance initialization
block and all code placed inside this block is placed inside the constructors before the source
code written in the constructor by the Java compiler. Actually the code of instance initialization
block is placed in the <init> method, which is created for every constructor by the compiler,
before the source code mentioned by programmer in the constructor.

 Let us take an example to see how static block, instance initialization block, instance variable
initializes and constructor executes. The program clearly shows that static block executes even
before main method. This program also includes an instance variable instance initialization
blocks with a constructor. Both the instance block and the constructor code gets invoked as
soon as the object of the class is created. How? As already stated, the code of initializer instance
initialization block is placed within the constructor, before the constructors own code, by Java
compiler. This is evident by seeing the output, the print statement in the instance initialization
block executes before statement mentioned in the constructor. The static block also shows
declaration of a variable which is local to the block.

Example 4.15 Static Initialization Block, Instance Initialization Block and Constructor

 class StaticBlockDemo
{

L3 The method computeArea() of class Area
is being called without referencing it through any
object/ instance. Instead, it can be invoked using that
class name only, which it belongs to. It is so because

this method has been declared as static in L3 of class
Area. The return value of the method is printed using
System.out.println().

102 Programming in Java

 int x=10; // instance variable initializer
 /* static initialization block */
 static
 {

 int z=10; // local variable
 System.out.println(“In static block”);
 }
 // Instance initialization block
 {
 System.out.println(“In Instance Initialization block”);
 System.out.println(“Printing Instance variable Initializer
 value through Block: “ +x);
 }
 // Constructor
 StaticBlockDemo(int y)
 {
 System.out.println(“Within Constructor”);
 System.out.println(“Instance variable printed using constructor: “+x);
 x=y;
 System.out.println(“Instance variable initialized using constructor: “+x);
 }

 /* To see whether the code of instance variable initializer
and block is copied within every constructor we create another
constructor and see the output. The following constructor when
invoked also prints the contents of instance variable intializer
and block. So the contents of instance variable initializer and
block are copied in every constructor by the compiler. In other
word, they are copied in every <init> method created for every
constructor before the constructors own code.*/

 StaticBlockDemo()
 {
 System.out.println(“Within Constructor”);
 System.out.println(“Instance variable printed using constructor: “+x);
 }
 public static void main(String[] args)
 {
 System.out.println(“In main”);
 StaticBlockDemo st = new StaticBlockDemo(100);
 System.out.println(“--”);
 StaticBlockDemo st1 = new StaticBlockDemo();
 }

}

Classes and Objects 103

Output

 D:\javaprg>java StaticBlockDemo
 In static block
 In main
 In Instance Initialization block
 Printing Instance variable Initializer value through Block: 10
 Within Constructor
 Instance variable printed using constructor: 10
 Instance variable initialized using constructor: 100
 --
 In Instance Initialization block
 Printing Instance variable Initializer value through Block: 10
 Within Constructor
 Instance variable printed using constructor: 10

4.9 this KEYWORD

The keyword this is used in an instance method to refer to the object that contains the method,
i.e., it refers to the current object. Whenever and wherever a reference to an object of the current
class type is required, this can be used.
 It can also differentiate between instance variables and local variables. Let us revisit the code
segment of Example 4.8. Here the use of this will make you understand its use.

 L3 Room2(double l, double b, double h){

 L4 this.length = l;

 L5 this.breadth = b;

 L6 this.height = h;

 L7 }

 Here, the use of this does not do anything differently than the earlier code in Example 4.8. It
is perfectly legitimate to use it in the way it has been done. Inside Room2, this will always refer
to the current object, of Room2. The obvious question that would arise is when and why should
we use this in an application?
 The exact purpose of this is to remove ambiguity between local and instance variables. In
Example 4.8, we had three instance variables declared in L2. Look carefully. The formal (local
variables) parameters of Room() in L3 have different names, (l, b, and h) from the instance
variables (length, breadth, and height).The values of these formal parameters are passed to the
instance variables. If a like names are provided for both the parameters (formal and instance
variables) then the instance variables will be hidden (or shadowed) by the local variables.
Suppose the formal parameters had been named as length, breadth, and height, which are also
the names of the instance variables used in the class, then it is difficult to distinguish between
local variable and instance variable as shown below:

104 Programming in Java

 Room2 (double length, double breadth, double height){
 length = length;
 breadth = breadth;
 height = height;
 }

 It is an ambiguous situation for the JVM as it does not understand what has to be done;
whether instance variables have to be initialized with formal parameters or vice versa. The
problem arises because JVM cannot clearly distinguish which is a local variable and which is
an instance variable. In this case the local variables shadow or hide the instance variables. If
you try to access or print the length variables in the constructor Room2, the local variable length
will be printed and not the instance variable: length, this allows you to solve the problem of
a variable’s scope, because it lets you refer to the object directly. this keyword makes a clear
cut distinction between local and instance variable. this.length refers to the length instance
variable of the current object. The above block of code can be re-written as follows.
 Room2 (double length, double breadth, double height){
 this.length = length;
 this.breadth = breadth;
 this.height = height;
 }

 In the above code it is clearly evident local variable length value should be assigned to the
instance variable length of the current object and soon for other variables.
 Hence, the names of instance variables and the formal parameters can be kept similar because
this has made it possible for the JVM to differentiate between instance and local variables.
Still, one can argue that a programmer can very well use different variable names for instance
and local variables.
 Constructor Chaining It means a constructor can be called from another constructor. Let us
revisit Example 4.8.
 /* First Constructor */
 Room2()
 {

 // constructor chained
 this(14,12,10);
 }
 /* Second Constructor */
 Room2 (double l, double b, double h)
 {
 length = l;
 breadth = b;
 height = h;
 }

In the above code, two constructors have been created: one without arguments and another with
three arguments. In the first constructor, we have used this keyword to call the second constructor
and passed the required arguments in the call to second constructor.

Classes and Objects 105

 Whenever we create an object of the class Room2 as,
 Room2 r1 = new Room2();

the first constructor will be invoked which is chained to the second constructor.

4.10 ARRAYS

Till now, we have discussed how to declare variables of a particular data type, which can store
a single value of that data type. The allocation of memory space, when a variable is declared,
cannot further be sub-divided to store more than one value. There are situations where we might
wish to store a group of similar type of values in a variable. It can be achieved by a special kind
of data structure known as arrays.
 An array is a memory space allocated that can store multiple values of same data type in contiguous
locations. This memory space, which can be perceived to have many logical contiguous locations,
can be accessed with a common name. For example, we can define an array as ‘marks’ to represent
a set of marks of a group of students. Now the next question is how to access a particular value from
a particular location? A specific element in an array is accessed by the use of a subscript or an index
used inside the brackets, along with the name of the array. For example, marks[5] would store the
marks of the fifth student. While the complete set of values is called an array, the individual values
are known as elements. Arrays can be two types:
 one dimensional array
 multi-dimensional array

4.10.1 One-dimensional Arrays
In a one-dimensional array, a single subscript or index is used, where each index value refers to
an individual array element. The indexation will start from 0 and will go up to n –1, i.e., the first
value of the array will have an index of 0 and the last value will have an index of n –1, where n
is the number of elements in the array. So, if an array named marks has been declared to store
the marks of five students, the computer reserves five contiguous locations in the memory, as
shown in Fig. 4.4.

marks[0] marks[1] marks[2] marks[3] marks[4]

Fig. 4.4 Marks Array

Suppose, the five marks to be assigned to each array element are 60, 58, 50, 78, and 89. It
will be done as follows:
 Marks[0] = 60;
 Marks[1] = 58;
 Marks[2] = 50;
 Marks[3] = 78;
 Marks[4] = 89;

106 Programming in Java

Figure 4.5 shows the marks array with data elements.

marks[0] marks[1] marks[2] marks[3] marks[4]

60 58 50 78 89

Fig. 4.5 Marks Array Having Data Elements

 Creation of Array
Creating an array, similar to an object creation, can inherently involve three steps:

 Declaring an array
 Creating memory locations
 Initializing/assigning values to an array

 Declaring an Array Declaring an array is same as declaring a normal variable except that you
must use a set of square brackets with the variable type. There can be two ways in which an
array can be declared.

  type arrayname[];
  type[] arrayname;

So the above marks array having elements of integer type can be declared either as
 int marks[];
or
 int[] marks;

Creating Memory Locations An array is more complex than a normal variable, so we have to
assign memory to the array when we declare it. You assign memory to an array by specifying
its size. Interestingly, our same old new operator helps in doing the job, just as shown below:

 Arrayname = new type [size];

 So, allocating space and size for the array named as marks can be done as,

 marks = new int[5];

Both (declaration of array and creation of memory location), help in the creation of an array.
These can be combined as one statement, for example,

 type arrayname[] = new type[];

or
 type[] arrayname = new type[];

 It is interesting to know what the JVM actually does while executing the above syntax.
 During the declaration phase, int marks[];
 marks Null

 Figure 4.6 shows the marks array after memory is allocated to the array on execution of the
following statement:
 marks = new int[5];
 Here is an example to show how to create an array that has 5 marks of integer type.

Classes and Objects 107

 class Array{
 public static void main(String[]
 args){
 int[] marks = new int[5];
 }
 }

Initializing/ assigning Values to an
 Array Assignment of values to an
array, which can also be termed as
initialization of array, can be done as
follows:
 Arrayname[index] = value;

We have just discussed how to create a list of parameters to be assigned in an array. Example
4.16 shows how to set the values for an array of 5 marks (Fig. 4.6).

Example 4.16 Setting Values in an Array
 L1 class Array {
 L2 public static void main(String[] args){
 L3 int[] marks = new int[5];
 L4 marks[0] = 60;
 L5 marks[1] = 58;
 L6 marks[2] = 50;
 L7 marks[3] = 78;
 L8 marks[4] = 89;
 L9 }
 L10 }

 Arrays can alternately be assigned values or initialized in the same way as the variables, i.e.,
at the time of declaration itself. The syntax for the same can be,

 type arrayname[] = {list of values};

For example, int marks[] = {60, 58, 50, 78, 89}
 Here, the marks array is initialized at the time of creation of array itself. The above statement
does the same thing as the code between L3 to 8 of Example 4.16. An example of array creation
and initialization is given below.

Example 4.17 Creation and Initialization of an Array
 class Array
 {
 public static void main(String[] args){
 int[] marks = {60, 58, 50, 78, 89};
 }
 }

marks[0]

marks[1]

marks[2]

marks[3]

marks[4]

Refers to marks array of typeint

Fig. 4.6 Creation of Arrays

108 Programming in Java

How to Use for Loops with Arrays?
The for loops can be used to assign as well as access values from an array. To obtain the number
of values in an array, i.e., the length of the array, we use the name of the array followed by the
dot operator and the variable length. This length property is associated with all the arrays in
Java. For example,

 System.out.println("There are " + marks.length + "in the array");

will print the number of elements in the marks array, i.e., 5. Example 4.18 shows how to use a
for loop to set all the values of an array to 0 which, you will see, is much easier than setting all
the values to 0 separately.

Example 4.18 Setting Values in an Array Using for Loop
 L1 class Array {
 L2 public static void main(String[] args){
 L3 int[] marks = new int[5];
 L4 for (int i = 0; i<marks.length; i++)
 L5 marks[i] = 0;
 L6 }
 L7 }

Explanation

L3 Creates an array marks, having five locations
to store five elements.
L4 i signifies the subscript of the array, which is
always an integer type. The for loop starts with the
first location of the array, it stands at the 0th subscript

and iterates by 1 up to the last location of the array,
which is returned by marks.length.

 Various operations can also be performed on the
values of an array, which can again be assigned to the
array. For example, the following code increments
all the marks in the class by 5.

Example 4.19 Incrementing the Values of Data Elements in an Array

 for (inti = 0; i<grades.length; i++){

 grades[i] = marks[i] + 5;

 }

To access a particular value in the array, we use the name of the array, followed by an open bracket,
followed by an expression that gives the index, followed by a close bracket. For example, here
is a simple code to print all the marks in the array of marks declared above.

Example 4.20 Printing the Values of Data Elements of an Array

 for (inti = 0; i<marks.length; i++){

 System.out.println(marks[i]);

 }

Classes and Objects 109

Sorting an Array Let us take an example where we apply all the concepts of array that we
have learnt until now. If we have been given a set of marks and we have to sort the marks in
ascending order.

Example 4.21 Sorting an Array
 class SortArray{
 public static void main(String[] args)
 {
 int[] marks = {3, 5, 1, 2, 4};
 int temp, n;
 n = marks.length;
 System.out.print("The list of marks is: ");
 for(int i = 0; i< n; i++){
 System.out.print(marks[i]+ " ");
 }

 for (int i = 0; i< n; i++){
 for (int j = i+1; j < n; j++){
 if (marks[i] < marks[j])
 {
 temp = marks[i];
 marks[i] = marks[j];
 marks[j] = temp;
 }
 }
 }
 System.out.print("\nList of marks sorted in descending order is: ");
 for (int i = 0; i< n; i++)
 {
 System.out.print(marks[i]+" ");
 }
 }
 }

Output
 c:\javabook\programs\chap4>java SortArray
 The list of marks is: 3 5 1 2 4
 List of marks sorted in descending order is: 5 4 3 2 1

Explanation
L1 Class SortArray declared.
L2 main()declared and its body starts with left {.
L3 Array named marks created with initialized
values.
L4 Instance variables, temp and n declared to be
integer type.
L5 Length of the array is stored in n.

L7–9 for loop is used to print the values of the
original list, i.e., marks.
L10 Defines for loop which iterates from 0 to
length of the array –1.
L11 A nested for loop is declared which iterates
from i + 1 to n –1. L12–16 are part of the inner for
loop, and these statements are executed for each

110 Programming in Java

value of i from 0 to n –1 and j from 1 to n–1 as
shown in Fig. 4.7 below.
L12–16 In the first iteration, value of i is 0 and j
is 1. The marks at the 0th index are compared with
the marks at the first index. If marks at 0th index are
less than marks at the 1st index they are swapped.
For swapping, a temporary variable named temp is
created (L13). Marks at ith index (first iteration value
of i is 0) are assigned to temp (L14). The marks at
jth (first iteration value of j is 1) index are assigned

to marks at marks at ith index (L15) and marks in
temporary variable are assigned to marks at the jth
position. Thus the value of jth position is swapped
with the value at ith position. Figure 4.7 illustrates
how the outer and inner loops execute for each value
of i and j. It also shows when the values of the array
are swapped.
L20–22 Display the sorted array. The array has
been sorted in descending order.

When i = 0
j = 1 marks[0] < marks[1]

 (3) (5)
Yes, so they are swapped
New Array is 5, 3, 1, 2, 4

j = 2 marks[0] < marks[2]
 (5) (1)

No, not swapped
New Array is 5, 3, 1, 2, 4

j = 3 marks[0] < marks[3]
 (5) (2)

No, not swapped
New Array is 5, 3, 1, 2, 4

j = 4 marks[0] < marks[4]
 (5) (4)

No, not swapped
 New Array is 5, 3, 1, 2, 4

When i = 1
j = 2 marks[1] < marks[2]

 (3) (1)
No, not swapped

New Array is 5, 3, 1, 2, 4
j = 3 marks[1] < marks[3]

 (3) (2)
No, not swapped

New Array is 5, 3, 1, 2, 4
j = 4 marks[1] < marks[4]

 (3) < (4)
Yes, swapped

New Array is 5, 4, 1, 2, 3
When i = 2

j = 3 marks[2] < marks[3]
 (1) < (2)

Yes, swapped
 New Array is 5, 4, 2, 1, 3

j = 4 marks[2] < marks[4]
 (2) < (3)

Yes, swapped
 New Array is 5, 4, 3, 1, 2

When i = 3
j = 4 marks[3] < marks[4]

 (1) < (2)
Yes, swapped

New Array is 5, 4, 3, 2, 1
When i = 4

j = 5 Inner for loop does not execute.

When i = 5, Outer for loop exits

Fig. 4.7 Execution of Loops in SortArray Example

4.10.2 Two-dimensional Arrays
Sometimes values can be conceptualized in the form of a table that is in the form of rows and
columns. Suppose we want to store the marks of different subjects. We can store it in a one-
dimensional array.

Classes and Objects 111

Now if we want to add a second dimension in the form of roll no of the student. This is possible
only if we follow a tabular approach of storing data, as shown in Table 4.4.
 You can easily notice that Table 4.3 can store only subject names and the marks obtained by
one student, while Table 4.4 can store the details of multiple students. There can be enumerable
such situations where we can use a two-dimensional structure. Java provides a solution for the
storage of such a structure in the form of two-dimensional arrays.
 If you want a multidimensional array, the additional index has to be specified using another
set of square brackets. The following statements create a two-dimensional array, named as marks,
which would have 4 rows and 5 columns, as shown in Table 4.4.

Table 4.3 One-dimensional Marks Array

Subjects Marks

Physics 60

Chemistry 58

Mathematics 50

English 78

Biology 89

Table 4.4 Two-dimensional Marks Array

 Subject
Roll No. Physics Chemistry Mathematics English Biology

01 60 67 47 74 78
02 54 47 67 70 67
03 74 87 76 69 88

04 39 45 56 55 67

 int marks[][] //declaration of a two-dimensional array
 marks = new int[4][5]; //reference to the array allocated, stored in marks
 variable

This is done in the same way as it has already been explained while discussing one-dimensional
arrays. The two statements, used for array creation, can be merged into one as,
 int marks[][] = new int[4][5];

Another way of representing the above statement can be,
 int[][] marks = new[4][5];

This statement just allocates a 4 × 5 array and assigns the reference to the array variable marks.
The first subscript inside the square bracket signifies the number of rows in the table or matrix
and the second subscript stands for the number of columns. This 4 × 5 table can store 20 values
altogether. Its values might be stored in contiguous locations in the memory, but logically, the
stored values would be treated as if they are stored in a 4 × 5 matrix. Table 4.5 shows how the
marks array is conceptually placed in the memory by the above statement.

112 Programming in Java

Table 4.5 4 × 5 Marks Array

60
(marks[0][0])

67
(marks[0][1])

47
(marks[0][2])

74
(marks[0][3])

77
(marks[0][4])

54
(marks[1][0])

47
(marks[1][1])

67
(marks[1][2])

70
(marks[1][3])

67
(marks[1][4])

74
(marks[2][0])

87
(marks[2][1])

76
(marks[2][2])

69
(marks[2][3])

88
(marks[2][4])

39
(marks[3][0])

45
(marks[3][1])

56
(marks[3][2])

55
(marks[3][3])

67
(marks[3][4])

Like a one-dimensional array, two-dimensional arrays may be initialized with values at the time
of their creation. For example,
 int marks[2][4] = {2, 3, 6, 0, 9, 3, 3, 2};

This declaration shows that the first two rows of a 2 × 4 matrix have been initialized by the
values shown in the list above. It can also be written as,
 int marks[][] = {(2, 3, 6, 0), (9, 3, 3, 2)};

 In the above declaration, subscripts need not be shown, as it is evident from the manner in
which the list of values have been presented. Here, the list of values has two different sets of
values, separated by a comma, each standing for a row.
 It is important to understand how Java treats 2-D arrays. 2-D arrays are treated as 1-D array.
For example, the above declaration of 2 × 4 array will create three 1-D array. One for storing the
number of row arrays (i.e. 2) and the other two arrays will be used for storing the contents of the
rows. The size of these two arrays will be 4. As shown in Fig. 4.7, the size of row array is the
number of rows and each field in the row array points to a 1-D array that contains the column
values for the rows. So marks[0][0]will have the value 2, marks [0][1] will have 3, marks[1]
[0] with 9, and so on.
 Assigning and accessing the values in a two-dimensional array is done in the same way, as was
done in a one-dimensional array. The only difference is that, here you have to take care of the
positional values of the array using two subscripts (shown in square brackets), while in a one-
dimensional array, only one subscript was used for the purpose. Table 4.5 shows the positional
values of a two-dimensional array.

marks[0]

marks[1]

Row array
(1st array)

2 3 6 0

(2nd array)

[0] [1] [2] [3]

(3rd array)

9 3 3 2

[0] [1] [2] [3]

Contents of the row array

Fig. 4.8 2-D Array

Classes and Objects 113

 All that you need to do to create and use a 2-D array is to use two square brackets instead of
one.

Example 4.22 Setting Values in a Two-dimensional Array

 L1 class DemoArray1 {

 L2 public static void main(String[] args) {

 L3 int a[][] = new int [2][];

 L4 /* int a1[][] = new int [][2]; */

 L5 int m[][] = {{2,3,6,0},{9, 3, 3, 2}};

 L6 for(int i=0;i<m.length;i++)

 {

 L7 for(int j=0;j<m[i].length;j++)

 L8 System.out.print(m[i][j] +" ");

 L9 System.out.println();

 }

 }}

Output

 C:\javabook\programs\chap4>java DemoArray1
 2 3 6 0
 9 3 3 2

Explanation
L3–4 Shows the declaration of a 2-D integer
array having two rows. The number of columns is
not specified but the reverse declaration is illegal as
shown in L4.
L5 Shows a declaration of a 2-D array with values
assigned to it. No number has been specified in the
row and column square brackets of array m. The
rows and columns are decided on the basis of how
the values are passed to the array. m is having 2 rows
and 4 columns. The number of inner curly bracket
(opening and closing) determines the number of rows
(row array) and the number of individual values in
a particular curly bracket (opening and closing) will

determine the columns in a row (separate 1D array
will be created for each row). Each index in a row
array will point to a column array.
L6 A for loop is created. This for loop is used
for iterating through the row array and that is why it
iterates from 0 to the length of the array m.
L7 An inner for loop is created for iterating the
columns in a row array. The inner for loop iterates
from 0 to the length of the 1D array pointed by the
individual fields in the row array. That is why the
loop iterates up to m[i].length.
L8 Prints the individual items of the array at all
row and column combinations.

 Let us take a more complex but useful example of matrix multiplication. Two matrices are
to be multiplied, so two arrays capable of holding the same number of rows and columns as
matrices are required.

114 Programming in Java

Example 4.23 Matrix Multiplication

 L1 class MatrixMul {
 L2 public static void main(String args[]) {
 L3 int array[][] = {{3,7},{6,9}};
 L4 int array1[][] = {{5,4},{3,6}};
 L5 int array2[][] = new int[2][2];
 L6 int x = array.length;
 L7 System.out.println("Matrix 1: ");
 L8 for (int i=0; i<array.length; i++) {
 L9 for (int j=0; j<array[i].length; j++) {
 L10 System.out.print(" "+array[i][j]);
 L11 }
 L12 System.out.println();
 L13 }
 L14 int y = array1.length;
 L15 System.out.println("Matrix 2: ");
 L16 for (int i=0; i<array1.length; i++) {
 L17 for (int j=0; j<array1[i].length; j++)
 {
 L18 System.out.print(" "+array1[i][j]);
 L19 }
 L20 System.out.println();
 L21 }
 L22 for (int i=0; i<x; i++) {
 L23 for (int j=0; j<y; j++) {
 L24 for(int k=0; k<y; k++) {
 L25 array2[i][j] += array[i][k]*array1[k][j];
 L26 }
 L27 }
 L28 }
 L29 System.out.println("Multiplication of both matrices: ");
 L30 for (int i=0; i<x; i++) {
 L31 for (int j=0; j<y; j++) {
 L32 System.out.print(" "+array2[i][j]);
 L33 }
 L34 System.out.println();
 L35 }
 L36 }
 L37 }

Output
Matrix 1:
 3 7
 6 9
Matrix 2:
 5 4
 3 6
Multiplication of both matrices:
 36 54
 57 78

Classes and Objects 115

Like 2-D arrays, we can define any multidimensional array having n dimensions. While declaring
an n-dimensional array, n number of square brackets will be used. All the operations in any type
of multidimensional array will be similar to that of a one-dimensional or two-dimensional array.

4.10.3 Using for-each with Arrays
The enhanced for loop, i.e., for-each was introduced in Java 5 to provide a simpler way to
iterate through all the elements of an array or a collection. The format of for-each is as follows:

 for (type var : arr){
 // Body of loop
 }

 For example, we can use for-each loop to calculate the sum of elements of an array as follows:

 int[] arr = {2,3,4,5,6};
 int sum = 0;
 for(int a : arr) // a gets successively each value in arr
 {
 sum += a;
 }

The disadvantage of for-each approach is that it is possible to iterate in forward direction only
by single steps.

4.10.4 Passing Arrays to Methods
Arrays can be passed to methods as well. The following example shows a two-dimensional array
being passed to a method. The static method displays the contents of that array.

Example 4.24 Arrays as Arguments to Methods
 L1 class PassingArray
 L2 {
 L3 static void show(int[][] a)
 L4 {
 L5 for(int i=0;i<a.length;i++)
 L6 {
 L7 for(int j=0;j<2;j++)
 L8 {
 L9 System.out.print(" " +a[i][j]);
 L10 }
 L11 System.out.println();
 L12 }
 L13 }
 L14 public static void main(String args[])
 L15 {
 L16 int a[][]={{1,2},{2,3}};
 L17 show(a);
 L18 }
 L19 }

116 Programming in Java

Output
 D:\javabook\programs\chap4\PassingArray
 1 2
 2 3

Explanation
L1 Class declaration.
L3 Declares a static method ‘show’ that accepts
an argument i.e., a two-dimensional array.
L5 Shows a for loop that would loop from 0 to the
length of array. This for loop is basically used to
refer to the first dimension of the 2D array.
L6 Marks the beginning of for loop defined in L5.
L7 Shows another for loop that would represent
the second dimension. Our 2D array has only
two elements as each array item. So the index for
referencing any individual element would be a[0][0]
or a[0][1] for the first row of the Array. Subsequently
The next row items can be referenced as a [1][0]
and a [1][1] and so on (a [2][0], a [2][1] etc.). As is
evident, the second index does not go beyond 1, so
we have declared a for loop, in this statement, that
iterates for less than 2 times.

L9 Prints the individual elements of the array based
on the values of indexes set by the values of i and j.
L10 Marks the closure of the inner for loop.
L11 Is a simple print statement used for formatting
the output. This will move the cursor to new line.
Basically it is used to show the individual elements
of the array on a new line.
L12 Marks the closure of the outer for loop.
L13 Ends the method show.
L14 Main method declaration.
L16 An int array is defined and initialized with
values.
L17 Static method show is invoked and array is
passed as an argument to it. As show is a static method
it can be invoked directly.
L18 & 19 Ends the main method and the class.

4.10.5 Returning Arrays from Methods
Arrays can not only be passed to methods but we can use arrays as return value from methods.
If you are faced with a situation where you want to return multiple values from a method, all
the values can be encapsulated in an array and returned. The following example shows a two
dimensional array being returned from a method. The main method displays the contents of that
array.

Example 4.25 Returing Multiple Values

class ReturningAnArray
{
 // static method declared to return a 2D Array
 static int[][] show(){
 int a[][]={{1,2},{2,3}};
 return a;
}
public static void main(String args[])
{
 int a[][]=show(); // return value is captured in a 2D Array
 for(int i=0;i<a.length;i++)
 {
 for(int j=0;j<2;j++)
 {
 System.out.print(" " +a[i][j]);

Classes and Objects 117

 }
 System.out.println();
 }
 }
}

Output
 D:\javabook\programs\chap4\ReturningAnArray
 1 2
 2 3

Explanation
This program is almost the same as that of previous
program. The difference is that the show method now
returns a two-dimensional array. The logical steps to

iterate the two-dimensional array is same as that of
previous program with a change i.e., now they belong
to main method instead of show method.

4.10.6 Variable Arguments
Variable arguments can be used when the number of arguments that you want to pass to a method
are not fixed. The method can accept different number of arguments of same type whenever they
are called. The generic syntax for this notation is:
 returntype methodName(datatype...arrayname)

Let us take an example to show how it can be implemented.

Example 4.26 Variable Arguments
class VarArgs
{
 // integer variable argument used in add method
 static void add(int...a)
 {
 int sum=0;
 for(int i=0;i<a.length;i++)
 sum=sum+a[i];
 System.out.println("SUM = "+sum);
 }

 // variable arguments syntax used in main method
 public static void main(String...args)
 {

 // four arguments are passed to the add method
 add(2,3,4,5);
 // Three arguments are passed to the same add method
 add(2,3,4);
 }
}

118 Programming in Java

Output
 D:\javabook\programs\chap 4\java VarArgs
 SUM = 14
 SUM = 9

4.11 COMMAND-LINE ARGUMENTS

You must be aware of the basic DOS commands. Have you ever used the command to move a
file from one location to another, say abc.txt from C:\ to D:\, Move C:\abc.txt D:\
 Here, Move is the program or application responsible for moving the file, while C:\abc.txt
and D:\ can be termed as command-line arguments, which are passed to the Move program at
the time of invocation of the program. As the application is invoked from the command line
and the arguments are also passed to the application at the command line itself, these are called
 command-line arguments. Just like C++, programs can be written in Java to accept command-
line arguments.

 public static void main (String args[]){

 } // end of the main() method

 In this case, each of the elements in the array named args (including the elements at position
zero) is a reference to one of the command-line arguments, each of which is a string object.
 Suppose, you have a Java application, called sort, that sorts the lines in a file named Sort.
text. You would invoke the Sort application as, java Sort Example.txt.
 When the application is invoked, the runtime system passes the command-line arguments to
the application’s main()method via an array of strings. In the statement above, the command-line
argument passed to the Sort application contains a single string, i.e., Example.txt. This String
array is passed to the main() method and it is copied in args.
 You must be wondering how many arguments you can supply through a command line. As
we have discussed in Section 4.10, the number of elements in an array can be obtained from
the length property of the array. Therefore, in the signature of main(), it is not necessary in
Java to pass a parameter specifying the number of arguments. Example 4.27 explains the use of
command-line arguments.

Example 4.27 Echo Application

 L1 class Echo {
 L2 public static void main(String args[]){
 L3 int x = args.length;
 L4 for (int i = 0; i< x; i++)
 L5 System.out.println(args[i]);
 L6 }
 L7 }

After compiling the program, when it is executed, you can pass the command-line arguments
as follows:
 C>java Echo A B C

Classes and Objects 119

Output
 A
 B
 C

 Note that there is one space between each of the three arguments passed to the Echo application
through the command line. If you have to pass a string of characters as an argument, then you
must use quotes (" ") to mark that string. For example,
 C>java Echo "A is fi rst alphabet" "B is second" "C is third"

Output
 A is fi rst alphabet
 B is second
 C is third

Explanation
L2 main()is declared, with an array variable, args,
referring to an array of strings, passed as command line
arguments to the program.
L3 An integer-type variable, x is declared to hold

the length of the array.
L4–5 for loop is iterated from 0 to the length of
the array and the value obtained from each iteration
is printed in a separate line.

4.12 NESTED CLASSES

Nested class is a class within a class. Nested classes are of the following types:
  Non-static inner classes
  Static nested classes
  Local classes
  Anonymous classes

4.12.1 Inner Class
A non-static inner class is a member of the outer class declared outside the functions within a
class. The non-static inner class is bound to the instance of the enclosing class and has access to
all the members of the enclosing class even the parent’s this reference and private members. An
inner class can be defined as private, default, protected, public, final and even abstract.
Each instance of an inner class has a reference to an enclosing outer instance. A reference to the
outer class instance can be explicitly obtained through OuterClassName.this. You cannot have
static variables or methods in an inner class except for compile-time constant variables, i.e., static
constant. Inner class’s objects can be created within instance methods, constructors of the outer
class or through an instance of outer class as they must have a reference to the instance of the
outer class. This would be evident from the following example as well. Let us take an example
to show how non-static inner classes can be created and used.

Example 4.28 Inner Classes

 L1 class InnerClassTest
 {

120 Programming in Java

 L2 int y=20; // instance variable of outer class
 L3 static int a=30; // class variable of outer class
 L4 class InnerClass // inner class begins
 {
 L5 int x=10;
 // cannot have static variable but only static constants
 L6 fi nal static int z=50;
 L7 void show()
 {
 L8 System.out.println("Within Non static Inner Class");
 L9 System.out.println("Can Access Inner class variable "+x);
 L10 System.out.println("Can Access Outer class variables "+y);
 L11 System.out.println("Can Access Outer class static variables "+a);
 L12 System.out.println("Inner class instance accessed using this:"+this);
 L13 System.out.println("Outer class referred from inner class using
 InnerClassTest.this: "+ InnerClassTest.this);
 L14 outerInstanceMethod();
 L15 // or InnerClassTest.this.outerClassMethod can also be used
 L16 outerClassMethod();
 }

 L17 //static void staticInner(){}
 }
 L18 void outerInstanceMethod()
 {
 System.out.println("Outerclass Instance method called from Inner class");
 }
 L19 static void outerClassMethod()
 {
 System.out.println("Outerclass static method Called from Inner class");
 }
 L20 void createInnerObject()
 {
 L21 new InnerClass().show();
 }
 L22 public static void main(String args[])
 {
 L23 InnerClassTest object = new InnerClassTest();
 L24 object.createInnerObject();
 //Another way of invoking the show method of inner class
 L25 //object.newInnerClass().show();
 }
 }

Output
Compilation
 D:\javabook\programs\chap 4>javac InnerClassTest.java
 D:\javabook\programs\chap 4>dir
 InnerClassTest.java
 InnerClassTest$InnerClass.class
 InnerClassTest.class

Classes and Objects 121

Execution
 D:\javabook\programs\chap 4>java InnerClassTest
 Within Non static Inner Class
 Can Access Inner class variable 10
 Can Access Outer class variables 20
 Can Access Outer class static variables 30
 Inner class instance accessed using this: InnerClassTest$InnerClass@f72617
 Outer class referred from inner class using InnerClassTest.this:
 InnerClassTest@1e5e2c3
 Outerclass Instance method Called from Inner class
 Outerclass static method Called from Inner class

Explanation
L1 Class declaration (outer).
L2 Declares an instance variable of the outer
class.
L3 Declares a static (class) variable of the outer
class.
L4 Shows the declaration of inner class.
L5 An instance variable of the inner class is
defined here.
L6 Shows the declaration of class constants.
Constant in Java can be created by applying final
keyword to the variable declaration. Non-static
inner classes can have static constants but not
static variables because inner classes operate within
the context of its enclosing (outer class) instance
therefore allowing static variables or methods will
be contradictory as static members apply to class
(or all objects of class) rather than be constrained
within a single object.
L7 Declares the instance method named show of
the inner class.
L8 Print statement which gets executed as and
when the instance method show of the inner class
is called.
L9 Prints the value of the instance variable of the
inner class. Since show is an instance method of
the inner class, it can directly access the instance
variables of the inner class
L10 Prints the value of the instance variable of
the outer class. A non-static inner class instance is
closely associated with an instance of the outer class
that is reason why inner class methods can directly
access any of the members (fields or methods) of its
enclosing outer class. It is a part of the outer class

and therefore it has access to other parts of the outer
class. But this being a special part, the outer class
members (e.g., methods) cannot directly access the
inner class members. For example, the show method
can access the variable y of the outer class directly.
L11 Similar to the previous statement. The inner
class can access any members of the outer enclosing
class. This line shows a print statement which prints
the static variables of the outer class.
L12 Shows the use of this keyword within inner
class to refer to an instance of inner class. It can also
be verified from the output. this keyword is used as
an argument to the println method of System.out
object. The result printed on screen shows the class
of the instance (object) @ followed by a number, i.e.,
InnerClassTest$InnerClass@ f72617. Java internally
uses the following notation for referring to inner classes
instance i.e., OuterclassName$InnerclassName as is
evident from the output. As soon as the Java file (i.e.,
InnerClassTest.java in our case) is compiled, the
Java compiler generates two class file; one for the
outer class (InnerClassTest.class) and one for the
inner class (InnerClassTest$InnerClass.class)
using the above notation. This number is an unsigned
hexadecimal representation of the hash code of the
object. The hash code returns the internal memory
address of the object in hexadecimal.
L13 Outer class instance can be accessed from within
inner class using this keyword as outerclassname.
this. Please note that notation should be used from
the method of an inner class.
L14 Shows outer class instance methods (on L18)
can be called from within inner class.

122 Programming in Java

L15 This, if used, in show method of inner class would
refer to an instance of inner class. InnerClassTest.
this refers to an instance of outer class. So L14 shows
another way of invoking outer class methods. This line
is commented deliberately as it shows another way of
achieving the same output as in L13.
L16 Shows outer class static methods can be called
(on L19) from within inner class.
L17 Inner classes cannot have static methods
similar to static variables. The reasons are same
as that of static variables that inner class instances
operate within the context of a particular outer class
instance. So creating static methods does not make
any sense which applies to all instances of the class.
L18 Instance method of outer class has been
defined.
L19 Class method of outer class has been defined.
L20 Another instance method named createIn-
nerObject of the outer class is created.

4.12.2 Static Nested Class
A static nested class is a static member of a class just like normal static members of any class.
They have access to all static methods of the enclosing parent class. The static nested classes
cannot directly refer to instance variables and method of the outer class, similar to static parts
of any class. They can only do it through an object of the outer class. Unlike the inner classes,
the static nested classes can have static members.

Note The static classes defined in a class are termed as static nested class and not inner classes
as inner classes do have an instance scope and static nested classes have class scope.

Example 4.29 Static Nested Classes
 L1 class StaticNestedClassTest
 {
 L2 int y; // instance variable
 L3 static int z=100; // class variable
 // static inner class begins here
 L4 static class StaticNestedClass
 {
 L5 int x;
 L6 static int staticinner=200;
 L7 void nestedClassNonStaticMethod()
 {
 L8 // y cannot be referenced here
 L9 System.out.println("Accessing static variable of outer class within Static

Inner Class "+z);
 L10 //outerClassInstanceMethod();
 L11 outerClassStaticMethod();

L21 Object of inner class is created within this
instance method (L20) and show method of the inner
class is invoked. Note that an object of inner class can
be created only from within the instance method (L20)
of the outer class or through an instance of the outer
class as shown in L24. Because, as already explained,
every instance of a non-static inner class exists (or is
encapsulated) within the outer class instance. Also
note that, a single outer class instance can have many
inner class instances associated with it.
L22 main method declaration.
L23 An object of outer class InnerClassTest is
created.
L24 Using the outer class instance, method
createInnerObject (L20) of outer class is called.
L25 Shows another way of creating an instance
of inner class using new keyword on the outer class
instance and invoking the method of inner class
simultaneously.

Classes and Objects 123

 }
 L12 static void nestedClassStaticMethod()
 {
 L13 System.out.println("Within Static method of Inner Class ");

 L14 //outerClassInstanceMethod();
 L15 outerClassStaticMethod();
 }
 } // static nested class ends here

 L16 static void outerClassStaticMethod()
 {
 L17 System.out.println("Outer Class Static method");
 }
 L18 void outerClassInstanceMethod()
 {
 L19 System.out.println("Outer Class Instance method");
 }
 L20 public static void main(String args[])
 {
 L21 StaticNestedClassTest.StaticNestedClass object = new
 StaticNestedClassTest.StaticNestedClass();
 L22 object.nestedClassNonStaticMethod();
 L23 object.nestedClassStaticMethod();
 }
 }

Output
Compilation
 D:\javabook\programs\chap 4>javac StaticNestedClassTest.java
 D:\javabook\programs\chap 4>dir
 StaticNestedClassTest.java
 StaticNestedClassTest.class
 StaticNestedClassTest$StaticNestedClass.class

Execution
 D:\javabook\programs\chap 4>java StaticNestedClassTest
 Accessing static variable of outer class within Static Inner Class 100
 Outer Class Static method
 Within Static method of Inner Class
 Outer Class Static method

Explanation

L1 Outer class declaration.
L2 Defines the instance variable y of the outer
class.
L3 Defines the class variable z of the outer class.
L4 Shows the declaration of the static nested class

named StaticNestedClass.
L5 Declares an instance variable of the static
nested class.
L6 Shows the declaration of static variable within
the static nested class. Static variables, unlike inner

124 Programming in Java

classes, can be created in static nested classes.
L7 Declares non-static method of the nested class.
L8 Comment that states instance variables of the
enclosing class cannot be accessed inside the static
nested class directly. However, it can be accessed by
creating an object of the outer class.
L9 Prints the static variables of the outer class.
Static nested classes can directly access the static
members of its enclosing class.
L10 Commented because instance methods cannot
be directly invoked from a static nested class.
L11 Invokes the static method on L16 of outer
class directly.
L12–15 Shows the declaration of a static method
in the static nested class. L14 is commented because
instance methods of outer class cannot be called from
within the static nested class. L15 executes because
static method of the outer class (on L16) can be

invoked from within the static nested class.
L16–17 Shows the declaration of static method of
the outer class with a print statement within itself.
L18–19 Shows the declaration of instance method
of the outer class with a print statement within itself.
L20 Main method begins.
L21 The object of static nested is created as shown
below:

StaticNestedClassTest.StaticNestedClass
object = new
StaticNestedClassTest.StaticNested-
Class();

The generic notation for creating object is
<OuterClass.StaticNestedClassName>
<reference variable name> = new
 <OuterClass.StaticNestedClassName>();

L22–23 Invokes the different methods of static nested
class using object created in previous line, L21.

Note Unlike inner classes, an instance of outer class is not needed for creating an object of static nested
class. Moreover, creating an instance of outer class does not create an instance of static nested
class. Also note that a static nested class can be private, default, protected, public, final and even
abstract. (We will discuss these keywords in detail in the chapters to follow)

Local inner classes are declared within a block of code and are visible only within that block,
just as any other method variable. These classes are declared within a function. They can use
only final (constant) local variables and parameters of the function
 An anonymous inner class is a local class that has no name.

4.12.3 Why do we Create Nested Classes?
Nested classes let you turn logic into their own classes which normally you would not turn into
thus allowing even more object orientation into your programming as nested classes lets you
encapsulate logic into classes. Inner classes provide a structured hierarchy.
 Inner member classes and anonymous classes allow callbacks to be defined conveniently.
Callback allows an object to call back the originating object at a later point in time. Nested
classes are very effective in implementing event handling in Java.
 Another advantage of nested classes would be to group classes that would be required at one
place only. If you are certain that a class will be useful to only one class then it is better to embed
a class into another.
 The obvious advantages would be ease of readability and ease of maintaining the code.

4.13 PRACTICAL PROBLEM: COMPLEX NUMBER PROGRAM

We will take a practical problem to summarize most of the concepts that we have learnt in
this chapter by creating a Complex Number program. But let us first understand, what is a

Classes and Objects 125

complex number? A complex number is a number that can be represented in the form a + bi,
where a and b are real numbers and i is the imaginary part. In the expression a + bi, a is the real
part and b is the imaginary part of the complex number. Complex numbers are used in situations
where some part is predictable (real) and some part is unpredictable (imaginary – to be assumed).
Complex numbers are used in a variety of areas like electrical analysis, stress analysis of bridges
and buildings, electronics etc. We will create a program to add and subtract two complex numbers.
The further task of multiplying two complex numbers is left as an assignment to you.

Example 4.30 Complex Number Program
 L1 class Complex
 {
 // instance variables
 L2 int real,imaginary;
 // No argument Constructor
 L3 Complex()
 {
 L4 real=0;
 L5 imaginary=0;
 }
 // Overloaded Constructor
 L6 Complex(int real,int imaginary)
 {
 L7 this.real= real;
 L8 this.imaginary= imaginary;
 }
 L9 // setter method for real part of complex number
 L10 void setReal(int real)
 {
 L11 this.real=real;
 }
 L12 // getter methods for real part of complex number
 L13 int getReal()
 L14 {
 L15 return real;
 }
 L16 // setter method for imaginary part of complex number
 L17 void setImaginary(int imaginary)
 {
 L18 this.imaginary=imaginary;
 }
 // getter method for imaginary part of complex number
 L19 int getImaginary()
 {
 L20 return imaginary;
 }
 L21 void add(Complex c1,Complex c2)
 {
 L22 real=c1.real+c2.real;

126 Programming in Java

 L23 imaginary=c1.imaginary+c2.imaginary;
 }
 L24 void subtract(Complex c1,Complex c2)
 {
 L25 real=c1.real-c2.real;
 L26 imaginary=c1.imaginary-c2.imaginary;
 }

 /* A better way of displaying complex number object is to override toString() */
 L27 void display()
 {
 L28 if(imaginary>0)
 L29 System.out.println(real+"+"+imaginary+"i");
 L30 else
 L31 System.out.println(real+""+imaginary+"i");
 }
 L32 public static void main(String args[])
 L33 {
 L34 // command line arguments for First Complex Number
 L35 int n1=Integer.parseInt(args[0]);
 L36 int n2=Integer.parseInt(args[1]);
 L37 // command line arguments for Second Complex Number
 L38 int n3=Integer.parseInt(args[2]);
 L39 int n4=Integer.parseInt(args[3]);
 L40 Complex c1=new Complex(n1,n2);
 L41 Complex c2=new Complex(n3,n4);
 L42 Complex d=new Complex();
 L43 System.out.print("First complex number is = ");
 L44 c1.display();
 L45 System.out.print("Second complex number is = ");
 L46 c2.display();
 L47 d.add(c1,c2);
 L48 System.out.print("Addition of two complex numbers = ");
 L49 d.display();
 L50 d.subtract(c1,c2);
 L51 System.out.print("Subtraction of two complex numbers = ");
 L52 d.display();
 L53 }
 L54 }

Output
 D:\javabook\programs\chap 4>java Complex 1 2 3 4
 First complex number is = 1+2i
 Second complex number is = 3+4i
 Addition of two complex numbers = 4+6i
 Subtraction of two complex numbers = -2-2i

Classes and Objects 127

Explanation
L1 Class declaration.
L2 Shows two integer instance variables have been
defined A complex number comprises of two parts:
real and imaginary. So a complex number object
should have two instance variables.
L3 A no-argument constructor is created to
initializes these variables. This can be termed as an
explicit default constructor.
L4 & 5 Instance variables are initialled to zero.
L6 The constructor is overloaded to accept different
values for real and imaginary part of a complex
number. If the previous constructor is used while
creating objects, then real and imaginary part will
have a value of 0. If this constructor is used during
object creation, then objects can pass on different
values as argument to the constructors which can
be assigned to instance variables. So every complex
number can have different real and imaginary values.
L7 this keyword is used to differentiate between
instance variable and local variable as both variables
bear the same name and clearly specify that value of
the argument (local variable) has to be assigned to
instance variable.
L8 Same as previous statement.
L9–11 Defines the setter method for the instance
variable: real. As the name suggest, these methods
are used to set the value of the instance variable:
real and hence the name setReal. The purpose
of setter method is to set the values. So the setter
methods accept an argument which is assigned to the
instance variable. Basically setter methods (or getter
methods) are created for depicting clean structured
programming and these are basic fundamental used
in Java Beans or component architecture. These
methods are also very useful while working with IDE.
L12–15 Defines the getter method for the instance
variable: real. As the name suggests, these method
are used to return the value of the instance variable:
real and hence the name getReal.
L16–18 Setter method for imaginary part has been
defined.
L19–20 Getter method for imaginary part has been
defined.
L21 We need to add two complex numbers.
Instance method, add is created which accepts two

complex number objects. Not only variables, object
references can also be passed as arguments to
methods. For adding two complex numbers, we need
to add the real parts of these two numbers separately
and imaginary parts separately and encapsulate the
resultant real and imaginary parts in a complex
number object because the result of addition of two
complex numbers will also be a complex number.
The two complex numbers to be added are passed
as arguments to the add method. The add method is
invoked using a third complex number object (L47),
which will store the resultant real and imaginary part
after addition.
L22 Real part of both the complex numbers objects
are accessed, added and stored in real part of the
object which invoked the add method. The complex
number object that invoked add method will also have
real and imaginary instance variables.
L23 Imaginary part of both the complex numbers
objects are accessed, added and stored in imaginary
part of the object which invoked the add method.
L24–26 We need to subtract two complex numbers.
Instance method subtract is created which accepts
two complex number objects. The two complex
numbers to be subtracted are passed as arguments
to the subtract method. The subtract method is
invoked using a third complex number object (L50),
which will store the resultant real and imaginary part
after subtraction.
L27–31 Display method is created to display the
complex numbers in the format a+bi.
L32 Main method declaration.
L35–39 Command line arguments are used to
capture integer real and imaginary parts of two
complex numbers. These numbers will be captured
in the String array argument of the main method.
The numbers entered through command line will
become strings. These numbers have to be added/
subtracted so they have to be converted to integers
and hence we use the predefined static method of
Integer class as shown:

 Integer.parseInt(args[0])

L40–42 Three complex number objects (c1, c2, and
d) are created. We need to add/subtract two complex

128 Programming in Java

numbers so two objects (c1 and c2) of Complex class
are created so that add and subtract operations can be
applied on them. The third object is used to invoke
the instance method add and subtract and store the
result within itself.
L44 The display method is called through c1 to
display the first complex number. Complex numbers
have to be displayed in their format: a+bi. As the
display method is invoked through c1, the display

method can access the instance variable of c1 directly
and display the real and imaginary parts of c1.
L46 The display method is called to display the
second complex number.
L47 The add method is invoked through the third
object d and c1 and c2 are passed to this method.
L48–49 Statements display the object d.
L50–52 The subtract method is invoked similar
to the add method and later on the result is displayed.

Note A common mistake that is committed by many students is that they pass two real and two imaginary
integer values to the add method, add the real and imaginary values differently and print them.

 void add(int real1, int imaginary1, int real2, int imaginary2)
 {

int real=real1+real2;
int imaginary=imaginary1+imaginary2;

 System.out.println(real+"i"+imaginary);
}

The answer may be correct but the approach is wrong. We have to add two complex numbers
and not two integers. So for adding two complex numbers, complex number objects have to
be passed to the add method.

SUMMARY
In this chapter, we have discussed many fundamental
principles of the object-oriented model, used while
implementing Java constructs. We discussed how
classes and their objects can be created in Java. We
have also seen how these objects are used in a Java
program and what these are actually made of.
A class provides a sort of template or blueprint

for an object. An object is a software bundle that
encapsulates variables and methods operating on
those variables. A Java object is defined as an instance
of a class. A class can have many instances of objects,
each having its own copy of variables and methods.
The variables declared inside a class (but outside a
method) are termed as instance variables. Attributes
of a class are defined by instance variables, while its
behavior is defined by methods.
We have discussed the use of methods in depth.

These methods declared as part of one object can be
invoked or called from another object. The methods
or variables belonging to a particular class can be
accessed by specifying the name of the object to which
they belong to.

A special type of variable whose value remains the
same across all the objects of a class is known as
class or static variable. Likewise, a method can also be
declared as static, which sticks to a particular location
in the memory no matter how many times it is called
from multiple objects. Both static variables and static
methods can be called directly from anywhere inside
a class, without or with specifying any object name.
In Java, the objects are automatically freed after

their use. The garbage collector periodically frees the
memory used by objects that are no longer needed.
All resources held by the object can be also be freed
explicitly through the finalize() method. A class must
override the finalize() method in order to perform
any clean up required by the object.
Methods in Java, just like C++, can be overloaded,

where different methods can have the same name
but different signatures. This concept of method
overloading will come into play , when there is a need
to perform same kind of functions on different input
parameters. In Java, when a value is passed into a

Classes and Objects 129

method invocation as an argument, it is passed by
value. A special type of method having the same name
as the class is used to initialize object values. These
are known as constructors. Like ordinary methods,
these constructors too can be overloaded.
A variable can hold only a single value of a particu-

lar data type. An important data structure known as

arrays is used to store a set of values of the same
data type. Command line arguments were also dis-
cussed and practical examples were undertaken to
show how user input can be passed to the program.
A very interesting concept of Nested classes along

with different types has been discussed in this chapter.
Nested classes are classes within classes.

EXERCISES

Objective Questions
 1. Given a one-dimensional array arr, what is the

correct way of getting its number of elements?
 (a) arr.length (b) arr.length – 1
 (c) arr.size (d) arr.size – 1
 2. Which of these statements are legal?
 (a) intarr[][] = new int[5][5];
 (b) int []arr[] = new int[5][5];
 (c) int[][] arr = new int[5][5];
 (d) int[] arr = new int[5][];
 3. Which of the following statements are legal

declarations and definitions of a method?
 (a) void method() {}
 (b) void method(void) {};
 (c) method() {};
 (d) method(void) {};
 4. What is the outcome of compiling and running

the following class?
 class Demo {
 public static void main(){
 System.out.println("Demo");
 }
 }

 (a) The program does not compile as there is
no main method defi ned

 (b) The program compiles and runs generating
an output of “test”

 (c) The program compiles and runs but does not
generate any output

 (d) The program compiles but does not run
 5. What happens when the following program is

compiled and executed with the command
 -java Demo.
 class Demo{
 public static void main(String

 args[]){
if(args.length> 0)

System.out.println(args.
 length);

 }

 }

 (a) The program compiles and runs but does not
print anything

 (b) The program compiles and runs and prints 0
 (c) The program compiles and runs and prints 1
 (d) The program compiles and runs and prints 2
 6. What is the output when you try to compile and

run the following?
class Demo
{
 void Demo()
 {
 System.out.println("In Demo");
 }
 public static void main(String
 args[])
 {
 Demo d=new Demo();
 }
}

 (a) Compile time error: Illegal Constuctor
declaration

 (b) Run Time error
 (c) Compiles and prints “ In Demo”
 (d) None of the above
 7. What is the output when you try to compile and

run the following?
class Demo
{

130 Programming in Java

 int x = 20;
 Demo()
 {
 x = 40;
 }
 public static void main
 (String args[])
 {
 Demo d = new Demo();
 System.out.println(d.x);
 }
}

 (a) Compile time error
 (b) Run Time error
 (c) Compiles and prints “ 20”
 (d) Compiles and prints “ 40”
 8. Which statement is true about a static nested

class?
 (a) An instance of the enclosing class is required

to instantiate it.
 (b) It does not have access to non-static

members of the enclosing class.
 (c) It must have static variables and methods

only.
 (d) None of the above
 9. What will be the output of the program?

public class A
{

 public static void
main (String [] args)
 {
 class B
 {
 public String name;
 public B(String s)
 {
 name = s;
 }
 }
 B obj = new B("Yupee");
 System.out.println(obj.name);
 }
}

 (a) An exception occurs at runtime at line 10.
 (b) It prints “Yupee”.
 (c) Compilation fails because of an error on line

7.
 (d) Compilation fails because of an error on line

13.
 10. Which of the following statements are true?
 (a) Constructors cannot be inherited
 (b) There is an <init> method created implicitly

for each constructors
 (c) Default constructors will not be provided if a

class declares a constructor for itself.
 (d) All the above

Review Questions

 1. What are classes and objects?
 2. What is method overloading? Explain with the

help of a program.
 3. What are constructors used for? Can constructors

be overloaded? Write a program in support of
your answer.

 4. Explain the difference between instance variables
and class variables.

 5. Explain the keyword this with the help of a
program.

 6. What are command-line arguments and how are
they used?

 7. What are inner classes? What is the need for
creating an inner class?

 8. Explain static keyword with all its usages.
 9. What are the possible ways in which multiple

values can be returned from a method?
 10. Explain static nested classes with help of a

program.

Programming Exercises
 1. Modify Example 4.2(a) to accept instance

variable values using a constructor with no
arguments and execute it.

 2. Overload the constructor in the previous example
and then try to execute it.

Classes and Objects 131

 3. Make use of this keyword in the previous
example to show its usages.

 4. Write a program to implement Money class. This
class should have fields for initializing a rupee
and paisa value. The paisa value will be in the
range from 0–99 with the paisa being the same
sign as that of rupees. The class should have all
reasonable constructors, addition and subtraction
methods, and a main() method that provides a
thorough test of all the methods in the class.

 5. Modify the complex number practical problem to
multiply two complex numbers, and return the
result.

 6. Create a class Rectangle. The class has two
attributes, length and width, each of which

defaults to 0. It has methods that calculate the
perimeter and area of the rectangle. It has set
and get methods for both length and width. The
set method should verify that length and width
are floating-point numbers larger than 0.0 and
less than 20.0.

 7. Modify the Circle class in Example 4.5 to
calculate:

 (a) circleCircumference()–compute the
circumference of a circle

 (b) arcLength()– compute the length of the arc
for a given angle

 Within the main() method of the class named
Circle, create an object of the class Circle.
Compute Circle’s circumference when the radius
is 10 and arc length when the angle is 45.

Answers to Objective Questions
 1. (a) 2. (a), (b), (c) 3. (a) 4. (d)
 5. (a) 6. (c) void Demo is treated as a method not as a constructor
 7. (d) 8. (b) 9. (b) 10. (d)

 Property left to a child may soon be lost; but the inheritance of virtue—a good name
an unblemished reputation—will abide forever. If those who are toiling for wealth to
leave their children, would but take half the pains to secure for them virtuous habits,
how much more serviceable would they be. The largest property may be wrested from
a child, but virtue will stand by him to the last. William Graham Sumner

After reading this chapter, the readers will be able to
  know the difference between inheritance and aggregation
  understand how inheritance is done in Java
  learn polymorphism through method overriding
  learn the keywords: super and final
  understand the basics of abstract class
  understand the difference between shadowing and overriding

5.1 INHERITANCE VS AGGREGATION

 Inheritance, in real life, is the ability to derive something specific from something generic.
For example, Fiat Palio parked next to a shopping mall is a specific instance of the generic

category, car.
 Inheritance aids in the reuse of code, i.e., a class
can inherit the features of another class and add its own
modification. The parent class is known as the superclass
and the newly created child class is known as the subclass.
A subclass inherits all the properties and methods of the
super class, and can have additional attributes and methods
as shown in Fig. 5.1.
 On the other hand, the term aggregation is used when
we make up objects out of other objects. The behavior
of the bigger object is defined by the behavior of its
component objects separately and in conjunction with each
other. For example, cars contain an engine which in turn

Superclass

Subclass 1 Subclass 2

Fig. 5.1 Inheritance

Inheritance 55

Inheritance 133

contains an ignition system and starter motor (Fig. 5.2). Basically it is different from inheritance
in the sense that there exists a whole-part relationship in aggregation, car being the whole and
engine being its part.

Note The test for inheritance is that there exists an ‘is-a-kind-of-relationship’ among classes. For
example, Manager is a kind of Employee. The test for aggregation is that there exists an ‘is-
a-part-of ’ relationship among classes.

5.1.1 Types of Inheritance
There are five different types of inheritance:

 Single inheritance
 Multilevel inheritance
 Multiple inheritance
 Hierarchical inheritance
 Hybrid inheritance

Single Inheritance In single inheritance, classes have only one base class. Consider the
relationship shown in Fig. 5.3.

 Multilevel Inheritance As shown in Fig. 5.4, C not only inherits from its immediate superclass,
i.e., B, but also from B’s superclass, A. Thus, class C will have all the attributes and behavior
that A and B possesses in addition to its own. There is no limit to this chain of inheritance
(known as multilevel inheritance) but getting down deeper to four or five levels makes the code
excessively complex.

Car

Engine

A

B

A

B

C

Fig. 5.2 Aggregation Fig. 5.3 Single Inheritance Fig. 5.4 Multilevel Inheritance

134 Programming in Java

Multiple Inheritance In multiple inheritance, a class can inherit from more than one unrelated
class, as shown in Fig. 5.5. Class C inherits from both A and B.

A B

C

Fig. 5.5 Multiple Inheritance

Note Java does not support multiple inheritance amongst classes. It can still be achieved with the
help of Interfaces.

 Hierarchical Inheritance In hierarchical inheritance, more than one class can inherit from a
single class, as shown in Fig. 5.6. Class C inherits from both A and B.
 Hybrid Inheritance Hybrid inheritance is any combination of the above defined inheritances
as shown in Fig. 5.7.

A

B C

A

B

DC

Fig. 5.6 Hierarchical Inheritance Fig. 5.7 Hybrid Inheritance

Inheritance 135

5.1.2 Deriving Classes Using extends Keyword
In Java, classes are inherited from other class by declaring them as a part of its definition, as
shown below.
 class MySubClass extends
 {
 ...
 }
In the definition above, the keyword extends declares that MySubClass inherits the parent class
MySuperClass.
 Now suppose you need a class for a bike or a car. A bike or a car will have a model name, a
model year, a maximum speed, a weight, a price, and other characteristic features, but these two
will differ in some aspects like a car will possess doors, whereas a bike will not. The properties
that are similar can be abstracted and put in a generic class having common behavior. This
generic class will be the parent class for both these classes, as shown in Fig. 5.8.

MotorVehicle

int maxSpeed

String modelName

int modelYear

int numberofPassengers

Class Declaration

Properties

Methods

Car Bike

int noofDoors boolean kickStart

boolean buttonStart

Fig. 5.8 UML Notation for Car and Bike Class Along with their Parent Class MotorVehicle

Now let us frame classes for the above diagram and see how inheritance is actually done in
Java. First of all, let us frame the parent class MotorVehicle, shown in Example 5.1.

Example 5.1 Parent Class MotorVehicle
 L1 class MotorVehicle{
 L2 int maxSpeed; // miles per hour
 L3 String modelName; // e.g. "Fiat"
 L4 int modelYear; // e.g. 2006,2007,2008
 L5 int numberOfPassengers; // 2, 4, 6

 // we can add some more properties, as above, like the
 // engineCapacity etc. but we would leave it as an

MySuperClass Name of the

Parent class

136 Programming in Java

 // exercise for you.
 // constructor
 L6 MotorVehicle()
 {
 maxSpeed = 200;
 modelName = "";
 modelYear=1997;
 numberOfPassengers=2;
 }

 L7 MotorVehicle(int maxSpeed, String modelName, int modelYear, int numberOfPassengers)
 {
 L8 this.maxSpeed = maxSpeed;
 L9 this.modelName = modelName;
 L10 this.modelYear = modelYear;
 L11 this.numberOfPassengers = numberOfPassengers;
 }
 }

Explanation
L1 Class MotorVehicle has been declared.
L2–5 Instance variable maxSpeed (of type int),
modelName (of type String), modelYear (of type int)
and numberOfPassangers (of type int) are declared
in these lines.
L6 Default constructor.
L7 Parameterized constructor declaration to

initialize the instance variables declared in L2 to L5.
L8–11 The instance variables declared in L2 to L5
are being initialized with the arguments passed in the
constructor. The keyword this has been used, as
the name of both the instance variable and the local
variable (arguments in the constructor declaration)
are same.

Now let us frame the subclasses, as shown in Fig. 5.8. The example below shows one of the
subclasses, i.e., Bike.
 The subclass Bike will have all the features that its parent class possesses. In addition to that,
it can have its own features, as shown in Example 5.2.

Example 5.2 Subclass Bike
 L1 class Bike extends MotorVehicle {
 L2 boolean kickStart;
 L3 boolean buttonStart;
 /* A kick start bike may or may not be a button start bike but a button start bike
 will always have an option of kick starting */
 // constructor
 L4 Bike()
 {
 kickStart = true;
 buttonStart = false;
 }

 L5 Bike(boolean ks, boolean bs)
 {
 kickStart = ks;
 buttonStart = bs;

Inheritance 137

 }
 L6 public static void main(String args[]) {
 L7 Bike b = new Bike ();
 }}

Explanation

L1 Usage of extends keyword to show inheritance.
L2 and 3 Declaration of two boolean variables:
kickStart and buttonStart.
L4 Default constructor.
L5 Overloaded constructor.

L6 main() method.
L7 Bike object is created and the default constructor
of the parent class is called first of all and after that,
the subclass constructor is called because the parent
needs to be initialized before the child.

5.2 OVERRIDING METHOD

When a method in a subclass has the same name and type signature as a method in its super-
class, then the method in the subclass is said to override the method in the superclass. Like
overloading, it is a feature that supports polymorphism.

When an overridden method is called from within a subclass, it will always refer to the version
of the method defined by the subclass. The superclass version of the method is hidden.
 In the code below, we see that subclass B overrides the method doOverride() in class A.

Example 5.3 Method of Overriding

 L1 class A {
 L2 int i = 0;
 L3 void doOverride (int k) {
 L4 i = k;
 } }

 // Subclass defi nition starts here
 L5 class B extends A { // Method Overriding
 L6 void doOverride(int k){
 L7 i = 2 * k;
 L8 System.out.println("The value of i is: " +i);
 }
 L9 public static void main (String args[])
 {
 L10 B b = new B(); // Create an instance of class B
 L11 b.doOverride(12); // class B method doOverride() will be called
 }}

Output

 The value of i is: 24

138 Programming in Java

Explanation
L1 Class declaration.
L2 Instance variable declaration.
L3 Method declaration with an integer argument
passed to it.
L4 Instance variable being assigned with the value
of the arguments.
L5 Subclass declaration.
L6 Method is overridden, as the name and signature
of the method match.
L7 The variable i is being initialized with a value
twice to that of the argument passed in the method
doOverride. Also note that we have not declared
the variable i in the subclass B, it is the parent class
variable i that is being referred to in the subclass.

This is actually what inheritance is all about. Objects
of the subclass need not define their own definition
of data and methods which are generic in nature. The
generic behavior is left for the super classes.
L8 Print statement.
L9 main()method.
L10 Object of the subclass B is created.
L11 When we create an instance of class B, an
invocation of the method doOverride() will result
in a call to the doOverride() code in class B rather
than A because it is actually the instance that matters
when we call any instance method and the instance
in this case is B.

 A superclass reference variable can be assigned a subclass object. This is illustrated by the
following code:

A a1 = new B ();
/* Create an instance of class B but uses reference of type A . */

a1.doOverride();
/* Though the A type reference is used, the doOverride() method of
class B will be called. */

Note Remember when you write two or more classes in a single file, the file will be named upon
the name of the class that contains the main method. For example, if you write the complete
Example 5.3 in a notepad editor file, the file will be named as B.java.

Here we see that even though the superclass type variable a1 references the subclass object,
the subclass’s overridden method will be executed rather than the superclass’s instance method.

This is very useful when, for example, an array of the superclass type contains references to
various subclasses. The overridden method in the subclass will be called rather than the method
of the superclass.

Code Snippet 5.1 Superclass and Subclass Object

 L1 A a[] = new A[2]; // Parent Class A type array of two objects

 L2 a[0] = new B(); // A type reference is assigned an instance of B.

 L3 a[1] = new C(); // A type reference is assigned an instance of C.

 L4 for (int i = 0; i<a.length; i++)

 L5 a[i].doOverride();

Inheritance 139

Explanation

Considering A as the superclass of class B and C.
L1 An array of superclass A is defined with a size
of two elements.
L2 The first element of the array is assigned an
object of class B. An array of int contains integers; an
array of characters contains characters in its various
elements, and so on. An array of superclass A will
either contain objects of type A or its subclasses
because a superclass variable can refer to a subclass
object. So basically, it is an array of objects.
L3 The second element of the array contains the
object of class C.
L4 for loop is used to iterate through various array
elements. Value of i will vary from 0 to a.length
which is 2.

L5 In the first iteration, the value of i is 0, so a[0]
refers to B class object, so B’ s doOverride() method
will be executed even though the array is of the super-
class A, the code used for the doOverride()method
will be that of the actual object that is referenced,
not of the method in the base class A. The same
applies for the second iteration. The only difference
with the second iteration is that the object will be of
class C. The reason why subclass methods are being
invoked is because these methods are overridden
and overridden methods are dynamically binded.
Dynamic Binding occurs at runtime and methods
are called based on the object from which they have
been invoked.

Note Binding is the process of connecting a method call to its body. When binding is performed
before a program is executed, it is called early binding. When multiple methods with the same
name exist within a class (i.e., case of method overloading) which method will be executed
depends upon the argument (number, type or order of arguments) passed to the method. So,
this binding can be resolved by the compiler (at compile time) and hence overloaded methods
are early binded.

When a method with the same name and signature exists in superclass as well as subclass
(i.e., a case of Method overriding) which method will be executed (superclass version or
subclass version) will be determined by the type of object from which it has been called
(Example 5.3) and so it cannot be done by compiler. Objects exist at runtime, and hence late
binding is done by the JVM at runtime for resolving which overridden method will be executed.
It is also known as dynamic binding or runtime binding.

 A superclass reference variable can refer to a subclass object but vice versa is not possible
because a superclass can have many subclasses and all of these subclasses can have their
additional (different) members (fields and methods) not present in the superclass and its
peer classes. Hence a variable of type subclass can expose more details and can perform
more operations than a variable of type superclass. So every superclass can refer to its
subclass object but every subclass cannot refer to its superclass object. Consider the case
of Furniture class and its subclasses Table and Chair. We can say that every table or chair
is furniture but we cannot ascertain that all furniture is table or chair, etc. Consider another
example of animal and its subclasses like elephant, tiger, dog, cat, etc. Tiger is an animal,
elephant is an animal but we cannot say that animal is a tiger or elephant because it is not
true in all cases. Let us take an example to see how fields are accessed when we refer to
subclass objects using a reference variable of superclass.

140 Programming in Java

Example 5.4 Superclass Can Refer to a Subclass Object
 L1 class SuperClass
 {
 L2 int instanceVariable = 10;
 L3 static int classVariable = 20;
 }

 L4 class SubClass extends SuperClass
 {
 L5 int instanceVariable = 12;
 L6 static int classVariable = 25;
 L7 public static void main(String args[])
 {
 L8 SuperClass s=new SubClass();
 L9 System.out.println("Superclass Instance variable: "+s.instanceVariable);
 L10 System.out.println("Superclass static variable: "+s.classVariable);
 L11 SubClass st=new SubClass();
 L12 System.out.println("Subclass Instance variable: "+st.instanceVariable);
 L13 System.out.println("Subclass static variable: "+st.classVariable);
 }
 }

Output
 D:\javabook\programs\chap 4>java SubClass
 Superclass Instance variable: 10
 Superclass static variable: 20
 Subclass Instance variable: 12
 Subclass static variable: 25

Explanation

L1 Class declaration.
L2 Instance variable defined.
L3 Class variable defined.
L4 Subclass declaration.
L5 Instance variable of the subclass has been
declared with the same name as that of superclass
(shadowing).
L6 Class variable of the subclass has been declared
the with same name as that of superclass (shadowing).
L7 Main method declaration.
L8 A reference variable s of superclass is declared
to hold an object of subclass.
L9 The instance variable is printed using s (created
in L8). The value that is printed (see output) will
be of superclass as the reference is of superclass.

This binding is made by the compiler at the compile
time which checks whether the instance variable
belongs to class Superclass through which it is being
accessed and if yes the binding is made, no matter
which object the reference refers to.
L10 Same as L9. The only difference is it is for
class variables.
L11 A reference variable st of subclass is declared
to hold an object of subclass.
L12 The instance variable is printed using st
(created in L11). The value that is printed (see output)
will be of subclass as the reference is of subclass. As
already stated, this binding is made by the compiler at
the compile time which checks whether the instance
variable belongs to class Subclass through which it

Inheritance 141

is being accessed and if yes, the binding is made, no
matter which object the reference refers to.

L13 Same as L12. The only difference is it is for
class variables.

In the following topics, we will revisit method overriding combined with some new topics.

5.3 super KEYWORD

The super keyword refers to the parent class of the class in which the keyword is used. It is used
for the following three purposes:

 1. For calling the methods of the superclass.
 2. For accessing the member variables of the superclass.
 3. For invoking the constructors of the superclass.

Case 1: Calling the Methods of the Superclass
super.<methodName>() represents a call to a method of the superclass. This call is particularly
necessary while calling a method of the superclass through the subclass object that is overridden
in the subclass.

Example 5.5(a) Simple Example Showing Method Overriding
 L1 class A {
 L2 void show()
 {
 L3 System.out.println("Superclass show method");
 }}

 L4 class B extends A { // Method Overriding
 L5 void show()
 {
 L6 System.out.println("Subclass show method");
 }
 L7 public static void main (String args[]){
 L8 A s1 = new A(); // call to show method of Superclass A.
 L9 s1.show();
 L10 B s2 = new B();
 L11 s2.show(); // call to show method of Subclass B
 }}

Output
 Superclass show method
 Subclass show method

Explanation
As discussed earlier in Example 5.3, methods will
be called on the basis of the objects from which they
are called.
L8 Shows the creation of an object of class A.

L9 Shows calling the methods of class A through
the object created in L8.
L10 and 11 The object being used is that of class B.

142 Programming in Java

Problem and Solution In Example 5.5, two methods (show()and overridden show()) are being
called by two different objects (A and B), instead the job can be done by one object only, i.e., by
using the keyword super. Example 5.5 can be reshaped as shown below:

Example 5.5 (b) Usage of super Keyword for Calling Parent Class Methods
 L1 class ANew {
 L2 void show()
 {
 L3 System.out.println("Superclass show method");
 }
 }
 L4 class BNew extends ANew { // Method Overriding
 L5 void show()
 {
 L6 super.show(); //call to show method of the super class A
 L7 System.out.println("Subclass show method");
 }
 L8 public static void main (String args[]) {
 L9 BNew s2 = new BNew();
 L10 s2.show(); // call to show method of Subclass B
 }}

Output
 Superclass show method
 Subclass show method

Explanation
L5 Method show() is defined.
L6 Shows how super is used for calling the
parent class method which has been overridden in
the subclass. If this line is omitted, only the subclass
method will be called; we have used super in this
line so that both the version (parent and subclass) of
methods can be called by one object only.
L9 BNew object is created.
L10 The method show()of class BNew is called
using the object created in L9. The control passes

to show()in L5 and the statements within the
method are executed. L6 gets executed which is
super.show() and the control passes to ANew.show
method. Lines of show()in Anew class are executed
and the control passes back to L7, which is a print
statement. After executing the print statement (L7),
the control passes back to the main method which
has no more statements to execute, so the program
automatically terminates.

Case 2: Accessing the Instance Member Variables of the Superclass
Example 5.6 demonstrates how the keyword super can be used to access the instance variables
of the superclass. The keyword is particularly useful when the variable of the superclass is
shadowed by the subclass variable. The concept of shadowing occurs when variables in super
class and subclass have same name. The superclass variables in this case will be hidden in
the subclass and only subclass variables will be accessible within the subclass. To access the
shadowed variable of superclass super keyword is used as shown below.

Inheritance 143

Example 5.6 Usage of super Keyword for Accessing Parent Class Variables
 L1 class Super_Variable {
 L2 int b = 30; //instance Variable
 }
 L3 class SubClass extends Super_Variable {
 L4 int b = 12; // shadows the superclass variable
 L5 void show()
 {
 L6 System.out.println("subclass class variable:" + b);
 L7 System.out.println("superclass instance variable:" + super.b);
 }
 L8 public static void main (String args[]) {
 L9 SubClass s = new SubClass();
 L10 s.show(); // call to show method of Subclass B
 }}

Output
subclass class variable: 12
superclass instance variable: 30

Explanation
L1 Superclass declaration Super_Variable.
L2 Instance variable declaration band it is assigned
the value 30.
L3 Subclass declaration SubClass.
L4 Instance variable b (same name as that of super-
class instance variable) within the subclass defined
and assigned the value 12.
L5 Show () method defined within the subclass.
L6 and 7 In the above example, specifically we
have kept the names of two instance variables in
the super and subclass same, i.e., b. In L6 when we
print the value of b by simply writing b, the value

of subclass variable b is printed. In L7, with the help
of super keyword, we have accessed the value of the
superclass instance variable b and in this case, it prints
the value of the superclass variable. If the variable
b in L4 is not defined, then both print statements
would have printed the same value, i.e., value of the
superclass variable b. In our case, both the super and
the subclass contain the variable with the same name,
so to differentiate between the two and to access the
value of the superclass variable from the subclass, we
use the keyword super.

Case 3: Invoking the Constructors of the Superclass
super as a standalone statement (i.e., super()) represents a call to a constructor of the super-
class. This call can be made only from the constructor of the subclass and that too it should be
the first statement of the constructors. The default constructors implicitly include a call to the
super class constructor using the super keyword.

Example 5.7 Constructor Calling Mechanism
 L1 class Constructor_A {
 L2 Constructor_A()
 {
 L3 System.out.println("Constructor A");

144 Programming in Java

 }}
 L4 class Constructor_B extends Constructor_A {
 L5 Constructor_B() {
 L6 System.out.println("Constructor B");
 }}

 L7 class Constructor_C extends Constructor_B {
 L8 Constructor_C() {
 L9 System.out.println("Constructor C");
 }

 L10 public static void main (String args[]) {
 L11 Constructor_C a = new Constructor_C();
 }}

Output
 Constructor A
 Constructor B
 Constructor C

Explanation
L1 Parent class declaration Constructor_A.
L2 Default constructor of class Constructor_A.
L4 Subclass declaration Constructor_B of the
class defined in L1.
L5 Default constructor of class Constructor_B.
L7 Subclass declaration Constructor_C of class
defined in L4.
L8 Default constructor of class Constructor_C is
declared explicitly.
L10 main method declaration.
L11 An object of class Constructor_C is created
here. If the class does not provide any constructor,
the default constructor (no argument constructor)
provided by Java is implicitly called when an object
of the class is created. All three classes define their
respective no argument constructors. Object creation

of Constructor_C class results in the explicit default
constructor of this class being called on L8. An
<init> method is created for every constructor for
the class and this <init> includes a call to the super-
class default (no argument) constructor, any instance
variable initializer provided in the class followed by
the code written in the constructor. So when an object
of class Constructor_C is invoked, the superclass
constructor is invoked automatically. Also its parent,
i.e., Constructor_B needs to be initialized before
the child class can be initialized and instantiated.
The same case applies for Constructor_B which in
itself is inherited from Constructor_A. Therefore,
first of all, the constructor of class Constructor_A
gets executed, then Constructor_B and lastly,
Constructor_C.

Example 5.7 (a) Usage of super Keyword for Calling Parent Class Constructor
 L1 class Constructor_A_Revised {
 L2 Constructor_A_Revised()
 {
 L3 System.out.println("Constructor A Revised");
 }}
 L4 class Constructor_B_Revised extends Constructor_A_Revised {
 // this constructor is commented
 /* Constructor_B_Revised() {
 System.out.println("Constructor B");

Inheritance 145

 }
 */

 L5 Constructor_B_Revised(int a)
 {
 a++;
 L6 System.out.println("Constructor B Revised " +a);
 }}
 L7 class Constructor_C_Revised extends Constructor_B_Revised {
 L8 Constructor_C_Revised()
 {
 L9 super(11); // if omitted compile time error results
 L10 System.out.println("Constructor C Revised");
 }
 L11 public static void main (String args[]){
 L12 Constructor_C_Revised a = new Constructor_C_Revised();
 }}

Output
 Constructor A Revised
 Constructor B Revised 12
 Constructor C Revised

Explanation
(Only the changes are being explained)
L5 The parameterized constructor of class
Constructor_B_Revised is defined with an integer
argument.
L6 The integer argument is being post incremented.
L9 super keyword for calling constructor,
followed by the argument to be passed to the parent
class constructor.
L12 An object of Constructor_C_Revised is
created due to which the default constructor of this
class will be invoked. But as already explained, it is
inherited, so its parent’s (i.e.,Constructor_B_Revised)
default constructor will be called automatically. But
instead of the default constructor in Constructor_B_
Revised, a parameterized constructor is provided. If
a class does not provide any constructor (default or
parameterized), it will be provided with an implicit
default constructor automatically by Java. In case the
class does provide a constructor, Java will not provide

it with a default constructor. An implicit call to the
parent class default constructor of Constructor_C_
Revised results in an error, because the default
(no argument) constructor is neither provided nor
it will be implicitly available through Java, as a
parameterized constructor is provided in the class
Constructor_B_Revised.
 The solution for this is either to explicitly provide a
default (no argument) constructor in Constructor_B_
Revised (shown in comments) or use super in the
constructor of the subclass Constructor_C_Revised
(as shown in L9) for making an explicit call to the
parameterized constructor in its immediate super-
class and in this case, the compiler will not show you
an error. The constructor of class Constructor_A_
Revised is normally called as the default constructor
is provided in the class.

Note It is mandatory for a super statement in a constructor to be the first statement within the
constructor. As the parent must be initialized before its child, an explicit call to the parent must
be done before any initialization within the child constructor begins.

146 Programming in Java

5.4 fi nal KEYWORD

The keyword final is used for the following purposes:
 1. To declare constants (used with variable and argument declaration)
 2. To disallow method overriding (used with method declaration)
 3. To disallow inheritance (used with class declaration)

Basically, it is used to prevent inheritance and create constants. Let us take an example.

Example 5.8 Final Keyword

 L1 class Final_Demo {
 L2 fi nal int MAX = 100; //constant declaration
 // fi nal m0ethod declaration with fi nal arguments
 L3 fi nal void show(fi nal int x) {
 L4 // MAX++; illegal statement as MAX is fi nal
 L5 // x++; illegal statement as x argument is fi nal
 L6 System.out.println("Superclass show method:" +x);
 }}
 L7 class Final_Demo_1 extends Final_Demo {
 // cannot override show method as it is fi nal in
 // parent class,that is why we have commented it

 L8 /* void show(){
 System.out.println("Subclass show method");
 }*/

 L9 public static void main (String args[]){
 L10 Final_Demo_1 f2 = new Final_Demo_1();
 //show of the parent class will be called
 L11 f2.show(12);
 }}

Output
 C:\examples\> java Final_Demo_1
 Superclass show method: 12

Explanation

L1 Class declaration Final_Demo.
L2 Integer constant declaration MAX with value 100.
L3 The final method show()is defined with final
arguments. This method cannot be overridden in
its subclasses as is shown in the comments in L8.
The final argument’s value cannot change, as it has

become a constant now (shown in L5).
L7 Subclass declaration. If the parent class would
have been a final class, then this class could not have
been subclassed. The final class can be declared as
follows:

 fi nal class Final_Demo

Inheritance 147

5.5 ABSTRACT CLASS

The literary meaning of abstract is — “a concept or idea that is not associated with any specific
instance.” Abstract classes adopt this very concept. Abstract classes are classes with a generic
concept, not related to a specific class. They define the partial behavior and leave the rest for
the subclasses to provide.
 Abstract classes contain one or more abstract methods. It does not make any sense to create
an abstract class without abstract methods, but if done, the Java compiler does not complain
about it. An abstract method is a method that is declared, but contains no implementation, i.e.,
no body.
 Abstract classes cannot be instantiated, and they require subclasses to provide implementation
for their abstract methods by overriding them and then the subclasses can be instantiated. If
the subclasses do not implement the methods of the abstract class, then it is mandatory for the
subclasses to tag itself as abstract, making way for its own subclasses to override the abstract
methods.

Why do We Create Abstract Methods?
We use abstract methods, when we want to force the same name and signature pattern in all
the subclasses and do not want to give them the opportunity to use their own naming patterns,
but at the same time give them the flexibility to code these methods with their own specific
requirements. Example 5.9(a) shows an abstract Animal class. This class has been specifically
created as an abstract class due to the presence of abstract methods in it. There are certain
features that are common to all the animals but certain other features are specific to a category
of animal. We may also argue that the common features are performed in a variety of ways by
different animals. For example, every animal in this world produce a particular kind of sound,
unique to their own species.

Example 5.9 (a) Abstract Class with Abstract Method

 L1 abstract class Animal
 {
 L2 String name;
 L3 String species;
 // constructor of the abstract class
 L4 Animal(String n, String s)
 {
 L5 name = n;
 L6 species = s;
 }
 L7 void eat(String fooditem)
 {
 L8 System.out.println(species + " " + name + " likes to have " + fooditem);
 }
 L9 abstract void sound();
 }

148 Programming in Java

Explanation
L1 Abstract class declared with the keyword
abstract used before the class declaration.
L2 and 3 Two string variables declared, named
name and species.
L4 Parameterized constructor to initialize the
instance variable.
L5 and 6 Instance variables, name and species,

are initialized with the arguments passed to the
constructors in L4.
L7 A non-abstract method has been defined, just
like other normal methods.
L8 Print statement.
L9 Abstract method declared. Note that this method
does not have any body.

 The abstract keyword is used for defining both abstract methods and abstract classes. Any
animal that wants to be instantiated must override the sound()method, otherwise it is impossible
to create an instance of that class. Let us take a look at the Lion subclass that inherits the Animal
class.

Example 5.9 (b) Class Implementing Abstract Methods

 L1 class Lion extends Animal
 {
 L2 Lion() {
 L3 super("Lion","Asiatic Lion");
 }
 L4 void sound() {
 L5 System.out.println ("Lions Roar! Roar!");
 }
 L6 public static void main(String args[])
 {
 L7 Lion l = new Lion();
 L8 l.eat("fl esh");
 L9 l.sound();
 }}

Output
 Asiatic Lion likes to have fl esh
 Lions Roar! Roar!

Explanation

L1 Subclass declaration of the abstract class
Animal.
L2 Default constructor created for Lion class.
L3 The keyword super used to set up an explicit
call to the parent class constructor.
L4 It is mandatory for the subclass Lion to override
the sound() method because the sound()method has
been declared abstract by the parent class.

L7 The object of Lion class is created.
L8 The eat()method (Example 5.9(a)) of the
parent class will be called with the help of the object
created
in L7.
L9 The sound() method is called which has
been declared in L4.

Inheritance 149

 Some key features of an abstract class are as follows:
 1. They cannot be instantiated, but they can have a reference variable.
 2. A class can inherit only one abstract class, as multiple inheritance is not allowed amongst

classes.
 3. They can have abstract methods as well as non-abstract methods.
 4. It is mandatory for a subclass to override the abstract methods of the abstract class,

otherwise the subclass also need to declare itself as abstract. Overriding other methods
(non-abstract) is up to the requirement of the subclass.

 5. Abstract classes can have constructors and variables, just like other normal classes.

5.6 SHADOWING VS OVERRIDING

 Shadowing of fields occurs when variable names are same. It may occur when local variables
and instance variable names collide within a class or variable names in superclass and subclass
are same. In case of methods, instance methods are overridden whereas static methods are
shadowed. The difference between the two is important because shadowed methods are bound
early whereas instance methods are dynamically (late) bound. The difference is illustrated in
the following example.

Example 5.10 Shadowing vs Overriding
 L1 class Shadowing
 {
 L2 static void display()
 {
 L3 System.out.println("In Static Method of Superclass");
 }
 L4 void instanceMethod()
 {
 L5 System.out.println("In instance Method of Super Class");
 }
 }

 L6 class ShadowingTest extends Shadowing
 {
 // Static Methods are not Overridden but Shadowed
 L7 static void display()
 {
 L8 System.out.println("In Static Method of Sub Class");
 }
 // instance methods are Overridden not shadowed
 L9 void instanceMethod()
 {
 L10 System.out.println("The Overridden instance Method in Sub Class");
 }
 L11 public static void main(String args[])

150 Programming in Java

 {
 L12 Shadowing s=new ShadowingTest();
 // invokes the Superclass display as they are
 // early binded at Compile time.
 L13 s.display();

 // invokes the overridden version as they are
 // dynamically binded at runtime
 L14 s.instanceMethod();

 L15 ShadowingTest st=new ShadowingTest();
 // invokes the Sub class display as they are
 // early binded at Compile time
 L16 st.display();
 // invokes the overridden version as they are
 // dynamically binded at runtime
 L17 st.instanceMethod();
 }
 }

Output
 D:\javabook\program\java ShadowingTest
 In Static Method of Superclass
 The Overridden instance Method in Subclass
 In Static Method of Subclass
 The Overridden instance Method in Subclass

Explanation
L1 Class declaration
L2–3 Declares a static method with a print
statement within itself.
L4–5 Declares a instance method with a print
statement within itself.
L6 Subclass (ShadowingTest) of the class, declared
in L1, is declared.
L7–8 Declares a static method within the subclass
with the same name and signature as the static
method of superclass with a print statement within
the method.
L9–10 The instance method of the superclass is
overridden with a print statement within it.
L11 main() method.
L12 A reference variable of super (shadowing)
class is declared to hold an object of subclass
(ShadowingTest).
L13 The static method is invoked using this
object created in L12. But as static methods are not

overridden, they are early binded. The compiler
creates this binding at compile time based on the type
of reference through which method has been invoked.
As the reference is of superclass, the superclass static
method is invoked.
L14 The instance method is invoked using this
object created in L12. But as instance methods are
overridden, they are dynamically (late) binded. The
compiler delays this binding till runtime and JVM
invokes the methods based on the type of object
through which method has been invoked. As the
object is of subclass, the subclass instance method
is invoked.
L15 An object of subclass is created. (A reference
variable of subclass (ShadowingTest) class is declared
to hold an object of subclass (ShadowingTest)).
L16 Same as L13 (refer output).
L17 Same as L14 (refer output).

Inheritance 151

5.7 PRACTICAL PROBLEM: circle AND cylinder CLASS

Let us take a practical example to show the power of inheritance and usage of super keyword. We
will create a Circle class and then inherit the Circle class in a Cylinder class to calculate its area.

Example 5.11 (a) Class Implementing Abstract Methods
 L1 class Circle {
 //declaring the instance variable
 L2 fl oat radius;
 L3 fi nal fl oat PI = 3.141f; //value of pi is fi xed
 L4 Circle()
 {
 L5 radius = 1.0f;
 }
 // parameterized constructor
 L6 Circle(fl oat radius) {
 L7 this.radius = radius;
 }
 // returns the area of the circle, i.e. r

2

 L8 fl oat getArea() {
 L9 return PI * radius * radius;
 }}

Explanation
L1 Circle class has been defined.
L2 The float instance variable radius has been
defined.
L3 The final float instance variable PI has been
defined (similar to , i.e., PI of mathematics) and
initialized with the value 3.141f (f for float). Why
we have created it as final will become clear in the
next topic.
L4 Default constructor of class Circle.
L5 Instance variable radius has been initialized.
L6 The overloaded constructor has been declared
with an argument of type float, to initialize the
instance variable radius.

L7 The instance variable is differentiated from the
local variable with the help of this keyword and
initialized with the value passed as an argument to
the constructor.
L8 Instance method declaration getArea()with a
return type float.
L9 The keyword return is used to return the area
of the circle back to the caller.

The next step is to create a subclass Cylinder of
the Circle class. The Cylinder class will override
the getArea()method of the Circle class which will
return the surface area of a cylinder. The Cylinder
class is defined in Example 5.11(b).

Example 5.11 (b) Inheritance
 L1 class Cylinder extends Circle {

 // instance variable to denote height of the cylinder
 L2 fl oat height;
 L3 Cylinder(fl oat radius, fl oat height){
 // explicit call to superclass constructor
 L4 super(radius);

152 Programming in Java

 L5 this.height = height;
 }
 // overridden method returns the cylinder surface area
 // Surface Area = (2r²) + (2r.height)
 // where (2  r²) is the surface area of the "ends" and
 //(2r.height) is the area of the "side"
 // superclass method being invoked using super keyword
 L6 fl oat getArea() {
 L7 return 2 * super.getArea() + 2 * PI * radius * height;
 }

 L8 public static void main(String args[]) {
 L9 Circle c = new Circle(1.5f);
 L10 System.out.println("The Area of Circle is: " + c.getArea());
 L11 Cylinder cy = new Cylinder(1.5f,3.5f);
 L12 System.out.println("The Surface Area of Cylinder is: " + cy.getArea());
 }}

Output
 C:\examples\chap 5>java Cylinder
 The Area of Circle is: 7.0672503
 The Surface Area of Cylinder is: 47.114998

Explanation

L1 Cylinder class inherits Circle class.
L2 Instance variable height has been defined by
the subclass Cylinder.
L3 Parameterized constructor to initialize radius
and height.
L4 The keyword super is used to pass the radius
accepted as an argument in the subclass constructor
(L3) to the Circle class, i.e., the parent constructor.
It shows the reuse of code, as radius is defined only
once and being used by the subclass.
L5 The instance variable height is initialized with
the local variable height(argument).
L6 getArea()of Circle class has been overridden,
because the Cylinder class wanted the name of the
method to be same as that of the superclass, i.e.,
getArea() but perform a different function, i.e.,
return the surface area of the cylinder.
L7 getArea() of the superclass has been called
with the help of super, i.e., super.getArea() because
if you look at the formula for calculating the surface
area of the cylinder, it says:

 Surface area = (2  r²) + (2 r height)

where (2r²) is the surface area of the “ends” and
(2r. height) is the area of the “side”, and r² is
the area of the circle, and we already have created
a method for calculating the area of the circle in the
parent class. For this reason, we have called the super
class getArea method (reuse of code).radius has
already been passed in L4 using the super keyword.
The return value from the parent class getArea()
method is multiplied by 2 and added to the area of
the sides (2 rh).
L8 main() method.
L9 The object of Circle class is created with a
radius of 1.5f.
L10 Calling the method getArea()with the help of
Circle class object. The return value is concatenated
with the string present in the println method and
printed on the screen as can be seen in the output.
L11 Creation of an object of Cylinder class with
a radius of 1.5f and height of 3.5f.
L12 The getArea() method is invoked with the
help of Cylinder class object.

Inheritance 153

SUMMARY
The concept of inheritance is derived from real life,
wherein children inherit the good/bad qualities from
their parents and add to that their own identity and
behavior. This has been absorbed by object-oriented
programming, wherein the properties and methods
of a parent class are inherited by the children or
subclasses. The subclasses can implement the
inherited methods in a different way using method
overriding, keeping the method names and signatures
same as that of the parent class.
The super keyword can be used to access the over-

ridden methods, variables, and even the constructors

of the superclass. Abstract classes are used to force
the subclasses to override abstract methods and pro-
vide body and code for them. The difference between
overriding and shadowing is also discussed with ex-
amples. Shadowed methods are binded early by the
compiler whereas overridden methods are dynamically
binded by JVM.
The final keyword is used to create constants and

disallow inheritance. The keywords abstract and
final cannot coexist because final is used to prevent
inheritance and abstract is used to allow subclasses
to inherit it and override methods.

EXERCISES

Objective Questions

 1. What will happen when you attempt to compile
and run the following class?

class Demo{
Demo(inti){
 System.out.println("Demo");
}}
class Inner extends Demo{
public static void main(String
args[]){
 Inner s = new Inner();
}
void Inner(){
 System.out.println("Inner");
}}

 (a) Compilation and output of the string “Inner”
at runtime

 (b) Compile-time error
 (c) Compilation and no output at runtime
 (d) Compilation and output of the string “Demo”.
 2. Which of the following statements are true?
 (a) If a class has abstract methods, it must be

declared as abstract.
 (b) If the abstract methods are not overridden,

the subclass need not be declared as
abstract.

 (c) A fi nal class cannot be subclassed.
 (d) All methods in an abstract class must be

declared as abstract.

 3. Which is the keyword used for deriving classes?
 (a) implements (b) extends
 (c) throws (d) inherits
 4. What will happen when you attempt to compile

and run the following class?

class Base{
void Base()
{
 System.out.println("In Base");
}
Base(inti)
{
 System.out.println("In Base: "+i);
}}

 (a) Compile time error
 (b) Compiles but gives runtime error
 (c) Compiles and executes successfully but

does not show any output
 (d) Compiles and prints “In Base”
 5. What will happen when you attempt to compile

and run the following class?

abstract class Demo
{
 abstract void show();
}
class Demo_1 extends Demo
{

154 Programming in Java

 Demo_1()
 { System.out.println("In Demo"); }
 public static void main(String
 args[])
 { Demo_1 d = new Demo_1(); }
}

 (a) Compile-time error
 (b) Compiles but gives runtime error
 (c) Compiles and executes successfully but does

not show any output
 (d) Compiles and prints “In Demo”
 6. What will happen when you attempt to compile

and run the following class?

class Test
{
 Test (int a)
 {
 System.out.println ("Test" +);
 }
}
Class Test_1 extends Test
{
 Test_1 (int a)
 {
 System.out.println ("Test_1")';
 }
 public static void main (string
 args [])
 {
 Test t = new Test_1(10);
 }

 }
 (a) Compile-time error
 (b) Compiles but gives runtime error
 (c) Compiles and prints Test 10 followed by

Test_1
 (d) Compiles and prints “Test_1”
 7. How can the above program be rectifi ed to give

the output as stated in option (c)?

 (a) use super for a method call in subclass
constructor

 (b) use super for constructor call in subclass
constructor

 (c) make the superclass as abstract
 (d) provide default constructor in Test.
 8. Which keyword is used to prevent inheritance?
 (a) fi nal (b) super
 (c) this (d) Final
 9. What will happen if the following line is present

in a program?

abstract fi nal class Demo {
 // Lines of code
}

 (a) does not compile, as no class can be abstract
 (b) runtime error
 (c) does not compile, as no class can be fi nal
 (d) does not compile, as no class can be abstract

and fi nal.
 10. What will be the output when you try to compile

and run the program?

class Demo
{
 int a;
 Demo(int a)
 {
 a = a+10;
 System.out.println(a);
 }
 public static void main(String
 args[])
 {
 Demo d = new Demo(4);
 System.out.println(d.a);
 }
}

 (a) 14 and 0 (b) 0 and 14
 (c) 14 and 14 (d) Compile time error

Review Questions
 1. What is inheritance? How is it different from

aggregation?
 2. What is method overriding? Explain with an

example.
 3. Explain super keyword with all its usages.

Support explanation with a program.

 4. Explain fi nal keyword with all its usages. Support
explanation with a program.

 5. What is an abstract class? Can an abstract class
have constructors? Explain.

 6. What is shadowing of instance variables?
 7. What is the difference between shadowing and

overriding?

Inheritance 155

 8. Overloaded methods are early bound whereas
Overridden methods are late bound. Comment.?

 9. Why subclass reference variables cannot refer
to a superclass object?

Programming Exercises
 1. Defi ne a class MotorVehicle as described

below:
 Data members:
 (a) modelName (b) modelNumber
 (c) modelPrice
 Methods:
 (a) display() method to display the name,

price, and model number.
 Defi ne another class named Car that inherits the

class MotorVehicle and has the following:
 Data members:
 (a) discountRate
 Methods:
 (a) display() method to display the Car

name, Car model number, Car price, and
the discount rate.

 (b) discount() method to compute the
discount Create the classes MotorVehicle
and Car with suitable constructors and
test it.

 2. Create an abstract class Accounts with the
following details:

 Data members:
 (a) balance
 (b) accountNumber
 (c) accountHoldersName
 (d) address
 Methods:
 (a) withdrawl() – abstract
 (b) deposit() – abstract
 (c) display() to show the balance of the

account number
 Create a subclass of this class SavingsAccount

and add the following details:
 Data members:
 (a) rateOfInterest
 Methods:
 (a) calculateAmount()

 (b) display() to display rate of interest with
new balance and full account holder
details

 Create another subclass of the Accounts class,
i.e. CurrentAccount with the following:

 Data members:
 (a) overdraftLimit
 Method:
 (a) display() to show overdraft limit along

with the full account holder details
 Create objects of these two classes and call their

methods. Use appropriate constructors.
 3. Create a class named Employee with the

following details:
 Data members:
 (a) name (b) address
 (c) age (d) gender
 Method:
 (a) display() to show the employee details
 Create another class FullTimeEmployee that

inherits the Employee class:
 Data members:
 (a) salary (b) designation
 Method:
 (a) display() to show the salary and

designation along with other employee
details

 Create another class PartTimeEmployee that
inherits the Employee class:

 Data members:
 (a) workingHours (b) ratePerHour
 Methods:
 (a) calculatePay() to calculate the amount

payable
 (b) display() to show the amount payable

along with other employee details
 Create objects of these classes and call their

methods. Use appropriate constructors.

Answers to Objective Questions
 1. (a) 2. (a), (c) 3. (b) 4. (b)
 5. (a), either abstract is to be used with Demo_1 or override show in Demo_1 6. (a)
 7. (b) and (d), use super for constructor call in Test _1 or provide default constructor in Test
 8. (a) 9. (a)
 10. (a), Local variable shadows instance variable in the constructors

 The greater our knowledge increases, the more our ignorance unfolds.
 John F. Kennedy

After reading this chapter, the readers will be able to
  understand what interfaces are and how they are different from abstract classes
  understand the concept behind packages and how they are used
  know about the java.lang package
  understand object class and wrapper class
  know how strings are created, manipulated, and split in Java
  understand enumerations

6.1 INTERFACES

 Interfaces in Java are like a contract or a protocol which the classes have to abide with. Interfaces
are basically a collection of methods which are public and abstract by default. These methods do
not have any body. The implementing objects have to override all the methods of the interface
and provide implementation for all these methods. There is no code at all associated with any
method of the interface. The best part of an interface is that a class can inherit any number of
interfaces, thus allowing multiple inheritance in Java, provided the class now has to override all
the methods of all the interfaces it inherits. Java does not support multiple inheritance among
classes, but interfaces allow Java to support this feature.
 Interfaces are declared with the help of a keyword interface. Note that none of the methods
have a body. It is the responsibility of the implementing class to override the methods and provide
the implementation for these methods.

 interface interfacename
 {
 returntype methodname(argumentlist);
 ...
 }
 class classname implements interfacename{}

Interfaces,
Packages, and
Enumeration

66

Interfaces, Packages, and Enumeration 157

 Example 6.1(a) shows a very simple calculator program. There are a few basic operations that
do not change for any calculator: be it a normal, scientific, or a programmable calculator. The
basic operations (add, subtract, divide, and multiply) can be squeezed out of various implementing
classes and put into an interface. Now all the implementing objects will have to keep the name
and signature of the methods exactly same as has been defined in the interface, that is why we
have created an interface and this is what we actually wanted for all the subclasses to follow.
We do not want the classes to follow their own set of rules like their own created method names
and their signatures. We wanted the classes to follow the rules set up by the interfaces and it
will be a binding upon them, but these rules will be implementation independent. That is, the
objects have to code according to their own requirement within the overridden methods. For
simplicity, we have created an interface named Calculator and four methods have been defined
in it to denote four basic operations of a calculator and these methods perform operations only
on integers. You can later on extend this program to accept different kinds of arguments such as
double, float, and byte.
 Classes, while inheriting other classes, use the keyword extends; whereas while inheriting an
interface, they use the keyword implements, as shown in Example 6.1(b).

Example 6.1 (a) Calculator.java: Interface Definition
L1 interface Calculator

 {
 L2 int add(int a,int b);
 L3 int subtract(int a,int b);
 L4 int multiply(int a,int b);
 L5 int divide(int a,int b);
 }

Explanation

L1 The keyword interface has been used to
declare an interface followed by the name of the
interface and opening curly brackets to denote the
starting of interface.
L2 A method named add has been declared with
the return type int that accepts two arguments of
type int.
L3 A method named subtract has been declared

with the return type int that accepts two arguments
of type int.
L4 A method named multiply has been declared
with the return type int that accepts two arguments
of type int.
L5 A method named divide has been declared
with the return type int that accepts two arguments
of type int, followed by the closing curly bracket
of the interface.

Example 6.1 (b) Normal_Calculator.java: Class Implementing Calculator Interface
 L1 class Normal_Calculator implements Calculator
 {
 L2 public int add(int a,int b){
 L3 return a + b; }
 L4 public int subtract(int a,int b) {
 L5 return a – b; }
 L6 public int multiply(int a,int b) {
 L7 return a * b; }
 L8 public int divide(int a,int b)

158 Programming in Java

 {
 L9 return a / b;
 }
 L10 public static void main(String args[]) {
 L11 Normal_Calculator c = new Normal_Calculator();
 L12 System.out.println("Value after addition = "+c.add(5,2));
 L13 System.out.println("Value after Subtraction = " +c.subtract(5,2));
 L14 System.out.println("Value after Multiplication = " +c.multiply(5,2));
 L15 System.out.println("Value after division = " +c.divide(5,2));
 }}

Output
 C:\javabook>java Normal_Calculator
 Value after addition = 7
 Value after Subtraction = 3
 Value after Multiplication= 10
 Value after division = 2

Explanation

L1 Class Normal_Calculator has been declared
and it inherits the interface Calculator with the help
of implements keyword.
L2 Method add has been overridden and the body
of the method has been provided.
L3 The keyword return is used to return the result
(to the caller) of addition of two arguments passed
into the add method followed by the closing curly
bracket.
L4–9 The methods substract, multiply, and
divide are overridden and the results are returned.

 L11 An object of the class Normal_Calculator is
created.
L12–15 Print statements to print the result
of addition/subtraction/multiplication/division.
Respective methods have been called in these lines
with the object created in L11 like c.sum(5,2).
These method calls return the result and the result is
concatenated with the strings passed as an argument
to the println method and displayed on the screen
(see output).

Note It is mandatory to add the access specifier public to the method declaration, otherwise the
compiler will not compile the program. As already discussed, all the methods in the interface
are public, so when the implementing classes override the methods defined in the interface,
they have to tag it as public.
Not making it public or leaving the access specifier blank (default) will reduce the privileges from
public to default, which is not allowed in overriding. Either you have to increase the privileges
or keep it intact. Widening conversion in case of overriding takes place automatically, i.e., from
default to public (lesser privileges to more privileges), but narrowing conversion is not allowed.

 It is recommended to create two java files in a directory: (a) Calculator.java for defining the
interface and (b) Normal_Calculator.java for declaring the class implementing the Calculator.
java interface. The compiler upon compilation of Normal_Calculator.java will create two class
files automatically: Calculator.class and Normal_Calculator.class.

6.1.1 Variables in Interface
Just like methods in an interface (by default public and abstract; no need to tag them), variables
defined in an interface also carry a default behavior. They are implicitly public, final, and static

Interfaces, Packages, and Enumeration 159

and there is no need to explicitly declare them as public, static, and final. As they are final, they
need to be assigned a value compulsorily. Being static, they can be accessed directly with the
help of an interface name and as they are public, we can access them from anywhere. Example
6.2 shows the usage of variables in an interface.

Example 6.2 Variables in an Interface
 L1 interface Limit_Test {
 L2 int LOWERLIMIT = 0;
 L3 int UPPERLIMIT = 100;
 }
 L4 class Variable_Test implements Limit_Test {
 L5 void fi ndNumberWithinLimits(int a) {
 L6 if(a > LOWERLIMIT && < < UPPERLIMIT)
 L7 System.out.println(a+ " lie in between" + Variable_Test.LOWERLIMIT + " and " +
 Variable_Test.UPPERLIMIT);
 L8 else
 L9 System.out.println(a+ " does not lie in between " + Variable_Test.LOWERLIMIT +
 " and " +Variable_Test.UPPERLIMIT);
 }
 L10 public static void main(String args[]) {
 L11 Variable_Test vt = new Variable_Test();
 L12 //LOWERLIMIT++; illegal statement
 L13 //UPPERLIMIT++;
 L14 vt.fi ndNumberWithinLimits(23);
 L15 vt.fi ndNumberWithinLimits(233);
 }}

Output
 C:\javabook\>java Variable_Test
 23 lie in between 0 and 100
 233 does not lie in between 0 and 100

Explanation
L1 We have created an interface Limit_Test,
wherein we will set the upper and lower limits.
L2 and 3 The upper and lower limits are being
set with the help of two variables in the interface,
i.e., UPPERLIMIT and LOWERLIMIT. They have to be
assigned a value, as they are implicitly final.
L4 Class Variable_Test inheriting the interface
Limit_Test.
L5 Method findNumberWithinLimits is declared
with an argument. This argument will be checked
by the method whether it is within the limit or not.
L6 A simple if condition to check whether the
argument passed in the function (L5) is greater than
the LOWERLIMIT and lesser than the UPPERLIMIT. If
the condition satisfies, L7 is executed, else L9.
L7 print statement to print that the argument lies

in between the limits defined by the interface. Note
that the static variable’s LOWERLIMIT and UPPERLIMIT
have been accessed with the help of the interface
Variable_Test.
L9 print statement to print that the argument does
not lie in between the limits defined by the interface
(same as in L7).
L11 An object of the class Variable_Test is
created.
L12 and 13 Commented statements to modify
the variables: LOWERLIMIT and UPPERLIMIT. If
uncommented, these statements will result in a
compile-time error because the variables defined
in an interface are final, and final variable values
cannot be modified.
L14 findNumberWitihinLimits() is called through
the object of Variable_Test, and an argument of 23

160 Programming in Java

is passed. This argument is checked by the method
to be within the lower limit and the upper limit and
if yes, the value is printed on screen.
L15 findNumberWitihinLimits() is called through

the object of Variable_Test, and an argument of 233
is passed. This argument is checked by the method
to be within the lower limit and the upper limit and
if it is not, print on screen.

6.1.2 Extending Interfaces
Just like normal classes, interfaces can also be extended. An interface can inherit another interface
using the same keyword extends, and not the keyword implements. Example 6.3 shows how
interfaces are extended.

Example 6.3 Extending Interfaces
 L1 interface A {
 L2 void showA();
 }
 L3 interface B extends A{
 L4 void showB();
 }
 L5 class InDemo implements B {
 L6 public void showA()
 {
 System.out.println("Overriden method of Interface A");
 }
 L7 public void showB()
 {
 System.out.println("Overriden method of Interface B");
 }
 public static void main (String args[])
 {
 InDemo d = new InDemo();
 d.showA();
 d.showB();
 }}

Output
 C:\javabook\>java InDemo
 Overriden method of Interface A
 Overriden method of Interface B

Explanation
L1 An interface named A has been declared.
L2 Method showA() has been defined in interface A.
L3 Interface B is defined and we have used extends
in its declaration to indicate that the parent interface
of B is A. Any class that inherits B will have to
override all the methods of interface A as well as B.

L4 Method showB() has been defined in interface B.
L5 Class declaration shows that it inherits the
interface B.
L6 Shows the overridden method showA(). Note that
while overriding, public access specifier is added.
L7 Shows the overridden method showB().

6.1.3 Interface vs Abstract Class
Table 6.1 lists the differences between interface and abstract class.

Interfaces, Packages, and Enumeration 161

Table 6.1 Interface vs Abstract Class

Interface Abstract Class
Multiple inheritance possible; a class can inherit any
number of interfaces.

Multiple inheritance not possible; a class can inherit only
one class.

implements keyword is used to inherit an interface. extends keyword is used to inherit a class.
By default, all methods in an interface are public and
abstract; no need to tag it as public and abstract.

Methods have to be tagged as public or abstract or both,
if required.

Interfaces have no implementation at all. Abstract classes can have partial implementation.
All methods of an interface need to be overridden. Only abstract methods need to be overridden.
All variables declared in an interface are by default
public, static, or final.

Variables, if required, have to be declared as public, static,
or final.

Interfaces do not have any constructors. Abstract classes can have constructors.
Methods in an interface cannot be static. Non-abstract methods can be static.

It is not that interfaces and abstract classes are entirely dissimilar, they have some similarities also.
 1. Both cannot be instantiated, i.e., objects cannot be created for both of them.
 2. Both can have reference variables referring to their implementing classes objects. For

example, if X is an interface and its implementing class name is Y, then we cannot code:
 X x1 = new X(); // illegal code

 But we can code, X x1 = new Y(); // legal code

 3. Interfaces can be extended, i.e., one interface can inherit another interface, similar to
that of abstract classes (using extends keyword).

 4. static/final methods can neither be created in an interface nor can they be used with
abstract methods.

6.2 PACKAGES

You must have encountered situations wherein you try to organize too many files in folders/
directories and subdirectories. Similarly, if you have too many classes at your disposal, some
sort of grouping is required. Java package is one such mechanism for organizing Java classes
into groups. In fact, a package is indeed a directory for holding Java files. Java has many such
predefined packages which can be used in programs. Some of the predefined packages in Java
are applet, awt, lang, util, event, io, swing, etc. Programmers are also permitted to develop
their own packages in order to organize classes belonging to the same category or providing
similar functionality.

Note A package can be defined as a collection used for grouping a variety of classes and interfaces
based on their functionality.

 It is also possible to house these Java packages, as these can be stored in compressed files called
JAR files (a JAR file or Java ARchive is used for aggregating many files into one) allowing
classes to download faster as a group rather than one at a time.
 A package declaration resides at the top of a Java source file. All source files to be placed in
a package have a common package name.

162 Programming in Java

  A package provides a unique namespace for the classes it contains.
  A package can contain the following:

 Classes
 Interfaces
 Enumerated types
 Annotations (metadata facility for elements introduced in Java 5)

  Two classes in two different packages can have the same name, which is not possible
without using the package mechanism.

  Packages provide a mechanism to hide its classes from being used by programs or
packages belonging to other classes.

6.2.1 Creating Packages
Until now, we have studied what packages are and why they are used. The packages in Java
can be of two kinds, predefined Java API packages and user-defined packages. Java 6 API has
a large number of classes and interfaces, housed according to their functionality into different
packages. Some of these are listed in Table 6.2.

Table 6.2 Commonly Used Predefi ned Packages

Package Functionality
java.lang Basic language fundamentals
java.util Utility classes and collection data structure classes
java.io File handling operations
java.math Arbitrary precision arithmetic
java.net Network programming
java.sql Java Database Connectivity (JDBC) to access databases
java.awt Abstract window toolkit for native GUI components
javax.swing Lightweight programming for platform-independent rich GUI components

 The above-mentioned packages are pre-designed to be a part of Java API. Now the question
arises—how can the users create their own packages?
 The name of the package should be followed by the keyword package, declared at the top of
the program. Anything else, say class declaration and so, may only be followed by the package
declaration. Thus, we can define a class belonging to a package as follows:

 package packexample; //package declaration
 public class ClassinPackage
 {
 //class definition inside package
 //Body of class
 }

Saving, Compiling, and Executing Packages
Here, the package name is packexample and the class ClassinPackage has been made a part of this
package. There are two ways of saving, compiling, and executing Java files stored in a package.

Interfaces, Packages, and Enumeration 163

 1. Remember the file must be saved with the name of the class, i.e., ClassinPackage and
placed in the directory named exactly the same as the package, i.e., packexample. The
file is compiled from within the package and the class file generated after compilation
is stored in the same directory (package). For executing the file, move up the current
directory and execute the file by mentioning the name of the package() followed by
the class name. For example, suppose the package packexample is within the directory
pack. The sequence of statements would be:

 // compiling the class
 L1 C:\pack\packexample\> javac ClassinPackage.java

 // executing the class
 L2 C:\pack\> java packexample.ClassinPackage

 // This will not execute as c does not have packexample directory.
 L3 C:\> java packexample.ClassinPackage

Note Classes that reside inside a package cannot be referred by their own name alone. The
package name has to precede the name of the class of which it is a part of. All classes are
a part of some or the other package. If the keyword package is not used in any class for
mentioning the name of the package, then it becomes a part of the default/unnamed package.
In that case, we execute the classes as shown earlier.

 2. This Java source file could be saved in any directory. During compilation time, you need
to specify an option of the Java compiler –d which specifies the destination where you
want to place your generated compiled files. After successful compilation, you would
see that your package has been already created in your specified path and the .class
file has been placed in that package. For executing the class, same steps need to be
followed as explained above. Let us consider, the ClassinPackage.java file is stored
in the javaeg directory.

 //-d option used with javac for specifying destination c:\pack
 // syntax: javac –d destination directory followed by java source fi le
 L1 C:\javaeg\>javac –d c:\pack ClassinPackage.java

 // executing the class /
 L2 C:\pack\> java packexample.ClassinPackage

 // This will not execute
 L3 C:\> java packexample.ClassinPackage

Note In both the cases, the execution takes place from the parent directory of the package where
the class files are placed as shown in L2. If we want to execute the package from any of the
directories, the classpath should be set.

Setting the Classpath
Classpath is used for storing the path of the third-party and user-defined classes. Whenever we
execute/compile any class file, jdk tools javac and java, search the package/class file in the user
classpath which is the current directory by default. If the classes are not in the current directory,
then we need to set the classpath.

164 Programming in Java

 The classpath can be set in two ways:
 1. It is an environment variable which can be set using the System utility in the control

panel or at the DOS prompt as shown.

 Set CLASSPATH = %CLASSPATH%;c:\pack;

 %Classpath% is used to keep the existing path intact and append our new path to it. Now
L3 of both the above cases will execute.

Note Setting classpath at the DOS prompt will have to be done each time you open the DOS
prompt, as closing the prompt resets the classpath to its original value. To make the changes
permanent, edit the environment variable in the control panel.

Do not delete the existing classpath; edit the variable to append your classpath to the
environment variable.

 2. Use classpath option –classpath or –cp of javac/java tools to override the user-defined
classpath and find the user-defined specific package/classes used in the Java source
files.

 //syntax: javac –cp path of the directory/package used in java source file
 followed by name of the java source file
 C:\pack\packexample> javac –cp c:\javaeg DemoClass.java

 -cp specifies that the user-defined package/classes used in DemoClass.java will be found
at c:\javaeg.

Subpackages
 Subpackages can be designed in hierarchy, i.e., one package can be a part of another package.
This can be achieved by specifying multiple names of the packages at various levels of hierarchy,
separated by dots. For example,

 package rootpackage.subpackage1;

As related classes can be collected in a package, related packages can also be collected in a
larger package. In the above statement, subpackage1 is designed to be a part of rootpackage. Of
course the hierarchical packages have to be stored in a hierarchical structure of directories and
subdirectories. For example, the above package subpackage1 (which is a part of rootpackage)
will be stored within the directory rootpackage.

Note The names of the packages and the directories have to be same, and the names being used
should be carefully selected.

6.2.2 Using Packages
In Java, the names of classes that are defined inside various packages can always be referenced
by specifying the names of the corresponding packages to which these classes belong to. For
example, the Rectangle class belonging to the package java.awt can be referred to
 java.awt.Rectangle, i.e.

Interfaces, Packages, and Enumeration 165

 java.awt.Rectangle box = new java.awt.Rectangle (5, 10, 20, 30);
But Java provides an import mechanism which can be used and classes can be used without
prefixing the names of packages they belong to.
 The point worth noting here is that the class Rectangle is referred to by preceding it with the
name of the package java.awt. Certainly, this is a tedious process. The statement given below
is a convenient form of the above statement.

 Rectangle box = new Rectangle (5, 10, 20, 30);

This statement will do fine only if you import the class beforehand, i.e., at the start of the
program itself.
 Now the question is how to import the classes belonging to the various packages. Classes in
a package like java.lang are automatically imported. For all other classes, you must supply an
import statement to either import a specific class

 import java.awt.Rectangle;

or to import all the classes in a package, using the wildcard notation.

 import java.awt.*;

 Let us try and implement the things we have discussed till now. In the following example,
we have created two packages packexample and packexample1. The packexample has a class
ImportExmaple which will be used in the class UseImportExmaple of another package packexample1.

Example 6.4 Recursive Program to Calculate Factorial in a Package

 L1 package packexample;
 L2 public class ImportExample{
 L3 public int fact(int a){
 L4 if(a == 1)
 L5 return 1;
 L6 else
 L7 return a*fact(a-1);
 }}

Explanation

fact (1)2 *

fact (2)3 *

fact (3)4 *

fact (a–1)a *

1

2 * 1 = 2

3 * 2 = 6

4 * 6 = 24

(assuming a = 4)

Fig. 6.1 Recursion

L1 Package named packexample has been declared.
L2 Public class named ImportExample within the
package packexample has been declared.
L3 Public method fact has been defined.
L4 and 5 If the value of a is 1, return 1.
L6 and 7 Else return a * call to fact method with
the argument a – 1. A function is being called from
within, i.e., recursion. Fig. 6.1 shows the sequence
of execution of this recursive function.

166 Programming in Java

Example 6.5 Using a Package in Another Package and Calling the
Recursive Factorial Method

 L1 package packexample1;
 L2 import packexample.*;
 L3 class UseImportExample{
 L4 public static void main(String args[]){
 L5 int a = 4;
 L6 ImportExample i = new ImportExample();
 L7 System.out.println("factorial of " +a+ " is " +i.fact(a)); }}

Output
 factorial of 4 is 24

Explanation
L1 Package packexample1 is defined.
L2 We wanted to access the class ImportExample
in our class, so we need to import the package

of the class ImportExample, i.e., packexample. If
we do not use the import statement, the compiler
would complain about using ImportExample in L6.

 Following are the steps to compile and execute this program:
 C:\javabook\programs\packexample1>javac -cp c:\javabook\programs
 UseImportExample. java
 C:\javabook\programs\packexample1>java -cp c:\javabook\programs;. packexample1.
 UseImportExample
 factorial of 4 is 24

 The-cp option specifies the path of package(directory) from where to access classes used
in UseImportExample.java. The dot at the end in the classpath has been added to allow the
UseImportExample in packexample1 locate itself. The dot represents the current directory. The
programs directory is the common parent directory of both packexample and packexample1, so
the package packexample can be easily imported as the classpath is specified using –cp option
(i.e., c:\javabook\programs). There is no problem in locating packexample in packexample1.
UseImportExample as classpath for both package is same which has already been given in the
commmand.

Note You can also set the classpath using the set command at the DOS prompt or set it permanently
in the environment variables in the control panel so that you don't have to use the – cp option
again and again with the JDK tools.

 Static Import
In Section 4.7, we have already discussed about the static fields and methods of a class. We
invoked the static fields and methods of a class preceding each with the class name and a dot
(.). Static import a feature was introduced in Java 5. It enables programmers to use the imported
static members as if they were declared in the class itself. The name of the class and a dot (.)
are not required to use an imported static member. The following statement shows how to use
static import:
 import static pkgName.[subPkgName].ClassName.staticMemberName;

Interfaces, Packages, and Enumeration 167

 pkgName is the name of the package containing the class whose static members need to
be imported.

 subpkgName is the name of the subpackage to which the class belongs. The square brackets
indicate that it is optional.

 ClassName is the name of the class whose static members need to imported.
 staticMemberName is the name of the static field or method. But the above statement

would import only the mentioned static member of the class.
 If you want to import all the static members of the class, then use the following:
 import static pkgName.ClassName.*;

Note Static import imports only static members of the class. Normal import statements should be
used to import the classes used in a program.

 Example 6.6 demonstrates the use of static import.

Example 6.6 Usage of Static Import

 L1 import static java.lang.Math.*;
 L2 public class ExampleStaticImport {
 L3 public static void main(String args[]) {
 L4 System.out.println("power of 2 raise to 2 is: " +pow(2,2));
 L5 System.out.println("ceil(-10.2)is: " + ceil(-10.2));
 L6 System.out.println("fl oor(-10.2)is: " +fl oor(-10.2));
 L7 System.out.println("ceil(10.2)is: " + ceil(10.2));
 L8 System.out.println("fl oor(10.2)is: " +fl oor(10.2));
 L9 System.out.println("maximum of 23 and 24 is: " +max(23,24));
 L10 System.out.println("minimum of 23 and 24 is: " +min(23,24));
 L11 System.out.println("value of PI is: " +PI);
 L12 System.out.println("Value of E is: " +E);
 }}

Output
 C:\javabook>java ExampleStaticImport
 power of 2 raise to 2 is: 4.0
 ceil(-10.2)is: -10.0
 fl oor(-10.2)is : -11.0
 ceil(10.2)is: 11.0
 fl oor(10.2)is: 10.0
 maximum of 23 and 24 is: 24
 minimum of 23 and 24 is: 23
 value of PI is: 3.141592653589793
 Value of E is: 2.718281828459045

Explanation
L1 It is a static import declaration that imports all
static fields and methods of the class Math from the
package java.lang.
L4–12 Show a few static methods (pow, floor,
ceil, min, and max) and fields PI and E being accessed

without preceding the field name or method names
with the class name Math and a dot as we had used
import static at the top. If we use normal import
instead of static import, then each function and field
has to precede with the class name.

168 Programming in Java

6.2.3 Access Protection
Access protection defines how much an element (class, method, variable) is exposed to other
classes and packages. There are four types of access specifiers available in Java (shown in the
decreasing order of access).

public applied to variables, constructors, methods, and classes

protected applied to variables, constructors, methods, and inner classes (not top-level classes)

default applied to variables, constructors, methods, and classes
private can be applied to variables, constructor, methods and inner classes (not top-level classes)

public and private are easy to define. The former means accessibility for all and the latter means
accessibility from within the class only. The discussion settles down to two access specifiers:
protected and default. default (blank) access specifiers are accessible only from within the
package and protected access is beyond the package also but only to the subclasses outside the
package. Let us take an example to understand the access specifiers. Assuming
 x & y are packages
 A is a public class within package x
 B is another class within package x
 C is subclass of A in package x
 D is subclass of A within package y
 E is class within package y
 abc() is a method with default access in class A
 xyz() is a method with protected access specifier in class A
 pqr() is a method with public privileges in class A

Fig. 6.2 UML Representation of Package and Classes to Show Access Protection

Interfaces, Packages, and Enumeration 169

This method abc() is accessible from A, B, and C, but neither from D nor E. protected methods
are also accessible outside the package, but only to the subclasses outside the package. For
example, the method xyz() is accessible from classes A, B, C, D, but not from E. This is
pictorially shown in Fig. 6.2. The method pqr() is accessible from all the classes, as it is a public
method in a public class.

Note Access of any element, such as variable and method, is also governed by its container. For
example, suppose a default access level class has a public method. This method is available
to all the classes within the package, but not outside it, as the class in which the method has
been defined is not accessible outside the package.

6.3 java.lang PACKAGE

 java.lang is a special package, as it is imported by default in all the classes that we create.
There is no need to explicitly import the lang package. It contains the classes that form the
basic building blocks of Java.

Note Remember we have been using String and the System class from the first example in this
book, but we have not imported any package for using these classes, as both these classes
lie in the lang package. There are various classes in the lang package and it is not possible to
discuss all the classes, but we will discuss some of the very important ones.

6.3.1 java.lang.Object Class
Object class is the parent of all the classes (predefined and user-defined) in Java. For all the
classes that we have created so far or will be creating further, Object class is the parent by default
and there is no need to explicitly inherit the Object class. The methods of Object class can be
used by all the objects and arrays. The method toString() and equals() have been overridden
by many of the predefined classes already. We have already seen what happens when we try
to print an object. The toString() method is implicitly invoked when an object of any class
is printed. If class does not provide a toString() method, the toString() of the superclass is
invoked. If any of the class in the hierarchy does not provide implementation for the toString
method, the Object class method is called. If toString() method of the Object class is called,
classname@hexadeciaml representation of hash code of the object is printed. In case you
wish to provide your own definitions for the objects which should be returned once you try to
print your objects, then you must override the toString() method and return your own defined
strings for the objects (Table 6.3).

Table 6.3 Methods of the java.lang.Object Class

Method Description
Object clone() A copy of the object is created and returned
boolean equals(object o) Checks whether an object is equal to another or not. If both references

refer to the same object, they are equal, else not.
void finalize() Used by classes to dispose of their occupied resources

(Contd)

170 Programming in Java

Method Description
final Class getClass() Returns the class of the object
int hashCode() Return the hash code of the object
final void notify() Used by threads, to wake up a thread that is in waiting state
final void notifyAll() Used by threads, to wake up all the threads in waiting state
String toString() A string definition of the object is returned
final void wait() Puts the current thread in waiting state
final void wait(long time) Puts the current thread in waiting state for the specified time
final void wait(long time, int n) Puts the current thread in waiting state for the specified amount of real time

Example 6.7 toString() Method of Object Class
 L1 class Demo {
 L2 public String toString()
 {
 L3 return "My Demo Object created";
 }
 L4 public static void main(String args[])
 {
 L5 System.out.println(new Demo());
 }}

Output
 C:\javabook\chap 6>java Demo
 My Demo Object created

Explanation

(Table 6.3 Contd)

L2 toString() method of the Object class has
been overridden with the return type as String. This
method is basically used for returning a String that
identifies an object. This method is automatically
invoked when we try to print an object. It can also be

explicitly invoked with the help of an object.
L3 Returns a string "My Demo Object created".
L5 Within the print statement, an object of class Demo
is created and whenever an attempt to print an object
occurs, the toString() method is called automatically.

Note You may now rewrite the complex number program to add the toString() method to it instead
of display method of that class.

 6.3.2 Java Wrapper Classes
Java primitive types are not objects, i.e., we cannot term Java as a pure object-oriented language.
The language designers decided that the higher processing speed and memory efficiency of
simple, non-class structures for such heavily used data types simply overweighed the elegance
of a pure object-only language.
 For each primitive type, there is a corresponding wrapper class designed. As the name suggests,
the wrapper class is a wrapper around a primitive data type. These classes represent primitive
data types, e.g., a boolean data type can be represented as a Boolean class instance.

Interfaces, Packages, and Enumeration 171

 As we have said earlier, an instance of a wrapper contains or wraps a primitive value of the
corresponding type. Wrappers allow for situations where primitives cannot be used but their
corresponding objects are required. For example, a very useful tool is the ArrayList class (see
Chapter 10), which is a list that can grow or shrink, unlike an array. So if one wants to use an

ArrayList to hold a list of numbers, the numbers must
be wrapped in an integer instance. Mostly you will
use wrapper class methods to convert a numeric value
to a string or vice versa.
 Table 6.4 lists the primitive data types and their
corresponding wrapper classes.
 You can easily make out that except for integer;
the wrappers come with the same name as the
corresponding primitive type except that the first
letter is capitalized. Wrappers are normal classes that
extend the Object as a superclass like all Java classes.
 The wrapper constructors create class objects from
the primitive types. For example, for a double floating
point number “d”:

 double a = 4.3; Double wrp = new Double(a);

Here a Double wrapper object is created by passing the double value in the Double constructor
argument. In turn, each wrapper provides a method to return the primitive value.

 double r = wrp.doubleValue();

Each wrapper has a similar method to access the primitive value: intValue() for integer,
booleanValue() for boolean, and so on.
Features of Wrapper Classes Some of the sound features maintained by the wrapper classes
are as under:

  All the wrapper classes except Character and Float have two constructors—one that
takes the primitive value and another that takes the String representation of the value.
Character has one constructor and float has three.

  Just like strings, wrapper objects are also immutable, i.e., once a value is assigned it
cannot be changed.

Wrapper Classes: Constructors and Methods
The wrapper classes have a number of static methods for handling and manipulating primitive
data types and objects. The methods along with their usage are listed below:
Constructors Converting primitive types to wrapper objects.
 Integer ValueOfInt = new Integer(v) // primitive integer to integer object
 Float ValueOfFloat = new Float(x) // primitive float to float object
 Double ValueOfDouble = new Double(y) // primitive double to double object
 Long ValueOfLong = new Long(z) // primitive long to long object

Table 6.4 Wrapper for Primitive Types

Primitive Wrapper
boolean java.lang.Boolean

byte java.lang.Byte

char java.lang.Character

double java.lang.Double

fl oat java.lang.Float

int java.lang.Integer

long java.lang.Long

short java.lang.Short

void java.lang.Void

172 Programming in Java

Here v, x, y, and z are int, float, double, and long values, respectively. There is one more way
of converting a primitive value to a wrapper, the valueOf() method, which we will discuss later.

Ordinary Methods
Converting Wrapper Objects to Primitives All the numeric wrapper classes have six non-static
methods, which can be used to convert a numeric wrapper to their respective primitive numeric
type. These methods are byteValue(), doubleValue(), floatValue(), intValue(), longValue(),
and shortValue(). Some of them are used as follows:

 int v = ValueOfInt.intValue(); // Converting wrapper object to primitive integer
 float x = ValueOfFloat.floatValue(); // Converting wrapper object to primitive float
 long y = ValueOfLong.longValue(); // Converting wrapper object to primitive long
 double z = ValueOfDouble.doubleValue(); // Converting wrapper object to primitive double
Converting Primitives to String Object The method toString() is used to convert primitive
number data types to String, as shown below:

 String xyz = Integer.toString() // Converting primitive integer to String
 String xyz = Float.toString() // Converting primitive float to String
 String xyz = Double.toString() // Converting primitive double to String
 String xyz = Long.toString() // Converting primitive long to String

 Parser Methods
Converting Back from String Object to Primitives The six parser methods are parseInt,
parseDouble, parseFloat, parseLong, parseByte, and parseShort. They take a string as the
argument and convert it to the corresponding primitive. They throw a NumberFormatException
if the value of the String does not represent a proper number. Parser methods can be used as
shown below:
 int v = Integer.parseInt(xyz)
 // For converting String containing int values like “10” to primitive integer
 long y = Long.parseLong(xyz)
 // For converting String containing long values like “123456” to primitive integer

Converting Primitive Value Represented by String Object to Wrapper Object All wrapper
classes define a static method called valueOf(), which returns the wrapper object corresponding to
the primitive value represented by the string argument as shown below. valueOf() is overloaded:
one version accepts integer values and another accepts a String. String argument method generates
a NumberFormatException in case the value in a String does not contain a number.

 Double ValueOfDouble = Double.valueOf(xyz);

 // For converting String containing double values to wrapper objects

 Float ValueOfFloat = Float.valueOf(xyz);

 // For converting String containing float values to wrapper objects

 Integer ValueOfInteger = Integer.valueOf(xyz);

 // For converting String containing int values to wrapper objects

Interfaces, Packages, and Enumeration 173

 Long ValueOfLong = Long.valueOf(xyz);
 // For converting String containing long values to wrapper objects

 Double ValueOfDouble = Double.valueOf(xyz);
 // For converting primitive value double to wrapper objects

 Float ValueOfFloat = Float.valueOf(xyz);
 // For converting primitive values float to wrapper objects

 Integer ValueOfInteger = Integer.valueOf(xyz);
 // For converting int to wrapper objects

 Long ValueOfLong = Long.valueOf(xyz);
 // For converting long to wrapper objects
Binary and Hexadecimal Conversion The following method converts an integer to its binary/
hexadecimal equivalent and returns it as a String object.
 System.out.println(Integer.toBinaryString(8));
 System.out.println(Integer.toHexString(32));

The integer value 8 is converted to its binary equivalent using toBinaryString(), i.e., 1000, and
32 is converted to its hexadecimal equivalent, i.e. 20.

 Autoboxing and Unboxing of Wrappers
Java 5.0 introduced a new feature for converting back and forth between a wrapper and its cor-
responding primitive. The conversion from primitives to wrappers is known as boxing, while
the reverse is known as unboxing.
 In the previous section, we have already seen boxing and unboxing being enforced by the use
of a certain amount of clumsy code. Before J2SE 1.5, Java had primitive data types with wrappers
around them, so programmers had to convert from one type to another programmatically.

 public void manualConversion()
 {
 int a = 12;
 Integer b = Integer.valueOf(a);
 int c = b.intValue();
 }

 If you are dealing with a lot of instances of wrappers and conversions, you will need to deal
with a lot of method invocations. The to and fro conversion between primitives and wrappers
is simplified by the use of autoboxing and unboxing. Behind the scenes, the compiler creates
codes to implicitly create objects for you.

 public void autoBoxing()
 {
 int a = 12;
 Integer b = a; // wrapping
 int c = b;
 }

174 Programming in Java

 Here, the wrapping is done automatically. There is no need to explicitly call the integer
constructor. Autoboxing means a primitive value is automatically converted into the wrapper
object. The reverse process, i.e., automatic conversion back from wrapper object to primitive
value, is known as unboxing.
 To sum up the complete essence of autoboxing and unboxing, we take the following piece of code:

 Integer wrap_int = 5; //primitive 5 autoboxed into an Integer object
 int prim_int = wrap_int; //automatic unboxing of Integer into int

There is one thing that you must remember: boxing and unboxing too many values can put undue
pressure on the garbage collector.

6.3.3 String Class
Strings are basically immutable objects in Java. Immutable means once created, the strings
cannot be changed. In fact there is a class named String in the java.lang package for creating
strings. Whenever we create strings, it is this class that is instantiated. In Java, strings can be
instantiated in two ways:

 L1 String x = "String Literal Object";
 L2 String y = new String ("String object is created here");

L1 Shows a string literal being assigned to a string reference: x.
L2 Shows the creation of a string object with the help of new keyword and the string literal is
passed as an argument to the constructor. Does it mean that in L1, no object is created? Well
actually an object of class String is created in both the lines, the only difference is that in L1, it is
created implicitly and the memory is allocated from a memory pool which is created specifically
for string literals. In L2, the object is created explicitly using the new keyword, so the memory
required for the object is allocated out of the memory pool.
 Before creating objects for string literals (L1), JVM checks the memory pool for the existence
of string literals in the pool and if found, a reference to the existing String object is passed, else a
new string instance in the pool is created and it is returned. In other words, string objects in the
pool are shared and because it is a sharable thing, it is made immutable so that strings may not
become inconsistent and corrupt. The concept of memory pool for string literals was created to
save time (speed up working) and memory because strings are very often used by programmers.
Let us take an example to clearly understand the concept.

Example 6.8 String Creation and Test for Equality

 class StringTest
 {
 public static void main(String args[]){
 L1 String a = "Hello";
 L2 String b = "Hello";
 L3 String c = new String("Hello");
 L4 String d = new String("Hello");
 L5 String e = new String("Hello, how are you?");
 L6 if(a == b)

Interfaces, Packages, and Enumeration 175

 L7 System.out.println("object is same and is being shared by a & b");
 else
 L8 System.out.println("Different objects");
 L9 if(a == c)
 L10 System.out.println("object is same and is being shared by a & c");
 else
 L11 System.out.println("Different objects");
 L12 if(c == d)
 L13 System.out.println("same object");
 else
 L14 System.out.println("Different objects");
 L15 String f = e.intern();
 L16 if(f == a)
 L17 System.out.println("Interned object f refer to the already created object a
 in the pool");
 else
 L18 System.out.println("Interned object does not refer to the already created
 objects, as literal was not present in the pool. It is a new object which has
 been created in the pool");
 }}

Output

 C:\examples\chap 6>java StringTest
 object is same and is being shared by a & b
 Different objects
 Different objects
 Interned object does not refer to the already created objects, as literal was not present
 in the pool. It is a new object which has been created in the pool.

Explanation

Fig. 6.3 String Objects

L1 An implicit string object has been created for
a string literal Hello in the memory pool and the
reference to the newly created object in the pool is
return to a.
L2 As explained earlier, string literal is same as that
of L1, i.e., Hello. JVM does not create a new object
but passes the reference of the previously created
object (L1) to b, which means a and b now point to
the same object. See the following Fig. 6.3.
L3 Although the same string literal Hello is
being used, but the object created is not a part of the
memory pool, as the keyword new is used for object
creation. Whenever new is used to create an object,
it is allocated explicit memory and that memory is
apart from the memory pool of strings.

176 Programming in Java

L4 A new object is created which is different from
a, b, and c as well.
L5 A new string object is created with a different
literal this time "Hello, how are you?". This object
is also different from all the objects that we have
created till this point in our example.
L6 Equality operator (= =) is used in the if
statement to check whether both references a and
b are pointing to the same location or not. Equality
operator is not used for matching the contents of the
strings, i.e., literals. The two references that are being
matched are a and b and as both point to the same
location, L7 is executed. If a and b do not point to
the same location, L8 would be executed.
L7 Print statement to show that references point
to the same object.
L8 Print statement to show that references point
to different objects.

L15 As already discussed, Strings created with the
help of new are not allocated memory from the pool,
but are interned. The method java.lang.String.
intern() is used for this purpose. The intern()
method creates a string object in the pool with the
same String literal as that of the invoking String
object and returns a reference of the newly created
object in the pool. In this Line, f points to the newly
created object in the pool because the string literal
object Hello, how are you? does not exist in the
pool. The intern method is called from the string
object which needs to be interned, i.e., the previous
String object will be garbage collected as it is no
longer in use.
L16 Checks whether f and e point to the same
object in the pool or not. They actually point to
different locations and that is why L18 gets executed.

 String Manipulation
Strings in Java are immutable (read only) in nature. That is, once the Strings are defined, they
cannot be altered. Let us have a look at the following lines of code:

 L1 String x = "Hello"; // ok
 L2 String x = x +"World"; // ok, but how?

Java does not support operator overloading, but the ‘+’ operator is already overloaded to accept
different operands and it acts accordingly. If at least one of the operand is a string, it concatenates.
The question that arises is that if strings are immutable, then how L2 gets executed? Actually
L2 gets converted into the following statement:

 String x = new StringBuffer().append(x).append("World").toString();

 A new StringBuffer object is created which is used for the mutable set of characters. Mutable
characters can change their values. The append (add at the end) method of the StringBuffer
object is used to append the string Hello contained in x into the newly created StringBuffer
object. Again the append method is used to append the string World to existing Hello in the new
object. The method toString() converts StringBuffer object back to String and x points to this
newly created String object. No references exist for the existing object Hello; it will be garbage
collected.

 String Methods
The String class provides a lot of methods. Table 6.5 lists a few common methods of the String
class.

Interfaces, Packages, and Enumeration 177

Table 6.5 Few Methods of string Class

Method Name with Signature Method Details
int length() To find the length of the string.
boolean equals(String str) Used to check the equality of String objects. In contrast to == operator,

the check is performed character by character. If all the characters in
both the Strings are same, it returns true, else false.

int compareTo(String s) Used to find whether the invoking String (Fig. 6.2) is Greater than,
less than or equal to the String argument. It returns an integer value. If
the integer value is
(a) less than zero – invoking string is less than String argument
(b) greater than zero – invoking String is greater than String

argument
(c) equal to zero – invoking String and String argument are equal

boolean regionMatches (int
startingIndx, String str, int
strStartingIndx, int numChars)

Matches a specific region of the String with a specific region of the
invoking String. The argument details:
startingIndx—specifies the region from the invoking String to be
matched.
str—is the second string to be matched.
strStartingIndx—specifes the region from the string to be matched
with the invoking String.
numChars—specifies the number of characters to be matched in both
strings from their respective starting indexes.

int indexOf(char c) To find the index of a character in the invoking String object.
int indexOf(String s) Overloaded method to find the starting index of a String argument in

the invoking String object.
int lastIndexOf(char c) To find the last occurrence of a character in the invoking String.
int lastIndexOf(String s) Overloaded method to find the last occurrence of the String argument

in the invoking String object.
String substring(int s Index) To extract the String from the invoking String object starting with

Index till the End of the String.
String substring(int
startingIndex, int endingIndex)

Overloaded method to extract the String starting with starting Index
till the ending Index from the invoking String object string.

int charAt(int pos) To find the character at a particular position (pos).
String toUpperCase() To change the case of an entire string to capital letters.
String toLowerCase() To change the case of an entire string to small letters.
boolean startsWith(String ss) To find whether an invoking string starts with a string argument.
boolean endsWith(String es) To find whether an invoking string ends with a string argument.
Static String valueOf(int is) Converts primitive type int value to string.
Static String valueOf(float f) Overloaded static method to convert primitive type float value to string.
Static String valueOf(long l) Overloaded static method to convert primitive type long value to string.
Static String valueOf(double d) Overloaded static method to convert primitive type double value to string.

178 Programming in Java

Example 6.9 String Class Methods

 class StringDemo {
 public static void main(String args[]){
 // String Declaration
 String x = "This is a Demo String";
 String y = "This is a Demo String 2";

 // int declaration
 int i = 20;
 // fi nding the length of String
 L1 System.out.println("Length of String = " +x.length());
 /* equals method of Object class has been overridden by the String class for per-

forming different function i.e., equating two string objects by matching strings
character by character */

 L2 System.out.println("x and y are equal = " +(x.equals(y)));
 // comparison of Strings
 L3 if((x.compareTo(y)) < 0)
 L4 System.out.println("x is less than y");
 L5 else if((x.compareTo(y)) > 0)
 L6 System.out.println("x is greater than y");
 L7 else
 L8 System.out.println("x is equal to y");
 // Region Matching within Strings
 L9 System.out.println("x region matches with y : " + ((x.regionMatches(0,y,0,11)));
 // fi nding index of Characters
 L10 System.out.println("index of \" i\" in String x is: " +x.indexOf("i"));
 // fi nding index of particular String
 L11 System.out.println("index of \"is\" in String x is: " +x.indexOf("is"));

 // fi nding the last occurrence of a particular character
 L12 System.out.println("Last index of \"i\" in String x is: " +x.lastIndexOf("i"));
 // fi nding the last occurrence of a particular character
 L13 System.out.println("Last index of \"is\" in String x is: " +x.lastIndexOf("is"));
 // sub string
 L14 System.out.println("Substring of String x from character 4 is: " +x.substring(4));
 L15 System.out.println("Substring of String x from character 4 to 15 is:
 " +x.substring(4,15));

 // fi nding character at particular position
 L16 System.out.println("character at position 6 is:" +x.charAt(6));

 // upper case and lower case
 L17 System.out.println("UpperCase: " +x.toUpperCase());
 L18 System.out.println("LowerCase: " +x.toLowerCase());

 // fi nding whether strings start and end with a particular string
 L19 System.out.println("x starts with \"Th\":" +x.startsWith("Th"));

Interfaces, Packages, and Enumeration 179

 L20 System.out.println("x ends with \" Th\": " +x.endsWith("Th"));
 L21 System.out.println("Converts int to String: " +String.valueOf(i));
 }}

Output
 C:\javabook\ chap 6>java StringDemo
 Length of String = 21
 x and y are equal = false
 x is less than y
 x region matches with y : true
 index of "i" in String x is: 2
 index of "is" in String x is: 2
 Last index of "i" in String x is: 18
 Last index of "is" in String x is: 5
 Substring of String x from character 4 is: is a Demo String
 Substring of String x from character 4 to 15 is: is a Demo
 character at position 6 is: s
 UpperCase: THIS IS A DEMO STRING
 LowerCase: this is a demo string
 x starts with "Th" : true
 x ends with "Th" : false
 converts int to String: 20

Explanation
As discussed earlier, all instance methods of the
String class are invoked with the help of String
objects and class methods through the String class

name. Table 6.4 describes these functions in brief.
Figure 6.4 pictorially depicts how are the methods
of String class invoked.

Invoking
object

String argument
object

Instance
method

<x.equals(y)>

Fig. 6.4 Invoking the Methods of String Class

6.3.4 StringBuffer Class
The StringBuffer class is used for representing changing strings. As already discussed,
StringBuffer offers more performance enhancement whenever we change strings, because it
is this class that is used behind the curtain. So it is advisable to use StringBuffer rather than
String in such a situation. If String class is used, it would result in wastage of memory and time,
as temporary string objects would be needed while changing strings. StringBuffer contains a
sequence of characters which can be altered through the methods of this class. Just like any other
buffer, StringBuffer also has a capacity and if the capacity is exceeded, then it is automatically
made larger. The initial capacity of StringBuffer can be known by using a method capacity().
A few common methods of the StringBuffer class are shown in Table 6.6.

180 Programming in Java

Table 6.6 Methods of StringBuffer Class

Method name with signature Method details
int capacity() Returns the current capacity of the storage available for

characters in the buffer. When the capacity is approached,
the capacity is automatically increased.

StringBuffer append(String str) Appends String argument to the buffer
StringBuffer replace
(int sindx,int eIndx,String str)

The characters from start to end are removed and the string
is inserted at that position

StringBuffer reverse() Reverses the buffer character by character
Char charAt(int index) Returns the character at the specified index
Void setCharAt(int indx,char c) Sets the specified character at the specified index

 Example 6.9 shows how the StringBuffer class is used in a program.

Example 6.10 StringBuffer Object
 class StringBufferDemo {
 public static void main(String args[]){
 L1 StringBuffer sb = new StringBuffer();
 L2 System.out.println("Initial Capacity : " +sb.capacity());
 L3 System.out.println("String appended : " +sb.append ("Dogs bark at night"));
 L4 System.out.println("String replaced: " +sb.replace (10,12,"during"));
 L5 System.out.println("String reversed : " +sb.reverse());
 L6 System.out.println("Current Capacity : " +sb.capacity());
 L7 System.out.println("character at position 3 is: " + sb.charAt(3));
 L8 sb.setCharAt(3,‘a’);
 L9 System.out.println("sb after setting \"a\" at 3: " +sb);
 }}

Output
 C:\javabook>java StringBufferDemo
 Initial Capacity : 16
 String appended : Dogs bark at night
 String replaced : Dogs bark during night
 String reversed : thgin gnirud krab sgoD
 Current Capacity : 34
 character at position 3 is: i
 sb after setting "a" at 3: thgan gnirud krab sgoD

Explanation

 The description of the methods used in the program is available in Table 6.6.

6.3.5 StringBuilder Class
Java 5 introduced a substitute of StringBuffer: the StringBuilder class. This class is faster
than StringBuffer, as it is not synchronized. The methods of both the classes are same with
the exception that the methods (append(), insert(), delete(), deleteCharAt(), replace(), and

Interfaces, Packages, and Enumeration 181

reverse()) return StringBuilder objects rather than StringBuffer objects. The line below shows
the creation of a StringBuilder object.
 StringBuilder s=new StringBuilder();
 /* construct a StringBuilder object with an initial capacity of 16 characters.
 Similar to that of StringBuffer.*/

6.3.6 Splitting Strings
StringTokenizer is a utility class provided by the java.util package. Now a legacy code, this
class used to be of utmost importance when we want to divide the entire string into parts (tokens)
on the basis of delimiters. The delimiters can be any of the whitespace, tab space, semicolon,
comma, etc. J2SE 1.4 added split() method to the string class for simplifying the task of splitting
a string and also added Pattern and Matcher classes in the java.util.regex package. We will
discuss the split() method and Pattern in our next example and also the StringTokenizer
class for backward compatibility.

Example 6.11 Splitting Strings
 L1 import java.util.*;
 L2 import java.util.regex.*;
 L3 class StringTokenizerDemo {
 L4 public static void main(String args[]) {
 L5 int i = 1;
 L6 String str = "Never look down on anybody unless you're helping him up";
 System.out.println("Splitting String Using StringTokenizer class");
 L7 StringTokenizer tr = new StringTokenizer(str, " ");
 L8 while(tr.hasMoreTokens()) {
 L9 System.out.print(" Token " +i+ " : ");
 L10 System.out.println(tr.nextToken());
 L11 ++i;
 }
 // Another way of splitting String

 L12 System.out.println("Splitting String Using split() method");
 L13 String[] tk = str.split(" ");
 L14 for(String tokens: tk)
 L15 System.out.println(tokens);
 // Using Pattern class
 System.out.println(" Splitting String Using Pattern class");
 L16 Pattern p = Pattern.compile(" ");
 L17 tk= p.split(str,3);
 L18 for(String tokens: tk)
 L19 System.out.println(tokens);
 }}

Output
 C:\javabook>java StringTokenizerDemo
 Splitting String Using StringTokenizer class
 Token 1 :Never
 Token 2 :look
 Token 3 :down

182 Programming in Java

 Token 4 :on
 Token 5 :anybody
 Token 6 :unless
 Token 7 :you’re
 Token 8 :helping
 Token 9 :him
 Token 10 :up
 Splitting String Using split() method
 Never
 look
 down
 on
 anybody
 unless
 you’re
 helping
 him
 up
 Splitting String Using Pattern class
 Never
 look
 down on anybody unless you’re helping him up

Explanation
L1 Importing the package java.util.* is
mandatory because StringTokenizer is a part of
this package.
L2 Importing the subpackage java.util.regex.*
is mandatory because the class Pattern is a part of
this subpackage regex. An important point to note
here is that importing any package does not mean
that the sub-packages are also implicitly imported.
The sub-packages need to be imported explicitly.
L5 Integer i declared and initialized to 1.
L6 String to be split has been declared, str.
L7 An object of StringTokenizer class is created.
The constructor accepts two arguments: (a) str and
(b) the delimiter, i.e., whitespace in our example. The
string str is cut into tokens wherever the specified
delimiter, i.e., the white space is encountered and the
tokens are stored in the StringTokenizer object tr.
This tr object is iterated for retrieving the tokens
one by one.
L8 The condition in the while loop checks whether
the StringTokenizer object has more tokens or not
with the help of hasMoreTokens(). which returns
a boolean value to indicate whether tr has more
tokens or not.
L9 Statement to print “Token” followed by the
value of i, i.e., Token 1 (for the first iteration, see

the output).
L10 This statement prints the first Token. In the
first iteration, the method nextToken() points to
the first token which is printed on the screen and the
cursor moves to the new line afterwards.
L11 The value of i is incremented. In the next
iteration, the value of i will be 2, and so on.
L12–15 Show another way of splitting the string
using the split()method.
L13 split() method of the String class is used
for splitting the string, str. It accepts one arguments,
i.e., regex.
 The regular expression, regex, can be a character, a
group of characters, or a word which is to be searched
in a string. Here we want to split the string on the
basis of regex which is a whitespace. So wherever
a whitespace is encountered in the str, it is split and
stored in the String array tk as the next array item.
L14–15 In each iteration, the String tokens are
assigned successively a value from ‘tk’ and printed.
L16–19 Show another way of splitting the string
using the Pattern class.
L16 Shows how the Pattern class of the regex
sub-package is used for splitting a string. The Pattern
class provides a static method named compile()
to compile the regular expression to a pattern. The

Interfaces, Packages, and Enumeration 183

regular expression is passed as an argument to the
method, i.e., a whitespace in our example. This
pattern will be searched in the string.
L17 Another method of the Pattern class: split()
is used to split the string. This method takes two
arguments:

(a) str– String to be split.
(b) limit– Sets the number of times the pattern will
be searched in the str. If the limit is n, the pattern
will be searched n–1 times. In our example, the limit
is 3, so the pattern, i.e., whitespaces will be searched
twice and the string will be stored in an array.

6.4 Enum TYPE

An enumerated type (enum type) is a kind of class definition, wherein we define the type along
with the possible set of enum values which are listed in the curly braces, separated by commas.
All enum types are the subclasses of the java.lang.Enum class. Each value in an enum is an
identifier. For example, the following statement declares a type, named Games, with the values
CRICKET, FOOTBALL, TENNIS, and BASKETBALL. Remember, here we are talking about an ordered
list. By convention, all names must be in upper case. An enumeration is like a class, so the
naming convention of classes also applies to enumerations. Moreover, values are constants, so
they should be named as regular constants.
 enum Games { CRICKET, FOOTBALL, TENNIS, BASKETBALL };

Once a type is defined, you can declare a variable of that type:
 Games G;

The variable G can hold one of the values defined in the enumerated type Games or null, but
nothing else. An attempt to assign a value other than the enumerated values mentioned in the
enumeration or null will result in a compilation error. The enumerated values can be accessed
using the following syntax:

 enumeratedTypeName.valueName

For example, the following statement assigns the enumerated value TENNIS to the variable G:

 G = Games.TENNIS;

An enumerated type is treated as a special class. An enumerated type variable is similar to a
reference variable. Like all other classes in Java, an enumerated type is a grandchild of the Object
class. In addition to this, it inherits Comparable interfaces. It is an implicit final subclass of the
Enum class in the java.lang package. All the methods of the Object class and the compareTo()
method of the Comparable interface can be used by an enumeration. Additionally, you can use
the following methods on an enumerated object:

  public String name();
It returns the name of the value for the object.

  public int ordinal();
It returns the ordinal value associated with the enumerated value. The first value has an ordinal
value of 0, the second has an ordinal value of 1, and so on. Example 6.11 demonstrates the use
of enumerated types. Example 6.12 shows an alternative way of using enumerated types.

184 Programming in Java

Example 6.12 Use of Enumerated Type
 L1 public class EnumDemo {
 L2 static enum Games {CRICKET, FOOTBALL, CHESS, BASKETBALL, TENNIS, BADMINTON};
 L3 public static void main (String[] args) {
 L4 Games G1 = Games.CHESS;
 L5 Games G2 = Games.TENNIS;
 L6 System.out.println("First game is " +G1.name());
 L7 System.out.println("Second game is " +G2.name());
 L8 System.out.println("First game's ordinal is " +G1.ordinal());
 L9 System.out.println("Second game's ordinal is " +G2.ordinal());
 L10 System.out.println("G1.equals(G2) returns " +G1.equals(G2));
 L11 System.out.println("G1.toString() returns " +G1.toString());
 L12 System.out.println("G1.compareTo(G2) returns " +G1.compareTo(G2));
 }}

Output
 First game is CHESS
 Second game is TENNIS
 First game's ordinal is 2
 second game's ordinal is 4
 G1.equals(G2) returns false
 G1.toString() returns Chess
 G1.compareTo(G2) returns -2

Explanation
L2 An enumerated type is defined, having the
ordered list of games.
L4 and 5 Variables G1 and G2 are declared as the
Games type and assigned enumerated values.
L8 Since G1’s value is Chess, its ordinal value is 2.
L9 Since G2’s value is Tennis, its ordinal value is 4.
L10–12 An enumerated type is a subclass of the
Object class and the Comparable interface, so you
can invoke the methods equals, toString, and

compareTo from an enumerated object reference
variable. G1.equals(G2)returns true if G1 and G2
have the same ordinal value. G1.compareTo(G2)
returns the difference between G1’s ordinal value
to G2’s. The enum type has a toString() method
defined that returns the string values. So it is easy
to print these values without any special conversion
effort. For example, System.out.println(G1)will
print CHESS.

Example 6.13 Alternative Way of Using Enumerated Type
 L1 public class EnumExample{
 L2 public static void main(String[] args){
 L3 Games G1 = Games.Chess;
 L4 Games G2 = Games.Tennis;
 L5 System.out.println("G1's name is " + G1.name());
 L6 System.out.println("G2's name is " + G2.name());
 L7 System.out.println("G1's ordinal is " + G1.ordinal());
 L8 System.out.println("G2's ordinal is " + G2.ordinal());
 L9 System.out.println(" G1.equals(G2) returns " +G1.equals(G2));
 L10 System.out.println (" G1.toString() returns " +G1.toString());
 L11 System.out.println (" G1.compareTo(G2) returns " +G1.compareTo(G2));
 L12 }}
 L13 enum Games {Cricket, Football, Chess, Basketball, Tennis, Badminton};

Interfaces, Packages, and Enumeration 185

Output
 C:\javabook\PROGRA~1>java EnumExample
 G1's name is Chess
 G2's name is Tennis
 G1's ordinal is 2
 G2"s ordinal is 4
 G1.equals(G2) returns false
 G1.toString() returns Chess
 G1.compareTo(G2) returns -2

 An enumerated type defined inside a class behaves as an inner class, as shown in the L2 of
Example 6.11, or standalone as shown in the L13 of Example 6.12. When an enumerated type
is declared inside a class, it is a member of the class and cannot be declared inside a method.
The enumerated type is always static. So, the static keyword in L2 of Example 6.11 may be
omitted. After Example 6.11 is compiled, a class named EnumDemo$Games.class is created. After
Example 6.12 is compiled, a class named Games.class is created.

6.4.1 Using Conditional Statements with an Enumerated Variable
An enumerated type holds a set of values. If you need to perform a specific action depending on
the value, then you can use if or switch-case for the same. For example, if the value is Games.
CRICKET, book ticket; if the value is Games.FOOTBALL, bunk the class; and so on. You can use an
if statement or a switch statement to test the value in the variable, as shown below.
If statement
 if (G1.equals(Games.CRICKET)) {
 // action to be performed}
 } else if (G1.equals(Games.FOOTBALL)) {
 // action to be performed}
 else

Switch statement
 switch (Games){
 case CRICKET: // case CRICKET and not Games.CRICKET
 // action to be performed;

 case FOOTBALL:
 // action to be performed;
 ...
 }

6.4.2 Using for Loop for Accessing Values
Each enumerated type has a static method values() associated with them that returns all
enumerated values for the type in an array. For example,
 Games[] G = Games.values();

 You can use a for loop to process all the values in the array.

 for (int i = 0; i < G.length; i++)
 System.out.println(G[i]);

186 Programming in Java

6.4.3 Attributes and Methods within Enumeration
You can also define an enumerated type with attributes and methods similar to a class, as shown
in Example 6.13(a). Example 6.14(b) shows a test program to use the enumerated type created
in Example 6.14(a).

Example 6.14 (a) Defining an Enumerated Type with Attributes and Methods

 L1 public enum Desc {
 L2 CRICKET ("Sachin Tendulkar"), CHESS("Vishwanathan Anand"), TENNIS ("Sania Mirza");
 L3 private String description;
 // Constructor
 L4 private Desc(String description){
 L5 this.description = description;
 L6 }
 L7 public String getDesc(){
 L8 System.out.print("Indian Delight: ");
 L9 return description;
 L10 }}

Explanation
L1 An enumeration named Desc is declared.
L2 The enumerated values are listed with their
description (mentioned in double quotes). This
declaration must be the first statement in the class,
otherwise a compile-time errors results.
L3 A datafield named description is declared to
denote an enumerated description.

L4–6 The constructor Desc is declared. This
constructor is invoked whenever an enumerated value
is accessed. The value (description) is passed to the
constructor, which is then assigned to description.
L7–9 getDesc() has been declared with the return
type String to return the description.

Example 6.14 (b) Enumerated Type with Attributes and Methods
 L1 public class UseDesc{
 L2 public static void main(String[] args)
 {
 L3 Desc player = Desc.TENNIS;
 L4 System.out.println(player.getDesc());
 L5 }
 L6 }

Output
 C:\javabook\PROGRA~1>java UseDesc
 Indian Delight: Sania Mirza

Explanation
L3 An enumerated value Desc.TENNIS is assigned
to the variable player (L3). Accessing Desc.TENNIS
causes the JVM to invoke the constructor with the
argument SaniaMirza.

L4 The methods in enumerated type are invoked
in the same way as the methods in a class. player.
getDesc() returns the description for the enumerated
value.

Interfaces, Packages, and Enumeration 187

Note The constructor for an enumerated type should be private to prevent it from being invoked
directly.

6.5 PRACTICAL PROBLEM: BANKING EXAMPLE

We will be creating a banking example to revise the concepts learned so far. Banks contain
customers who hold accounts within the bank. An account can be of two types—Saving Account
or Current Account. Customers can perform deposit or withdrawal operation on their respective
accounts. Banks provide interest to the saving account holders which it can change any time.
Banks provide a upper limit to the current account holders. In case the balance in their account is
less than what needs to be withdrawn, banks provide the shortfall amount to the customers upto
the credit limit but on a returnable basis. So whenever the current account holder deposits the
amount in the bank, the bank first reclaims its money and then its left over amount is added to
the balance. (We have assumed that banks are not charging any interest on the amount provided
by the bank to the current account holder. Normally banks would charge an interest on that. You
can take that part as an exercise.)
 A customer will have a name, an id, and will be holding an account (either saving or current).
Every account will have an id and balance. Saving accounts will have an interest rate apart from
id and balance. Current accounts will have an overdraft limit apart from id and balance.
 So we have created five classes: Customer class, Account class with its two subclasses
(SavingAccount and CurrentAccount) and a Bank class to hold Customers. All these classes have
been packaged into an package named banking. Let us see all these classes. Let us first see the
Account class.

Example 6.15 (a) Account.java
/*package declaration. The class belongs to the banking package*/
package banking;
/*abstract class declared with default previliges. it can only be accessed from
within the package. This class has two abstract methods:
debit and credit. The subclasses will have to override the abstract methods.*/
abstract class Account
{
 /*balance within the account*/
 float balance;

 /*Account No*/
 private String accountNo;

 /*constructor to initialize balance and account no*/
 Account(float b, String acc)
 {
 balance = b;
 accountNo = acc;
 }
 /*getter method to access balance*/
 float getBalance()
 {
 return balance;

188 Programming in Java

 }

 /*setter method to modify balance*/
 void setBalance(float b)
 {
 balance = b;
 }

 /*The methods are declared abstract so that the subclasses can code them according
 to their respective needs keeping their names in tact*/

 abstract void debit(float amount);
 abstract void credit(float amount);

 /*getter method to access account no*/
 String getAccountNo()
 {
 return accountNo;
 }

 /*setter method to modify balance*/
 void setAccountNo(String acc)
 {
 accountNo = acc;
 }
 /* Print Account No and balance details*/
 void display()
 {
 System.out.println("Account Number: "+accountNo);
 System.out.println("Account balance: "+balance);
 }
}

 Now let us create its subclasses—SavingAccount and CurrentAccount.

Example 6.15 (b) SavingAccount.java
/*This class is also part of the same package and hence the package
declaration */

package banking;

/*SavingAccount is a type of Account. So this class inherits the Account class*/

class SavingAccount extends Account
{
/* Interest rate is common for all Saving Accounts. So this field is
declared as static.*/
static float interest = 4;

/* Constructor declared to initailize both the account number and
balance by calling the Account (super class) constructor using super
keyword */

SavingAccount(float b, String acno)

Interfaces, Packages, and Enumeration 189

 {
 super(b,acno);
 }
/*explicit default constructor*/
 SavingAccount()
 {
 super(0,"");
 }

/* Static method is created to change the interest rate. If the bank
wishes to change the interest rate, it can do so without creating an
instance of SavingAccount class*/

 static void setInterest(float i)
 {
 interest = i;
 }

/*display method to print account no, balance and interest rate. The super class
display method already prints the account no and balance so it is invoked using the
super keyword.*/

 public void display()
 {
 super.display();
 System.out.println("Interest rate: "+interest);
 }

/*Account is credit with amount. The balance increases by the amount
passed in this method*/

 public void credit(float amount)
 {
 System.out.println("Amount to be credited: "+amount);
 System.out.println("Old balance: "+balance);
 balance = balance+amount;
 System.out.println("New balance: "+balance);
 }

/*Account is debited with amount.*/
 public void debit(float amount)
 {
 System.out.println("Amount to be debited: "+amount);
 System.out.println("Old balance: "+balance);

/*if the amount to be withdrawn is less than the balance, it is de-
creased by the amount otherwise the request is denied*/

 if(amount < balance)
 {
 balance = balance-amount;
 System.out.println("New balance: "+balance);
 }
 else
 System.out.println("Request Denied");
 }

190 Programming in Java

/*SavingAccount earn interest on the balance.This method when invoked
will calculate the interest on the balance and add it to the balance*/

 public void creditInterest()
 {
 float temp = balance*interest/100;
 System.out.println("Interest paid: "+temp);
 balance = balance+temp;
 System.out.println("New Balance: "+balance);
 }

/*toString method has been overridden to return a String representa-
tion of the SavingAccount object */

 public String toString()
 {
return "Saving Account No: "+getAccountNo()+ " Balance : "+balance;
 }
}

Example 6.15 (c) CurrentAccount.java
/*This class is also part of the same package and hence the package declaration states
the package as banking */

package banking;
class CurrentAccount extends Account

{
/* borrowed amount, cannot be greater than the limit */

 fl oat overdraftborrowed;
/* Maximum credit limit */

 fl oat overdraftlimit;
/*Constructor to initialize the current account. every current account holder
will have a different overdraft limit. so while creating current account object
we have to pass the limit as well*/

 CurrentAccount(fl oat b,String acno, fl oat od)
 {
 super(b,acno);
 overdraftlimit = od;
 }

/*limits may change over time so an option is provided to change the limit*/
 void setOverdraft(fl oat o)
 {
 overdraftlimit = o;
 }

/*credit method is used to deposit the amount in the current account. if the
customer has borrowed some amount from the bank, then fi rst the borrowed
amount is returned to the bank and the rest is added to the balance. */

 public void credit(fl oat amount)
 {
 System.out.println("Amount to be credited: "+amount);
 System.out.println("Old Balance: "+balance);

System.out.println("Overdraft Borrowed: " + overdraftborrowed);
 /*checks whether amount to be deposited is greater than overdraftborrowed,
 deducts it by overdraftborrowed thus making the overdraftbor-

Interfaces, Packages, and Enumeration 191

 rowed nil and add the rest amount in balance. otherwise the overdraft-
 borrowed is reduced by the amount making no changes to the balance */
 if(amount > overdraftborrowed)
 {
 amount = amount – overdraftborrowed;
 overdraftborrowed = 0;
 balance = balance + amount;
 }
 else if(amount<overdraftborrowed)
 {
 overdraftborrowed = overdraftborrowed-amount;
 }

System.out.println("New Overdraft Borrowed: " + overdraftborrowed);
 System.out.println("New Balance: "+balance);
 }

/* deducts the amount from the balance. If amount to be deducted is less than
balance; the amount is deducted from balance. But, if amount is greater than
balance but less than the limit, then the shortfall will be fulfi lled by the
bank by setting the overdraftborrowed for the customer. Hence overdraftbor-
rowed is set to shortfall (amount-balance) and balance will be nil. If amount
is greater than balance as well as the ODlimit then the
request is denied */

 public void debit(fl oat amount)
 {
 System.out.println("Amount to be debited: "+amount);
 System.out.println("Old Balance: "+balance);
 if(amount <= balance)
 balance = balance – amount;
 else if((amount > balance) && (amount < (balance + overdraftlimit)))
 {
 overdraftborrowed = amount – balance;
 balance = 0;

System.out.println("Overdraft Borrowed: " + overdraftborrowed);

 }
 else
 System.out.println("Request Denied");
 System.out.println("New Balance: "+balance);

System.out.println("Overdraft Borrowed: "+overdraftborrowed);
 }
 public void display()
 {
 super.display();
 System.out.println("Overdraft limit: "+overdraftlimit);

 }
 public String toString()
 {

return "Current Account No: "+getAccountNo()+ " Balance :"+balance+"
Overdraft limit: "+overdraftlimit;

 }
 }
 Now let us create a Customer class that will own any one of these accounts.

192 Programming in Java

Example 6.15 (d) Customer.java
package banking;
class Customer
{
 // customer name
 String custName;

 // customer id
 String custId;

/* every customer of the bank is assigned an Account which is its private attribute.
So an instance variable of type Account is defined here. A customer can either have
a saving account or a current account. That is why we have added an attribute of
type Account in this class and not SavingAccount or CurrentAccount. Account refer-
ence variable can refer to objects of both its subclasses: SavingAccount and Curren-
tAccount. So whatever account the customer wishes to open, its object can be saved
into this instance variable of type Account */

 private Account account;

 /*constructor to initialize the customer attributes*/
 Customer(String custName,String custId, Account account)
 {
 this.custName = custName;
 this.custId = custId;
 this.account = account;
 }

/* deposit method declared to add amount to the balance. Here we have to call the
appropriate method according to the type of the account. So first e check what is
the type of account held by the customer using the instanceof keyword and based on
that we call the credit method of the respective classes.*/

 public void deposit(float amt)
 {
 if(account instanceof SavingAccount)

/* credit method belongs to the SavingAccount class or the CurrentAccount class and
not the Account class. So if the method is invoked as account.credit(amt), the com-
piler will not compile the program. The reason is that the compiler looks for credit
method in the Account class (as the type of account reference variable is Account)
which is not there. The account variable is casted into SavingAccount or CurrentAc-
count and then the credit method is invoked. The cast is possible as the classes are
subclasses of the Account class. The account refernce variable will actually hold
objects of either SavingAccount or CurrentAccount class*/
 ((SavingAccount)account).credit(amt);

 else if(account instanceof CurrentAccount)

 ((CurrentAccount)account).credit(amt);
 }

/*Only Saving Account to be credited with interest on balances*/

 void depositInterest()

Interfaces, Packages, and Enumeration 193

 {

 System.out.println("Depositing Interest in : "+custId);

 if(account instanceof SavingAccount)
 ((SavingAccount)account).creditInterest();
 }

/* withdrawal method declared to deduct amount from the balance. Here we have to
call the appropriate method according to the type of the account. So first we check
what is the type of account held by the customer using the instanceof keyword and
based on that we call the debit method of the respective classes.*/

 public void withdrawl(float amt)
 {
 if(account instanceof SavingAccount)
 ((SavingAccount)account).debit(amt);
 else if(account instanceof CurrentAccount)
 ((CurrentAccount)account).debit(amt);
 }
 /*display the customer details along with the account held by the customer*/

 public void display()
 {
 System.out.println("Customer Name: "+custName);
 System.out.println("Customer Id: "+custId);
 account.display();
 System.out.println(account);
 }
}

 Let us now create a Bank class to test all the classes that we have created. First of all we will
create a Bank class in which we will be creating Customers. These customers will be holding
accounts on which we will be performing deposit, withdrawal, and display operations.

Example 6.15 (e) Bank.java
/*This class is also part of banking package */

package banking;

/*class declared with default privileges so it can only be used within
the package*/
public class Bank
{
 /* customers are part of the bank and their details should not accessible to oth-

ers. So Customer array is declared to be private. We have considered only three
customers. Each element of the Customer array will hold an object of type Custom-
er. */

 private Customer c[]=new Customer[3];

 /* constructor for the Bank class is declared */
 public Bank()

194 Programming in Java

 {
 /* Customer objects created and put in the individual array elements.
 Constructor of the Customer class accepts three arguments: Customer name, Customer

id and an object of type Account.*/

 c[0]=new Customer("Rahul","C001",new SavingAccount(12000,"A001"));
 c[1]=new Customer("Ram","C002",new SavingAccount(12000,"A002"));
 c[2]=new Customer("Shyam","C003",new CurrentAccount (12000, "A003", 10000));
 }

/* Banks can change its interest rate for all Saving Account holders by invoking
this method*/

void changeInterestRate(float i)
{
/*SavingAccout class contains the attribute for interest rate. A setter method is
created for setting the interest rate. This interest rate is applicable for all sav-
ing bank account holders. The static method ‘setInterest" of the SavingAccount class
is used to change the interest rate.*/

SavingAccount.setInterest(i);
 }

 /*main method declaration*/
 public static void main(String[] args)
 {
 /*An object of Bank class is created which invokes the constructor of the Bank
 class. */
 Bank b = new Bank();

 /*Banks change its interest rate*/
 b.changeInterestRate(6);

 /*Invokes its demo method- which deposits and makes withdrawals from the cus-

tomer accounts*/
 b.demo();

 /* bank deposits interest into its customer accounts*/
 b.c[0].depositInterest();

 /* bank deposits interest into another customer accounts*/
 b.c[1].depositInterest();
 }

 public void demo()
 {
 /*display method of the Customer object is called*/
 c[0].display();

 /*customer deposits 1000 Rupees into his account*/
 c[0].deposit(1000);

 /*customer withdraws 500 Rupees into his account*/
 c[0].withdrawl(15000);

 /*display method of the another Customer object is called*/

Interfaces, Packages, and Enumeration 195

 c[1].display();

 /*customer deposits 2000 Rupees into his account*/
 c[1].deposit(2000);

 /*customer withdraws 8000 Rupees into his account*/
 c[1].withdrawl(8000);

 /*display method of the Customer object is called*/
 c[2].display();

 /*Customer deposits 1000 rupees into his account*/
 c[2].deposit(1000);

 /*Customer withdraws 15000 rupees into his account*/
 c[2].withdrawl(5000);

 /*Customer again deposits 3000 rupees into his account*/
 c[2].deposit(3000);
 }
}

Compilation
During compilation of these programs, make sure the classpath is set or you can use the
-cp option of javac as well,for e.g. if the banking package is part of d:\javabook\
chap 6, then you can invoke the compilation as

 javac -cp d:\javabook\chap 6 savingAccount.java

Output

To run the example you have to set the classpath with the path up to the directory that contains
the banking package. For example, if banking package (directory) is within “chap 6” then the
command to edit the classpath would be
 set classpath = %classpath%;d:\javabook\chap 6;

 D:\javabook\chap 6>java banking.Bank
 Customer Name: Rahul
 Customer Id: C001
 Account Number: A001
 Account balance: 12000.0
 Interest rate: 6.0
 Saving Account No: A001 Balance : 12000.0
 Amount to be credited: 1000.0
 Old balance: 12000.0
 New balance: 13000.0
 Amount to be debited: 15000.0
 Old balance: 13000.0
 Request Denied
 Customer Name: Ram
 Customer Id: C002
 Account Number: A002
 Account balance: 12000.0
 Interest rate: 6.0
 Saving Account No: A002 Balance : 12000.0

196 Programming in Java

 Amount to be credited: 2000.0
 Old balance: 12000.0
 New balance: 14000.0
 Amount to be debited: 8000.0
 Old balance: 14000.0
 New balance: 6000.0
 Customer Name: Shyam
 Customer Id: C003
 Account Number: A003
 Account balance: 12000.0
 Overdraft limit: 10000.0
 Current Account No: A003 Balance :12000.0 Overdraft limit: 10000.0
 Amount to be credited: 1000.0
 Old Balance: 12000.0
 Overdraft Borrowed: 0.0
 New Overdraft Borrowed: 0.0
 New Balance: 13000.0
 Amount to be debited: 5000.0
 Old Balance: 13000.0
 New Balance: 8000.0
 Overdraft Borrowed: 0.0
 Amount to be credited: 3000.0
 Old Balance: 8000.0
 Overdraft Borrowed: 0.0
 New Overdraft Borrowed: 0.0
 New Balance: 11000.0
 Depositing Interest in : C001
 Interest paid: 780.0
 New Balance: 13780.0
 Depositing Interest in : C002
 Interest paid: 360.0
 New Balance: 6360.0

SUMMARY
Java does not support multiple inheritance among
classes. The only exception to this is interfaces.
Multiple inheritance can be done using interfaces.
A class can inherit any number of interfaces. The
only fact mandatory for a class to follow is that it has
to override and provide implementation for all the
methods of all the interfaces it inherits. Such classes
can be grouped together to form a package. Package
is a collection of Java files similar to a directory. As
subdirectories exist within a directory, subpackages
can exist within a package.
There are a number of predefined packages in

Java—one of them is discussed in this chapter: java.
lang package. This is a fundamental package. For all
the primitive data types, wrapper classes have been
defined in this package. These wrappers encapsulate
the functionality of the primitive data types. A few

other classes like Object, String, StringBuffer,
and StringBuilder class have been discussed, as
these classes are frequently used in programming. All
classes, whether predefined or user-defined, inherit
ultimately from the Object class implicitly. So String,
StringBuffer, and StringBuilder also have objects
as their parents.
Strings in Java are immutable, i.e., one cannot

change a string once it is defined. StringBuffer
and StringBuilder are both used for mutable set of
characters. StringBuilder (added in Java 5) is much
more efficient in terms of performance as compared to
StringBuffer because the former is not synchronized
and the latter class is. At the end of the chapter, we
have discussed enumerations. Enum type is a kind of
class and is basically useful when we know the type
along with the possible set of values in that type.

Interfaces, Packages, and Enumeration 197

EXERCISES

Objective Questions
 1. What will happen if the following line is present

in a program?

interface x extends interface y {}

 (a) run time error
 (b) compile time error
 (c) will compile but not execute
 (d) will compile and execute
 2. What will happen when you try to compile the

following code?

interface x {void show();}
class y implements x{
void show(){
 System.out.println("in show");
 }
}

 (a) runtime error
 (b) compile time error
 (c) will compile but not execute
 (d) will compile and execute
 3. What will be the output if the following declarations

are there in a given sequence? If it is not correct,
what is the correct sequence?

class x{}
package y;
import a.b;

 (a) runtime error
 (b) compile time error
 (c) will compile but not execute
 (d) will compile and execute
 4. Which keyword is used for accessing the features

of a package?
 (a) export (b) import
 (c) package (d) extends
 5. What will happen when you try to compile the

following code?

protected class example{
public static void main(String
args[]) {
 String s = "abc";
 s = s + "def";
 System.out.println(s);

 }
}

 (a) will compile and print abcdef
 (b) will compile but will not print anything
 (c) will not compile as top level class is protected
 (d) will compile and print def
 6. Name the modifier of a method that makes the

method available to all classes in the same
package and to all the subclasses of this class.

 (a) private (b) default
 (c) protected (d) public
 7. All enumerations declared inside a class are by

default
 (a) static (b) non static
 (c) default (d) protected
 8. What will happen when you try to compile the

following code?

interface test{int CHECK;}

 (a) runtime error
 (b) compile time error
 (c) will compile but not execute
 (d) will compile and execute
 9. What will happen when you try to compile the

following code?

interface test {static void show();}

 (a) runtime error
 (b) compile time error
 (c) will compile but not execute
 (d) will compile and execute
 10. What will happen when you try to compile and

execute the following code?

 class Test{
 public static void main(String args[]){
 char c;
 String t1 = " The World ";
 String t2 = new String(" The World ");
 if(t1.equals(t2))
 System.out.println("String
 Concatenated : " + t1.concat
 ("is beautiful"));
 else
 System.out.println("String

198 Programming in Java

 Concatenated:" +t1.concat("is not
 beautiful"));
 }}

Review Questions

 (a) run time error
 (b) compile time error
 (c) will compile but not execute
 (d) will compile and Print “The World is beautiful”

 1. What is an interface? How is it different from an
abstract class?

 2. What are packages? How are they created and
used?

 3. What are wrapper classes?
 4. What is enum type? Explain with the help of a

program.

 5. Explain the following:
 (a) public (b) private
 (c) default (d) protected
 (e) import (f) static import

 6. Explain the difference between String and
StringBuffer.

Programming Exercises
 1. Design an interface named Stack with the

following methods:
 (a) Push and pop elements from the stack.
 (b) Check whether the stack is empty or not.

Implement the stack with the help of arrays
and if the size of the array becomes too small
to hold the elements, create a new one. Test
this interface by inheriting it in its subclass
StackTest.java.

 2. Design an interface named Queue with the
following methods:

 (a) To add and remove elements from the queue.
 (b) Check whether queue is empty or not

Implement the queue with the help of arrays
and if the size of the array becomes too small
to hold the elements, create a new one. Test
this interface by inheriting it in its subclass
QueueTest.java

 3. Create a class within this package “AmountIn-
Words” to convert the amount into words. (Con-
sider the amount to be not more than 100000.)

 4. Write a program to count the number of words
and characters in a string.

 5. Design an enumeration for weekdays and print
their corresponding description according to the
traditional rules:

Description Weekdays
Sun Sunday
Moon Monday
Mars Tuesday
Mercury Wednesday
Jupiter Thursday
Venus Friday
Saturn Saturday

 6. Design an interface with a method reversal.
This method takes a string as its input and
returns the reversed string. Create a class
StringReversal and implement the method [Do
not use predefined methods].

Answers to Objective Questions
 1. (d)
 2. (b), it will not compile as public is not applied to the overridden show method in class y.
 3. (b), the correct sequence is package y: import a.b: class{} 4. (b)
 5. (c), the class does not compile because the top-level class cannot be protected.
 6. (c) 7. (a)
 8. (b), compile time error as value is not given for this variable
 9. (b), it will not compile, as static cannot be applied to method defi ned in an interface 10. (d)

 When the imagination and willpower are in conflict, are antagonistic, it is always the
imagination which wins, without any exception. Emile Coue

After reading this chapter, the readers will be able to
  understand the concepts and applications of exception handling
  understand all the keywords used for exception handling
  create user-defined exceptions
  know what assertions are and how to use them
  know the basics of logging

7.1 INTRODUCTION

Exceptions in real life are rare and are usually used to denote something unusual that does not
conform to the standard rules. For example, Abraham Lincoln was an exception who, despite all
hurdles in his life, rose to become the sixteenth president of the USA. In computer programming,
exceptions are events that arise due to the occurrence of unexpected behavior in certain statements,
disrupting the normal execution of a program.
 Exceptions can arise due to a number of situations. For example,

  Trying to access the 11th element of an array when the array contains only 10 elements
(ArrayIndexOutOfBoundsException)

  Division by zero (ArithmeticException)
  Accessing a file which is not present (FileNotFoundException)
  Failure of I/O operations (IOException)
  Illegal usage of null (NullPointerException)

There are predefined classes (mentioned in the parenthesis above) for all exception types
representing each such situation. The topmost class in the hierarchy is java.lang.Throwable. This
class has two siblings: Error and Exception. All the classes representing exceptional conditions
are subclasses of the Exception class. Whenever an exception occurs in a method, the runtime
environment identifies the type of Exception and throws the object of it. If the method does not

Exception,
Assertions, and
Logging

77

200 Programming in Java

employ any exception handling mechanism (discussed later in the chapter), then the exception
is passed to the caller method, and so on. If no exception handling mechanism is employed in
any of the call stack (also known as runtime stack, i.e., the sequence of method calls from the
current method to the main method) methods, the runtime environment passes the exception
object to the default exception handler available with itself. The default handler prints the name
of the exception along with an explanatory message followed by the stack trace at the time the
exception was thrown and the program is terminated.

Note Stack trace is a record of the active stack frames generated by the execution of a program. It
is used for debugging.

Example 7.1 Exception

 L1 class ExDemo
 L2 {
 L3 public static void main(String args[])
 L4 {
 L5 method1();
 L6 }
 L7 static void method1()
 L8 {
 L9 System.out.println("IN Method 1, Calling Method 2");
 L10 method2();
 L11 System.out.println("Returned from method 2");
 L12 }
 L13 static void method2()
 L14 {
 L15 System.out.println("IN Method 2, Calling Method 3");
 L16 method3();
 L17 System.out.println("Returned from method 3");
 L18 }
 L19 static void method3()
 L20 {
 L21 System.out.println("IN Method 3");
 L22 int a = 20,b = 0;
 L23 int c = a/b;
 L24 System.out.println("Method 3 exits");
 }}

Output
 C:\javabook\programs\chap 7>java ExDemo
 IN Method 1, Calling Method 2
 IN Method 2, Calling Method 3
 IN Method 3
 Exception in thread "main" java.lang.ArithmeticException: / by zero
 at ExDemo.method3(ExDemo.java:23)

Exception, Assertions, and Logging 201

 at ExDemo.method2(ExDemo.java:16)
 at ExDemo.method1(ExDemo.java:10)
 at ExDemo.main(ExDemo.java:5)

Explanation

L1 Class declaration.
L3 main method declaration.
L5 Call to method1(). Control passes to method1().
Call stack populated by pushing method1() call to
top of the stack.
L7 method1() declaration.
L9 Prints IN Method 1, Calling Method 2 (as
shown in the output).
L10 Call to method2(). Control passes to method2().
Call stack again populated by pushing method2() call
to the top of the stack above method1() call.
L11 Prints Returned from method 2 if successfully
returns from method 2.
L13 method2() declaration.
L15 Prints IN Method 2, Calling Method 3 (as
shown in the output).
L16 Call to method3() . Control passes to
method3(). The call stack is again populated by
pushing method3()call to the top of the stack above
method2() call.
L17 Prints Returned from method 3 if successfully
returns from method3().
L19 method3()declaration.
L21 Prints IN Method 3.
L22 Two integer variables initialized with a value
of 20 for a and 0 for b.
L23 An integer variable is being divided by zero.
We have intentionally written this statement to
show you what happens when an exception occurs.
Normally, in practice, nobody would attempt such a
thing. You cannot divide a number by zero. It results
in an ArithmeticException in Java. The execution

halts at this point. The JVM throws an object of class
ArithmeticException for an exception handler
to catch it. No exception handler is provided with
method3(). So the caller methods are looked upon to
see if they can handle this particular exception. None
of the caller methods, method2(), method1(), and
main() employ any exception handling technique, so
the JVM passes the exception to the default exception
handler which in turn prints Exception in thread
"main" followed by the name of the exception along
with an explanatory message. In the next line, it
prints the stack trace to help programmers debug the
program and finally terminates the program. Take a
look at the stack trace shown in Fig. 7.1.

ExDemo.method3(ExDemo.java:23)

class
name

method
name

File
name

Line number where
execution halted

 method3 was called by method2 (line 16) and method2
by method1 (L10). method1() was called by main (L5).
As you can see in the output, the call stack is printed
as it is from top to bottom. Also note the line numbers
are printed in the output.

method3

method2

method1

main

Fig. 7.1 Call Stack

7.1.1 Exception Types
Exceptions are broadly classified into two categories: checked and unchecked exceptions. (The
Java specification treats Error as the third type of exception). Checked exceptions are those
for which the compiler checks to see whether they have been handled in your program or not.
Unchecked or runtime exceptions are not checked by the compiler. Table 7.1 shows a few
checked and unchecked classes.

202 Programming in Java

Table 7.1 Checked and Unchecked Exception Classes

Checked Exceptions Unchecked Exceptions
ClassNotFoundException ArithmeticException

NoSuchFieldException ArrayIndexOutOfBoundsException

NoSuchMethodException NullPointerException

InterruptedException ClassCastException

IOException BufferOverfl owException

IllegalAccessException BufferUnderfl owException

 Figure 7.2 shows the exception hierarchy in Java. Not all the Exception and Error subclasses
have been depicted in the figure. The dots in the diagram are an indicator that there are other
classes also within the immediate superclass. Example 7.1 can be modified to handle the exception
generated in method3.

......

............

java.lang.Throwable

Error Exception

NoSuch

Field

Exception

NoSuch

Method

Exception

Instantia-

tion

Exception

Runtime

Exception

AssertionError

IOError

IndexOut

OfBounds

Exception

NullPointer

Exception

Arithmetic

Exception

StringIndex

OutOfBounds

Exception

ArrayIndex

OutOfBounds

Exception

Fig. 7.2 Exception Hierarchy

7.2 EXCEPTION HANDLING TECHNIQUES

Java provides five keywords for exception handling: try, catch, throw, throws, and finally. Let
us take a look at all these one by one.

Exception, Assertions, and Logging 203

7.2.1 try…catch
The try/catch block can be placed within any method that you feel can throw exceptions. All
the statements to be tried for exceptions are put in a try block and immediately following the
try is the catch block. catch block is used to catch any exception raised from the try block. If
exception occurs in any statement in the try block, the following statements are not executed
and control immediately passes to the corresponding catch block.

Example 7.2 try…catch

 L1 class ExDemo1
 L2 {
 L3 public static void main(String args[])
 L4 {
 L5 method1();
 L6 }
 L7 static void method1()
 L8 {
 L9 System.out.println("IN Method 1, Calling Method 2");
 L10 method2();
 L11 System.out.println("Returned from method 2");
 L12 }
 L13 static void method2()
 L14 {
 L15 System.out.println("IN Method 2, Calling Method 3");
 L16 try{
 L17 method3(); }
 L18 catch(Exception e)
 L19 {
 L20 System.out.println("Exception Handled");
 L21 }
 L22 System.out.println("Returned from method 3");
 L23 }
 L24 static void method3()
 L25 {
 L26 System.out.println("IN Method 3");
 L27 int a = 20,b = 0;
 L28 int c = a/b;
 L29 System.out.println("Method 3 exits");
 }}

Output
 C:\javabook\programs\chap 7>java ExDemo1
 IN Method 1, Calling Method 2
 IN Method 2, Calling Method 3
 IN Method 3
 Exception Handled
 Returned from method 3
 Returned from method 2

204 Programming in Java

Explanation
L28 Exception occurred. No handling mechanism
in method3(), so the control passes to the try…catch
block in method2().
L29 It is not executed, as the statements following
the occurrence of an exception are not executed.
L16 try block declared. The statements to be
monitored for exceptions should be placed in the try
block within a method.
L17 A call to method3() is placed within the try
block.
L18 catch clause defined with an argument of
type Exception (parent class) so that the exception
objects thrown from the try block can be caught
here. A superclass reference variable can refer to
a subclass object. The try block is immediately
followed by a catch block. As soon as an exception

is encountered in the try block, statements following
the statement on which the exception occurred are
not executed. The runtime environment creates an
object of class representing the exception and throws
it. Control passes to the appropriate catch block (first
appropriate catch in case multiple catch clauses
are present) where the thrown object is caught and
assigned to e, i.e., the Exception reference variable.
L20 Prints ExceptionHandled.
L22 Prints Returned from method3(). After the
exception has been caught (try…catch mechanism
implemented), execution resumes as normal. This
was not possible in Example 7.1. After this, the
control passes back to method1() from where
method2() was called and L11 gets executed (see
output).

 A single try can have multiple catch clauses, for catching specific exceptions. As soon
as an exception is thrown, the first appropriate catch clause responsible for handling that
exception is located and the exception is passed to it. By first appropriate catch, we mean, if
ArrayIndexOutOfBoundsException is generated, then the control passes to the first catch that either
specifies the ArrayIndexOutOfBoundsException or the IndexOutOfBoundsException superclass
of the ArrayIndexOutOfBoundsException or Exception. All exceptions can be caught by the
Exception class. Example 7.3 shows how multiple catch clauses are incorporated in a program.

Example 7.3 Multiple Catch Clauses
 L1 class Multiple_Catch
 L2 {
 L3 public static void main(String args[])
 L4 {
 L5 method1();
 L6 }
 L7 static void method1()
 L8 {
 L9 System.out.println("IN Method 1, Calling Method 2");
 L10 method2();
 L11 System.out.println("Returned from method 2");
 L12 }
 L13 static void method2()
 L14 {
 L15 System.out.println("IN Method 2, Calling Method 3");
 L16 try {
 L17 method3(); }
 L18 catch(ArithmeticException ae)

Exception, Assertions, and Logging 205

 L19 {
 L20 System.out.println ("Arithmetic Exception Handled: " +ae);
 L21 }
 L22 catch(Exception e)
 L23 {
 L24 System.out.println("Exception Handled");
 L25 }

 L26 System.out.println("Returned from method 3");
 L27 }
 L28 static void method3()
 L29 {
 L30 System.out.println("IN Method 3");
 L31 int a = 20, b = 0;
 L32 int c = a/b;
 L33 System.out.println("Method 3 exits");
 }}
Output
 C:\javabook\programs\chap 7>java Multiple_Catch
 IN Method 1, Calling Method 2
 IN Method 2, Calling Method 3
 IN Method 3
 Arithmetic Exception Handled: java.lang.ArithmeticException: / by zero
 Returned from method 3
 Returned from method 2

Explanation
L16 try block defined.
L17 Call to method3().
L18 The first catch clause defined with an
argument of type ArithmeticException class.
L20 Prints Exceptionhandled concatenated with
the output of ae.toString(). Remember toString()
is called automatically when you try to print any
object. toString() method is overridden in the

ArithmeticException class to print its own string
rather than that of the Object class.
L22 The second catch clause defined with an
argument of type Exception class. This has been
specified intentionally because if any other exception
is thrown apart from ArithmeticException, then
that exception will be caught in this particular catch
clause.

Note While specifying multiple catch clauses for exception handling, the catch clause having the
Exception type as its argument should be the last catch block in your program. This is because
if the catch having the reference variable of type Exception class is placed as the top catch
clause, then all the exceptions thrown from the try block will be caught in the fi rst catch and the
control will never pass onto the lower catch blocks, leading to an unreachable code.

 An unreachable code in Java is easily recognized by the Java compiler and it complains about
it during compilation. For example, if the catch clauses in Example 7.3 are reversed, as shown,
the program will not compile.

 catch(Exception e){}

 catch(ArithmeticExceptionae) {}

206 Programming in Java

7.2.2 throw Keyword
The throw keyword is used to explicitly throw an exception. In the earlier examples, this job was
being done implicitly. Whether implicit or explicit, objects of exception need to be created before
they are thrown. Execution of the program is suspended as in previous cases and the runtime
environment looks for the appropriate catch to handle the exception. throw is more useful when
we want to throw a user-defined exception. The syntax for throw is as follows:
 throw new NullPointerException(); // throw new ThrowableInstance

 Let us rework Example 7.3 to throw an exception explicitly.

Example 7.4 throw Keyword
 L1 class ThrowDemo
 L2 {
 L3 public static void main(String args[])
 L4 {
 L5 method1();
 L6 }
 L7 static void method1()
 L8 {
 L9 System.out.println("IN Method 1, Calling Method 2");
 L10 method2();
 L11 System.out.println("Returned from method 2");
 L12 }
 L13 static void method2()
 L14 {
 L15 System.out.println("IN Method 2, Calling Method 3");
 L16 try {
 L17 method3(); }
 L18 catch(Exception e)
 L19 {
 L20 System.out.println("Exception Handled:" + e);
 L21 }
 L22 System.out.println("Returned from method 3");
 L23 }
 L24 static void method3()
 L25 {
 L26 System.out.println("IN Method 3");
 L28 throw new ArithmeticException("Testing Throw");
 // This line is intentionally commented. If not, it results
 // in compile time error as it leads to unreachable code.
 L29 // System.out.println("Method 3 exits");
 }}

Output
 C:\javabook\programs\chap 7>java ThrowDemo
 IN Method 1, Calling Method 2
 IN Method 2, Calling Method 3

Exception, Assertions, and Logging 207

 IN Method 3
 Exception Handled: java.lang.ArithmeticException: Testing throw
 Returned from method 3
 Returned from method 2

Explanation

L28 Instead of an expression which leads to the
runtime environment throwing an exception, we
have used throw keyword to throw the exceptions
ourselves. Just like the runtime environment, we
also need to create an object for throwing it. So the
ArithmeticException object is created with the
help of new keyword and an argument is passed
to its constructor. This argument is printed onto
the console via the toString() method of the
ArithmeticException class, when we catch this
exception and print the exception object (see output).

This argument can also be separately printed using the
getMessage() method of the ArithmeticException
class.
L29 It is commented. If it is not commented, the
compiler will give an error stating Unreachable Code.
Particularly, in this program, the control will always
move out after the throws clause, searching for a
handler, so this line will never be executed. The Java
compiler is intelligent enough to understand this and
raises an error.

This exception is caught and printed in the catch present in L18–21. Rest of the logic is similar
to the previous example.

7.2.3 throws
The throws is added to the method signature to let the caller know about what exceptions the
called method can throw. It is the responsibility of the caller to either handle the exception
(using try…catch mechanism) or it can also pass the exception (by specifying throws clause
in its method declaration). If all the methods in a program pass the exception to their callers
(including main()), then ultimately the exception passes to the default exception handler. A
method should use either of the two techniques—try/catch or throws. Usually (for checked
exceptions specifically), it is the catch or specify mechanism that is used. A method can throw
more than one exception; the exception list is specified as separated by commas. The syntax for
the throws keyword is shown below:
 public void divide(int a, int b) throws ArithmeticException, IllegalArgumentException

Let us take a look at the following example.

Example 7.5 throws Keyword
 L1 class ThrowsDemo
 L2 {
 L3 public static void main(String args[])
 L4 {
 L5 method1();
 L6 }
 L7 static void method1()
 L8 {
 L9 System.out.println("IN Method 1, Calling Method 2");
 L10 method2();
 L11 System.out.println("Returned from method 2");

208 Programming in Java

 L12 }
 L13 static void method2()
 L14 {
 L15 System.out.println("IN Method 2, Calling Method 3");
 L16 try{
 L17 method3(4,0); }
 L18 catch(Exception e)
 L19 {
 L20 System.out.println("Exception Handled: " + e);
 L21 }
 L22 System.out.println("Returned from method 3");
 L23 }
 L24 static void method3(int a, int b) throws Exception
 L25 {
 L26 System.out.println("IN Method 3");
 L27 if(b == 0)
 L28 throw new ArithmeticException("Testing throw");
 L29 else
 System.out.println("Result: "+a/b);
 }}

Output

 When a = 4 and b = 2
 C:\javabook\programs\chap 7>java ThrowsDemo
 IN Method 1, Calling Method 2
 IN Method 2, Calling Method 3
 IN Method 3
 Result: 2
 Returned from method 3
 Returned from method 2

 When a = 4 and b = 0
 C:\javabook\programs\chap 7>java ThrowsDemo
 IN Method 1, Calling Method 2
 IN Method 2, Calling Method 3
 IN Method 3
 Exception Handled: java.lang.ArithmeticException: Testing throw
 Returned from method 3
 Returned from method 2

Explanation

L24 method3() has been declared with throws clause
specifying that it may throw an exception. The parent
class (Exception) has been specified in the throws
clause, so there is no need to explicitly mention the
subclass name (ArithmeticException). If throws is
omitted in this line, the program works as usual. If the
try/catch in method2() (L16, L18–21 and L23) is
omitted and throws in method3() declaration is kept

intact, the compiler will not compile the program as
now, it is mandatory for the calling method to either
pass or catch the exception.
L26 Print statement.
L27 if statement checks the value of b. If it is zero,
L28 is executed, else L29.
L28 An object of ArithmeticException is created
and thrown.
L29 else prints the result of division of a by b.

Exception, Assertions, and Logging 209

7.2.4 fi nally Block
The fi nally block is always executed in try-catch-fi nally statements irrespective of whether an
exception is thrown from within the try/catch block or not. Statements following the exception
in a try block are not executed. Some statements are mandatory to execute such as the state-
ments related to the release of resources. All these statements can be put in a fi nally block. The
syntax of the fi nally keyword is as follows:

 try {...} catch(Throwable e){...} fi nally {....}

 Let us take an example to understand it better.

Example 7.6 fi nally Keyword
 L1 class FinallyDemo
 L2 {
 L3 public static void main(String args[])
 L4 {
 L5 method1();
 L6 System.out.println("Result : "+method2 (24,0)); }
 L7 static void method1()
 L8 {
 L9 try {
 L10 System.out.println("IN Method 1");
 L11 throw new NullPointerException(); }
 L12 catch(Exception e)
 L13 {
 L14 System.out.println("Exception Handled: " + e);
 L15 }
 L16 fi nally {
 L17 System.out.println("In method 1 fi nally"); } }
 L18 static int method2(int a, int b)
 L19 {
 L20 try{
 L21 System.out.println("IN Method 2");
 L22 return a/b; }
 L23 fi nally {
 System.out.println("In method 2 fi nally");
 }
 }
 }

Output

 When a = 24 and b = 4
 C:\javabook\programs\chap 7>java FinallyDemo
 IN Method 1
 Exception Handled: java.lang.NullPointerException
 In method 1 fi nally
 IN Method 2
 In method 2 fi nally
 Result : 6

210 Programming in Java

 When a = 24 and b = 0
 C:\javabook\programs\chap 7>java FinallyDemo
 IN Method 1
 Exception Handled: java.lang.NullPointerException
 In method 1 fi nally
 IN Method 2
 In method 2 fi nally
 Exception in thread "main" java.lang.ArithmeticException: / by zero
 at FinallyDemo.method2(FinallyDemo.java:24)
 at FinallyDemo.main(FinallyDemo.java:6)

Explanation
L5 Call to method1(). Control passes to L7.
L6 Call to method2() and if any, return is printed
on the screen.
L7 method1() declaration.
L9 try block defined.
L11 NullPointerException is thrown. Control
passes to catch in L12.
L12 catch block corresponding to try in L9.
L14 Prints the exception object e. (e.toString()
is called by default).
L16 Shows the finally block. The exception
thrown in L11 is caught at L12. The finally block
following catch gets executed after that (see output).
L17 The statement within finally gets executed.
L18 method2() declared expecting two integer
arguments. Value passes are 24 and 0.
L20 try block within method2().
L22 As already discussed, the value of b being

zero, an attempt to divide any number by zero results
in an ArithmeticException being thrown.
L23 Just to show that the finally block executes
in all cases, we have intentionally not given the catch
in method2(). A try can either have a corresponding
catch with finally or it can also have a finally
following it. In the earlier examples, we have seen
that as soon as an exception is encountered, its
appropriate handler is looked upon and nothing gets
executed until and unless the exception is handled.
The only exception to this fact is the finally block.
In our example, the exception is thrown in L22.
method2() does not have its own catch to handle
exceptions, so its caller is to be looked upon but
before control passed to the caller, i.e., main method,
the finally in method2() is executed. And then the
control passes to main() where no handler is present,
so the runtime environment handles the exception as
already discussed (see output).

7.2.5 try-with-resources Statement
Java 7 added a new enhancement to the exception handling mechanism, i.e., automatic resource
management with a try-with-resources statement. The applications uses many resources during
their lifetime by creating their objects, e.g., creating a data base connection for accessing/updating
databases, or creating file objects for working with files, or creating sockets for transmission/
receiving of data, etc. A common mistake committed by programmers is that they often do not
close/release the resources occupied by the programs, after their task is complete. This leads
to many orphaned instances, inefficient memory allocation, and garbage collection. Hence the
need for automatic resource management arises.
 To address this problem AutoCloseable, a new interface has been created in the java.lang
package. The resources that want to be closed must implement this interface. This interface has
just one method,
 public void close() throws Exception

Exception, Assertions, and Logging 211

This close method will be overridden by the class that implements the interface and all resources
releasing code can be put in this method. The close method of the AutoCloseable object is called
automatically when it is used with a try-with-resources statement as soon as the try-with-
resources block has finished execution regardless of whether an exception is thrown or not.
The syntax of a try-with-resources statement is as follows:
 try (resources to be used and automatically released)

 {
 // statements within the block
 }

For example
 try (abc a=new abc(); pqr p=new pqr())

 {
 // statements within the block
 }

 More than one AutoCloseable resources can be used in try-with-resources statement separated
by semicolon. Hence it is mandatory for abc and pqr objects to implement the AutoCloseable
interface as shown below in the example. The resources created in the try-with-resources
statement are closed in the reverse order of creation. We will elaborate these concepts in Example
7.7.

Example 7.7 AutoCloseable Resources and try-with-resource Statement
 L1 class abc implements AutoCloseable
 {
 L2 public void close()
 {
 System.out.println("Within close method of abc");
 }
 }
 L3 class pqr implements AutoCloseable
 {
 L4 public void close()
 {
 System.out.println("Within close method of pqr");
 }
 }
 L5 class TestTryWithResources
 {
 L6 public static void main(String args[])
 {
 L7 try (abc a=new abc(); pqr p=new pqr())
 {
 System.out.println("Within try with resources block");
 L8 throw new Exception();
 }

212 Programming in Java

 L9 catch(Exception e)
 {
 System.out.println("Within catch block");
 }
 }
 }

Output
 D:\javabook\programs\chap 7\java TestTryWithResources
 Within try with resources block
 Within close method of pqr
 Within close method of abc
 Within catch block

Explanation
L1–4 All resources that need to be closed auto-
matically after their use must implement the Auto-
Closeable interface and override the close method.
L5 Another class is created to test the AutoClose-
able resources created above.
L6 main method declaration.
L7 try-with-resources statement is used to create
two resources which will be automatically closed
once the block exits by calling their respective close
methods in reverse order of creation. The close
method of pqr is called first and then the close

method of abc (see output). Note that these two
objects have already inherited the AutoCloseable
interface otherwise a compile time error will be raised
by the compiler.
L8 An explicit Exception is raised to show that
the close methods are called irrespective of whether
an exception occurs or not. In case an Exception is
raised, the close methods are called prior to handling
the Exception (see output).
L9 catch block is declared to handle the exception
raised from the try-with-resource block.

Note It is not mandatory for a try-with-resource block to have a catch or fi nally block unlike the
previous version of JDK. They are optional in Java 7 with a try-with-resource block.

7.2.6 Multi catch
Java 7 introduced the multi catch statement to catch multiple exception types using a single
catch block. Example 7.3 showed the older ways of catching multiple exceptions using separate
catch blocks. Assuming that Exception1, Exception2, and Exception3 are belonging to different
hierarchies and may be thrown from try block, they can be handled in a single catch block
using the newer syntax for catching multiple exceptions as follows:
 try

 {
 // statements
 }
 catch (Exception1 | Exception2 | Exception3 e)
 {
 // statements
 }

Exception, Assertions, and Logging 213

 So you might get the feeling that the catch block in Example 7.3 can be rearticulated as:
 catch (ArithmeticException | Exception e)
 {
 // statements
 }

But the problem with the catch block above is that both ArithmeticException and Exception
belong to the same hierarchy. (Actually every exception has branched out of Exception.) If the
catch block is rearticulated as shown below, it compiles because now both exceptions belong
to different inheritance hierarchy.
 catch (ArithmeticException | NullPointerException | NumberFormatException e)
 {
 // Statements
 }

The benefit of using multi catch is that it results in more efficient byte code as you have just
one catch block (instead of more as in the above case). Moreover same treatment can be applied
to exceptions of different hierarchies. A way of applying different treatment while using multi
catch syntax is by using instanceof operator as shown below. instanceof operator checks
whether an instance is of a particular class and return true or false.
 catch(ArithmeticException | ArrayIndexOutOfBoundsException | NumberFormatException e)
 {
 if(e instanceof ArithmeticException)
 System.out.println("Arithmetic Exception Handled: " +e);
 else if(e instanceof NumberFormatException)
 System.out.println("Exception Handled: " +e);
 else
 System.out.println(e);
 }

Note In case the multi catch syntax is used, the parameter e is implicitly fi nal.

7.2.7 Improved Exception Handling in Java 7
Prior to Java 7, a method can specify only those exceptions in the throws clause that have been
specified in the catch clause while re-throwing exceptions from within catch block. But Java 7
onwards the throws can specify more refined exceptions to be rethrown. Suppose there are two
user defined exceptions Exception1 and Exception2 which can be rethrown from within the
catch block of a method. Prior to Java 7 only the exceptions specified in the catch block can be
mentioned as argument to the throws keyword. Let us take an example to show this.

Example 7.8(a) Re-throwing an Exception
 class Exception1 extends Exception { }
 class Exception2 extends Exception { }
 class DemoException{
 L1 void throwException(int a, int b) throws Exception {
 try {

214 Programming in Java

 if (a<b)
 L2 throw new Exception1();
 else
 L3 throw new Exception2();
 L4 } catch (Exception e) {
 L5 throw e;
 }
 }
 public static void main(String args[]) throws Exception
 {
 new DemoException().throwException(4,0);
 }
 }

 The above method throwException could throw either Exception1 (L2) or Exception2 (L3)
based on the value of a or b. Prior to Java 7, it was not possible to specify these exception
types in the throws clause of the throwException method declaration (L1). The exception e is
re-thrown from the catch block (L5) and as e is of type Exception so only Exception can be
specified in the throws clause of method declaration on L1.
 Java 7 onwards you can specify Exception1 and Exception2 in the throws clause of the
throwException method declaration. The compiler deduces that the exceptions thrown by throw
e (L5) must have come from the try block, and the exceptions thrown by the try block can
be Exception1 or Exception2. Although e is defined of type Exception (L4), the compiler can
determine that e would be an instance of either Exception1 or Exception2. Let us rephrase the
method in the program.

Example 7.8(b) Re-throwing an Exception
 class DemoException{
 L1 void throwException(int a, int b) throws Exception1, Exception2 {
 try {
 if (a<b)
 L2 throw new Exception1();
 else
 L3 throw new Exception2();
 L4 } catch (Exception e) {
 L5 throw e;
 }
 }
 public static void main(String args[]) throws Exception1,Exception2
 {
 new DemoException().throwException(4,0);
 }
 }

In other words, Java 7 onwards you can rethrow (L5) an exception that is a supertype (in our
case it is Exception) of any of the types declared in the throws (i.e., Exception1 and Exception2).

Exception, Assertions, and Logging 215

7.3 USER-DEFINED EXCEPTION

Java provides you with the opportunity to create your own exceptions, i.e., user-defined
exceptions. The mandatory requirement is that the class should be a subclass of the Exception
class. We will create a sample exception and use it in a different class and throw this particular
exception on some particular condition.

Example 7.9 User-defi ned Exception
 L1 class ExcepDemo extends Exception
 {
 L2 ExcepDemo(String msg)
 {
 L3 super(msg);
 }
 L4 public String toString()
 {
 L5 return "Exception in thread \"main\" ExcepDemo Exception:" +getMessage();
 }
 }
 L6 class TestException
 {
 L7 static void testException() throws ExcepDemo
 {
 L8 throw new ExcepDemo("Testing User Defi ned Exception");
 }
 L9 public static void main(String args[])
 {
 L10 try
 {
 L11 testException();
 }
 L12 catch(ExcepDemo e)
 {
 L13 System.out.println(e);
 }
 }}

Output
 C:\javabook\programs\chap 7>java TestException
 Exception in thread "main" ExcepDemo Exception: Testing User Defi ned Exception

Explanation
L1 To create your own exception, your class has
to extend the Exception class as shown.
L2 Constructor for the exception subclass has been
defined accepting a String argument.
L3 The String argument is passed to the
superclass constructor using super. This argument
can be retrieved using a method of the superclass,
i.e., getMessage().

L4 toString method has been overridden. This is
automatically called when you print the object of the
exception subclass.
L5 String is being returned concatenated with the
output of the getMessage() function. It returns the
string passed to the constructor of the superclass.

216 Programming in Java

The user-defined class is ready and now we need a
sample class to test it, so we created the TestExcep-
tion class.
L6 TestException class defined.
L7 static method declaring that it can throw
ExcepDemo exception.
L8 Exception thrown using the keyword throw.
L9 main method declaration.
L10 try block defined.

L11 testException() method called.
L12 catch corresponding to try (L10).
L13 Prints the exception. toString() is called
automatically, which returns the string Exceptionin-
thread "main" ExcepDemoException: concatenated
with the argument passed in the constructor of the
ExcepDemo class in L8 (see output). This String is
returned through the method getMessage(), defined
in the Throwable class.

7.4 EXCEPTION ENCAPSULATION AND ENRICHMENT

Java 1.4 introduced exception encapsulation (chaining), which is the process of wrapping a
caught exception in a different exception and throwing the wrapped exception. The Throwable
class (parent class) has added a cause parameter in its constructors for wrapped exceptions and a
getCause() method to return the wrapped exception. If you pass all your exception, your top level
method might have to deal with a lot of exceptions; and declaring or handling exceptions in all
the previous methods is a tedious task. The solution is to wrap exceptions and throw it. Wrapping
is also used to abstract the details of implementation. You might not want your working details
(including the exception that are thrown) to be known to others. Let us see how wrapping is done.

 try{
 throw new InstantiationException();
 }
 catch(InstantiationException t)
 {
 // wrapping InstantiationException in ExcepDemo
 throw new ExcepDemo("Wrapped Instantiation Exception",t);
 }

 Wrapping has some disadvantages also. It leads to long stack traces; one for each exception in
the wrapping hierarchy. Secondly, due to wrapping, it becomes difficult to figure out the problem
that led to exceptions.
 The possible solution is exception enrichment. In exception enrichment, you do not wrap
exceptions but add information to the already thrown exception and rethrow it, which leads to
a single stack trace. Let us take an example to see exception enrichment.

Example 7.10 Exception Enrichment
 L1 class ExcepDemo extends Exception{
 String message;
 L2 ExcepDemo(String msg){
 L3 message = msg;}
 L4 public String toString(){
 L5 return "Exception in thread \"main\" ExcepDemo Exception:" +message;
 }
 L6 public void addInformation(String msg) {
 L7 message += msg;
 }}

Exception, Assertions, and Logging 217

 L8 class ExceptionEnrichmentDemo{
 L9 static void testException() throws ExcepDemo
 L10 {
 try
 {
 L11 throw new ExcepDemo("Testing User Defi ned Exception");
 }
 L12 catch(ExcepDemo e)
 {
 L13 e.addInformation("\nexception was successfully enriched and
 re-thrown from catch");
 L14 throw e;
 }
 }
 L15 public static void main(String args[]) {
 L16 try
 {
 L17 testException();
 }
 L18 catch(ExcepDemo e){
 L19 System.out.println(e);
 }
 }}

Output
 C:\javabook\programs\chap 7>java ExceptionEnrichmentDemo
 Exception in thread "main" ExcepDemo Exception: Testing User Defi ned
 Exception exception was successfully enriched and re-thrown from catch

Explanation

L6 addInformation method has been added in
the user-defined exception class: ExcepDemo. This
method accepts an argument of type String, so that
additional information about the exception can be
added to the exception object.
L7 The string is concatenated to the instance
variable message.
L8 To test this, a new class has been created:
ExceptionEnrichmentDemo
L9 Method named testException has been
defined stating that it can throw ExcepDemo exception.
L11 Exception ExcepDemo is thrown.
L12 The exception thrown in L11 is caught at the
catch defined in this line.
L13 Additional information regarding the exception

is appended by calling the addInfomation() method
of the ExcepDemo object.
L14 The exception object is re-thrown. When an
exception is re-thrown from the catch block, then
the control passes directly to the caller’s catch (if
any). In our case, it is present on L18.
L18 It shows the catch in the main method. This
catch is responsible for handling.
(a) Exceptions occurring in its own try (L16).
(b) Exceptions occurring in the methods that are
called from the try block (L16) corresponding to
this catch.
(c) Exceptions re-thrown from the catch of the
other method that are called from your try (L14).
L19 The exception object is printed.

7.5 ASSERTIONS
Assertions were added in Java 1.4 to create reliable programs that are correct and robust.
Assertions are boolean expressions that are used to test/validate the code. They are basically used
during testing and development phases. Assertions are used by the programmers to be doubly

218 Programming in Java

sure about a particular condition, which they feel to be true. Conditions such as a number is
positive or negative, array/reference is null or not can be checked by asserting them. Assertions
in Java are declared with the help of assert keyword as shown below:
 assert expression1; // assert x > 0;
or
 assert expression1: expression2 // assert x < 0:" Value Ok ";

where expression1 is the condition to be evaluated. In case, the condition is evaluated as false,
an AssertionError is thrown. expression2 is a string which is passed to the constructor of the
AssertionError object.
 Assertions have to be enabled explicitly; they are disabled by default. Using the –ea and –da
options of Java, we can enable or disable assertions (see output).
 -ea enable assertions
 -da disable assertions

Example 7.11 Assertion
 L1 class AssertDemo {
 L2 static void check(int i)
 {
 L3 assert i> 0: "Value must be positive";
 L4 System.out.println("value fi ne "+i);
 }
 L5 public static void main(String args[])
 {
 L6 check(Integer.parseInt(args[0]));
 }}

Output

 When i = 1
 C:\javabook\programs\chap 7>java -ea AssertDemo 1
 value fi ne 1

 When i = –1
 C:\javabook\programs\chap 7>java -ea AssertDemo -1
 Exception in thread "main" java.lang.AssertionError: Value must be positive
 at AssertDemo.check(AssertDemo.java:4)
 at AssertDemo.main(AssertDemo.java:9)

 Without Enabling Assertions
 C:\javabook\programs\chap 7>java AssertDemo -1
 value fi ne -1

Explanation
L2 The static method has been declared with an
integer argument.
L3 assert keyword is used to check if the value
of i is greater than 0 or not. If the value of i is less
than 0, an AssertionError is thrown and the string

Valuemustbepositive is passed to the constructor
of the AssertionError object (see output). This
has been handled in the same way exceptions were
handled (refer Example 7.1).
L4 Prints valuefine followed by the value of i.

Exception, Assertions, and Logging 219

L6 The method check is called. The first
command-line argument is converted to int using
the Integer.parseInt() function and passed to the
check method.

 As you can see in the output, if assertions are not
enabled, problems can arise. We never expected –1
to be a fine value in our program but in the (without
enabling assertion) output, you can see it for yourself.

7.6 LOGGING

The logging feature was added in the java.util.logging package of Java 1.4 for debugging
purpose. Logs are basically used to report messages regarding the functioning of the application
to the programmer. These logs are supposed to be saved and reviewed later by the programmer.
Logs are created with the help of a Logger class in the util.logging package. These messages
are passed to handler objects which pass these messages to console, log files, etc. Loggings have
nine levels in Java (illustrated in Table 7.2) to indicate the severity of logged messages. These
levels are final and static fields of Level class (util.logging package).

Table 7.2 Logging Levels

Level Description
SEVERE Indicates severe problem, requiring attention (highest)
WARNING Indicates potential problem
INFO Informational messages; written on the console
CONFIG Message regarding confi guration information
FINE Less detailed messages
FINER More detailed messages
FINEST Least of all three: FINE, FINER, FINEST. Used for most detailed output (lowest)
OFF Turns off logging
ALL Logs all messages

 By default, the level is set to INFO. All messages above and including level INFO are sent to
the console. You can set and get these levels using the methods of the Logger class. In addition
to setting the level for the Logger, one has to set the level for the handler also.
 public void setLevel(Level l)
 public Level getLevel()

 The Logger class provides methods similar to the names of the levels for logging messages.
All these methods take a String argument as shown:

 public void severe(String msg) – for logging messages of SEVERE level.
 public void warning(String msg) – for logging messages of WARNING level.
 public void confi g(String msg) – for logging messages of CONFIG level.
 public void info(String msg) – for logging messages of INFO level.
 public void fi nest(String msg) – for logging messages of FINEST level.
 public void fi ner(String msg) – for logging messages of fi ner level.
 public void fi ne(String msg) – for logging messages of fi ner level.

220 Programming in Java

In addition to these, it also provides a method that sets the level as well as prints the message
on the console.
 public void log(Level l,String msg)

Let us take an example to better understand the concept behind logging.

Example 7.12 Logging
 L1 import java.util.logging.*;
 L2 class LoggingDemo {
 L3 static Logger l = Logger.getLogger ("LoggingDemo");
 L4 void demo() {
 L5 l.log(Level.SEVERE,"Shows Severe level of the Logger ");
 }
 L6 public static void main(String[] args)
 {
 L7 LoggingDemo d = new LoggingDemo();
 L8 d.demo();
 }}

Output
 C:\javabook\programs\chap 7>java LoggingDemo
 22 Feb, 2009 11:18:49 AM LoggingDemo demo
 SEVERE: Shows Severe level of the Logger

Explanation

L1 Package java.util.logging has been im-
ported, as the class Logger is a part of this package.
L3 Normally, we use one Logger per class. That is the
reason why we have created the Logger object as static.
L4 The method demo() has been declared.
L5 The log method of the Logger object has been
called to log the message to the console. The first

argument sets the level of the logger and the second
argument is a String message that is the output on the
console. The details of the output are shown below:
L7 An object of the class LoggingDemo has been
declared.
L8 The method demo has been called using the
LoggingDemo object.

Output Details
22 Feb, 2009 11:18:49AM LoggingDemo demo
Date Time of execution ClassName methodName where error occurred
SEVERE: Shows Severe level of the Logger
Level Message passed to constructor of Assertion Error

SUMMARY
This chapter focused on how to handle unusual
conditions/situations in Java. Exception handling is the
key. Two types of exceptions have been defined: checked
and unchecked. All exceptions, whether checked or
unchecked, inherit from the parent class Throwable.
There are five keywords in exception handling, namely
try, catch, throw, throws, and finally.

Apart from using the predefined exception, you can
code your own exceptions according to your own
requirements. Exception chaining (introduced in JDK
1.4) wraps a particular exception into another.
Assertions (introduced in JDK 1.4) are helpful in

assuring the programmer about a particular condition
using the assert keyword. They help in increasing the

Exception, Assertions, and Logging 221

reliability of a Java program. Logging features (part of
java.util.logging package introduced in JDK 1.4)
help the user to debug his program.

Java 7 introduced the automatic resource management
with the help of a new try block, i.e.,try-with-
resource block. This chapter also highlights the new
syntax for compressing multiple catch blocks used in Java 7.

EXERCISES

Objective Questions
 1. What are the two types of exceptions available

in Java?
 (a) Checked and compiled
 (b) Unchecked and compiled
 (c) Checked and unchecked
 (d) Compiled and non-compiled
 2. The parent class of all the exceptions in Java is
 (a) Throwable (b) Throw
 (c) Exception (d) Throws
 3. What is the result of attempting to compile and

execute the program?

class Demo
 {
 void show() throws ClassNotFound
 Exception{}
 }
class Demo2 extends Demo {
 void show() throws IllegalAccess
 Exception,
 ClassNotFoundException, Arithmetic
 Exception
 {
 System.out.println("In Demo1
 Show");
 }
public static void main(String ar[]) {
try{
 Demo2 d = new Demo2();
 d.show();
 }
catch(Exception e){}
 } }

 (a) Does not compile
 (b) Compiles successfully
 (c) Compiles successfully and prints “In Demo1

show”
 (d) Complies but does not execute
 4. If the assert statement returns false, what is

thrown?

 (a) Exception (b) Assert
 (c) Assertion (d) Assertion Error
 5. What is the result of attempting to compile and

execute the program?

class Demo
{
 void show() throws ArithmeticEx
 ception{}
}
class Demo1 extends Demo {
 void show()
 {
 System.out.println("In Demo1
 Show");
 }
public static void main(String ar[])
 {
 Demo1 d = new Demo1();
 d.show();
 }
}

 (a) Does not compile
 (b) Compiles successfully
 (c) Executes successfully and prints “In Demo1

show”
 (d) Complies but does not execute
 6. What is the result of attempting to compile and

execute the program?

class Test
{
 static void test() throws Runtime-
Exception
 {
 throw new ArithmeticException();
 }
public static void main(String args[])
{
 try{
 test();

222 Programming in Java

 }
 catch(RuntimeException re)
 {
 System.out.println("Exception
Handled");
 }
} }

 (a) Checked exception is generated
 (b) Does not compile
 (c) Prints “Exception Handled”, as RuntimeEx-

ception is superclass of the ArithmeticEx-
ception class

 (d) Class compiles but nothing is printed on the
console

 7. The two subclasses of Throwable are
 (a) Error and AssertionError
 (b) Error and Exception
 (c) Checked and Unchecked Exception
 (d) Error and RuntimeException
 8. Messages above what level will only be logged

to the console by default?
 (a) INFO (b) SEVERE
 (c) WARNING (d) FINE
 9. What is the purpose of creating a Logger object

as static?
 (a) Applies to all objects of the class

 (b) Each for individual objects of the class
 (c) Applies only to static objects
 (d) Applies only to non-static objects
 10. What is the result of attempting to compile and

execute the program?

class Demo
{
 void show(){}
}
class Demo2 extends Demo {
 void show() throws IllegalAccess
 Exception, ArithmeticException
 {
 System.out.println("In Demo1
 Show");
 }
 public static void main(String ar[]) {
 try{
 Demo2 d = new Demo2();
 d.show();
 }
 catch(Exception e){}
} }

 (a) Compiles successfully but throws Runtime
Exception

 (b) Compiles and prints nothing
 (c) Compiles and prints In Demo1 Show
 (d) Does not compile

Review Questions
 1. What are exceptions? How are they handled in

Java?

 2. Explain logging in Java with all its levels.

 3. Explain exception changing and environment.
Write a program in support of your answer.

 4. What is the difference between checked and
unchecked exception?

 5. Explain the need for automatic resource
management.

 6. What is a try-with-resources block and how
is it used?

 7. Explain the Java 7 enhancement regarding
multiple catch clauses.

 8. Explain in detail the Java 7 enhancements
regarding re-throwing an exception.

Programming Exercises
 1. Create a user-defi ned exception named Check-

Argument to check the number of arguments
passed through command line. If the number of
arguments is less than fi ve, throw the CheckAr-

gumentexception, else print the addition of all
the fi ve numbers.

 2. Consider a Student examination database
system that prints the marksheet of students.
Input the following from the command line:

Exception, Assertions, and Logging 223

 (a) Students’ name
 (b) Marks in six subjects

 These marks should be between 0 and 50. If
the marks are not in the specifi ed range, raise
a RangeException, else fi nd the total marks and
print the percentage of the students.

 3. Use Assertions in the above program to ensure
that the total marks of a student will always be
greater than or equal to 0.

 4. Use Logging in Question 2 to log the print status
of the students’ marksheet along with the name,
total marks, and percentage. Keep the log level
at INFO.

Answers to Objective Questions
 1. (c) 2. (a)
 3. (a), does not compile, as the parent class show method does not throw the checked exception

IllegalAccessException
 4. (d) 5. (c) 6. (c) 7. (b)
 8. (a)
 9. (a), as only one Logger is required for a class, so making it static applies to all the objects of the class
 10. (d), as the parent class show method does not throw the checked exception IllegalAccessException

 A person who learns to juggle six balls will be more skilled than the person who never
tries to juggle more than three. Marilyn vos Savant

After reading this chapter, the readers will be able to
  know what are threads and how they can be implemented in Java
  understand how multiple threads can be created within a Java program
  understand different states of a thread in Java
  appreciate the Thread class of java.lang package
  understand how runnable interface is helpful in creating threads

8.1 INTRODUCTION

Until now, whatever programs we have discussed were sequential ones, i.e., each of them has a
beginning, an execution sequence, and an end. While the program is being executed, at any point
of time, there is a single line of execution. One thing that you must note that a thread in itself is
not a program, as it cannot run on its own. However, it can be embedded with any other program.

Note A thread is a single sequential flow of control within a program.

 The concept of single thread is quite simple to understand. Things become somewhat complex
when there are multiple threads running simultaneously, each performing different tasks, within a
single program. This can be enabled by multithreading, where you can write programs containing
multiple paths of execution, running concurrently, within a single program. In other words, we
can say that a single program having multiple threads, executing concurrently, can be termed as
multithreaded program.
 Let us go to the basics of multithreading, which is actually a form of multitasking. Multitasking
can either be process-based or thread-based. If we assume programs as processes, then process-
based multitasking is nothing but execution of more than one program concurrently. On the
other hand, thread-based multitasking is executing a program having more than one thread,
performing different tasks simultaneously. Processes are heavyweight tasks, while threads are
lightweight tasks. In process-based multitasking, different processes are different programs, thus
they share different address spaces. The context switching of CPU from one process to another

Multithreading in
Java 88

Multithreading in Java 225

requires more overhead as different address spaces are involved in the same. On the contrary,
in thread-based multitasking, different threads are part of the same program, thus they share the
same address space and context switching of CPU occurs within the program, i.e., within the
same address space. Obviously, this will require less overhead.
 The objective of all forms of multitasking including multithreading is to utilize the idle time
of the CPU. Ideally a CPU should always be processing something. The idle time of CPU can
be minimized using multitasking.
 Have you ever paid attention to one thing? When you prepare a document using a word
processor program, the spelling can also be checked simultaneously. This is one such example
of thread-based multitasking. While you type in the document, the CPU sits idle and waits for
you to enter characters but because of thread-based multitasking, the word processor minimizes
the CPU idle time somewhat by simultaneously involving the CPU in checking the spelling of
the text. From now onwards, we will call thread-based multitasking as multithreading.

Note Multithreading enables programs to have more than one execution paths (separate) which
execute concurrently. Each such path of execution is a thread. Through multithreading,
efficient utilization of system resources can be achieved, such as maximum utilization of CPU
cycles and minimizing idle time of CPU.

8.2 MULTITHREADING IN JAVA

Every program that we have been writing has at least one thread, i.e., the main thread. Whenever
a program starts executing, the JVM is responsible for creating the main thread and calling
the main() method, from within that thread. Alongside, many other invisible daemon threads
responsible for supporting other activities of Java runtime such as finalization and garbage
collection are also created.
 Threads are executed by the processor according to the scheduling done by the Java Runtime
System by assigning priority to every thread. It simply means, threads having higher priority
are given preference for getting executed over the threads having lower priority.
 When a Java program is executed, the JVM creates at least a single non-daemon thread (which
calls the main() method of the corresponding class). A thread can either die naturally or be forced
to die. The execution of the thread will go on until one of the following conditions occur:

 A thread dies naturally when it exits the run() method normally. The normal exit from
run() means, the instructions of the run() has been processed completely.

 A thread can always be killed or interrupted by calling interrupt() method.

8.3 java.lang.THREAD
Creation of threads in Java is not as complex as the concept itself. There is a class named as
Thread class, which belongs to the java.lang package, declared as,

 public class Thread extends Object implements Runnable

This class encapsulates any thread of execution. Threads are created as the instance of this class,
which contains run() methods in it. In fact the functionality of the thread can only be achieved
by overriding this run() method. A typical run() would have the following structure:

226 Programming in Java

 public void run()
 {

 // statement for implementing thread

 }

Table 8.1 Methods of thread Class

Methods Description
static Thread currentThread() Returns a reference to the currently executing thread.

static intactiveCount() Returns the current number of active threads.
long getID() Returns the identification of thread.
final String getName() Returns the thread’s name.
final void join() Waits for a thread to terminate.
void join (long m) Waits at the most for ‘m’ milliseconds for the thread to die.

void join (long m, int n) Waits at the most for ‘m’ milliseconds and ‘n’ nanoseconds
for the thread to die.

void run() Entry point for the thread.

final void setDaemon(boolean how) If how is true, the invoking thread is set to daemon status.

boolean isInterrupted()
Returns true if the thread on which it is called has been
interrupted.

final boolean isDaemon() Returns true if the invoking thread is a daemon thread.

final boolean isAlive()
Returns boolean value stating whether a thread is still
running.

void interrupt() Interrupts a thread.

static boolean holdsLock(Object anyObj)
Returns true if the invoking thread holds the lock on
anyObj.

Thread.State getState() Returns the current state of the thread.

final int getPriority() Returns the priority of the thread.
static boolean interrupted() Returns true if the invoking thread has been interrupted.
final void setName(String thrdName) Sets a thread’s name to thrdName.
final void setPriority(int newPriority) Sets a thread’s priority to newPriority.

static void sleep(long milliseconds) Suspends a thread for a specified period of milliseconds.

void start() Starts a thread by calling its run() method.

void destroy() Destroys the thread, without any clean up.

static int enumerate (Thread[] thrdArray)
Copies into the specified array, every active thread of
thread’s group and sub group.

static void yield()
Cause the current executing thread to pause and allow the
other threads to execute.

Multithreading in Java 227

This method is automatically invoked when a thread object is created and initiated using the
start() method. Some of the methods belonging to the Thread class, which help in manipulating
thread instances, are shown in Table 8.1.
 Apart from these, some constructors are also defined in the Thread class. These constructors
can be classified in two different categories. We will discuss one category here and the other in
the next section when we will discuss about Runnable interface. The constructors responsible
for creating threads are

 1. Thread()
 2. Thread(String threadName)
 3. Thread(ThreadGroup threadGroup, String threadName)

In the first constructor, you can see that there are no arguments, which simply means it uses the
default name and the thread group. In the second constructor, the name of the constructor can
be specified as String. While in the third, you can specify the thread group and thread name.

8.4 MAIN THREAD

Even if a thread is not created by a programmer, every Java program has a thread, the main thread.
When a normal Java program starts executing, the JVM creates the main thread and calls the
program’s main()method from within that thread. Apart from this, the JVM also creates some
invisible threads, which are important for its housekeeping tasks such as, threads taking care of
garbage collection and threads responsible for object finalization. The main thread spawns the
other threads. These spawned threads are called child threads. This main thread is always the last
to finish executing because it is responsible for releasing the resources used during the program
execution, such as network connections.
 As a programmer, you can always take control of the main (or any other) thread. For this,
a static method, currentThread(), is used to return a reference to the current thread. The main
thread can be controlled by this reference only.
 Now let us put these into practicality by creating a reference to the main thread. We could also
change the name of the main thread from main to any new name. The following piece of code
serves the purpose for you.

Example 8.1 Renaming a Thread

 L1 class MainThreadDemo {
 L2 public static void main (String args[]) {
 L3 Thread threadObj = Thread.currentThread();
 L4 System.out.println("Current thread: " +threadObj);
 L5 threadObj.setName("New Thread");
 L6 System.out.println("Renamed Thread: " +threadObj);
 L7 } }

Output
 Current thread: Thread[main, 5, main]
 Renamed Thread: Thread[New Thread, 5, main]

228 Programming in Java

Explanation
L1 Class MainThreadDemo declared.
L2 main method declared.
L3 A reference to the current Thread is returned and
is stored in the threadObj. Here the current thread is
the main thread itself. The reference is declared by
specifying the name of the class, i.e., Thread class
in this case followed by the name for the reference,
which is done as in the following line of code:

 Thread threadObj

We acquire a reference to the main thread by calling
the static method currentThread() of the Thread
class using the following method call:

 Thread.currentThread()

The reference to the current thread object (i.e., main)
is returned by the currentThread()method and
stored in the reference previously declared.
L4 The thread object (i.e., main) is passed to the
println method. The toString() method of the
Thread class is called by default, which displays the
first line of the output.
L5 The setName() method of Thread class is used
to change the name of the Thread. This example uses
the setName() method to change the main thread’s
name from main to New Thread.

 If we see the output now, the information within the square brackets is the signature of the
thread. The first element in the bracket is the name of the thread. The second element signifies
the thread priority (explained later in the Chapter under the topic thread priority). The range for
setting the priority can be between 1 and 10; 1 for lowest priority 10 for highest priority and 5
for normal priority. The last element in the bracket is the group name for threads to which the
thread belongs. The state of collection of threads can be controlled by a data structure, known
as thread group. The thread group is automatically handled by the Java runtime system.

8.5 CREATION OF NEW THREADS

Once we have mentioned some of the methods and constructors of the Thread class, we can
concentrate on different ways to create a new thread:

  By inheriting the Thread class
  By implementing the Runnable interface

8.5.1 By Inheriting the Thread Class
Threads can be created by inheriting the java.lang.Thread class. All the thread methods belonging
to the Thread class can be used in the program because of the extension (inheritance).
 Steps to be followed for thread creation:

  Declare your own class as extending the Thread class.
  Override the run() method, which constitutes the body of the thread.
  Create the thread object and use the start() method to initiate the thread execution.

 Let us elaborate these steps in detail.

Declaring a Class Any new class can be declared to extend the Thread class, thus inheriting all
the functionalities of the Thread class.

Multithreading in Java 229

 classNewThread extends Thread
 {

 }

 Here, we have a new type of thread, named as ‘NewThread’.
Overriding the run() Method The run() method has to be overridden by writing codes
required for the thread. The thread behaves as per this code segment. A typical run() method
would look like
 public void run()
 {

 //code segment providing the functionality of thread

 }

Starting New Thread The third part talks about the start() method, which is required to create
and initiate an instance of our Thread class. The following piece of code is responsible for the same:

 newThread thread1 = new newThread();
 thread1.start();

The first line creates an instance of the class NewThread, where the object is just created. The
thread is in newborn state. Second line, which calls the start() method, moves the thread to
runnable state, where the Java Runtime will schedule the thread to run by invoking the run()
method. Now the thread is said to be in running state.

Example 8.2 Creating a Thread Using the Thread Class
 L1 class ThreadOne extends Thread {
 L2 public void run(){
 L3 try {
 L4 for(int i = 1; i<= 5; i++) {
 L5 System.out.println("\tFrom child thread 1 : i =" +i);
 L6 Thread.sleep(600);
 L7 }
 L8 } catch(InterruptedException e){
 L9 System.out.println("child thread1 interrupted");
 L10 }
 L11 System.out.println("Exit from child thread 1");
 L12 }
 L13 }
 L14 class ThreadTwo extends Thread{
 L15 public void run(){
 L16 try {
 L17 for(int j = 1; j <= 5; j++){
 L18 System.out.println("\t From child thread 2 : j =" +j);

230 Programming in Java

 L19 Thread.sleep(400);
 L20 }
 L21 } catch(InterruptedException e){
 L22 System.out.println("child thread 2 interrupted");
 L23 }
 L24 System.out.println("Exit from child thread 2");
 L25 }
 L26 }
 L27 class ThreadThree extends Thread {
 L27 public void run(){
 L28 try {
 L29 for(int k = 1; k <= 5; k++) {
 L30 System.out.println("\tFrom child thread 3 : k =" +k);
 L31 Thread.sleep(800);
 L32 }
 L33 } catch(InterruptedException e){
 L34 System.out.println("child thread 3 interrupted");
 L35 }
 L36 System.out.println("Exit from child thread 3");
 L37 }
 L38 }
 L39 class ThreadDemo {
 L40 public static void main(String arg[]) {
 L41 ThreadOne a = new ThreadOne();
 L42 a.start();
 L43 ThreadTwo b = new ThreadTwo();
 L44 b.start();
 L45 ThreadThree c = new ThreadThree();
 L46 c.start();
 L47 try {
 L48 for(int m=1; m<=5; m++){
 L49 System.out.println("\t From Main Thread : m =" +m);
 L50 Thread.sleep(1200);
 L51 }
 L52 } catch (InterruptedException e) {
 L53 System.out.println("Main interrupted");}
 L54 System.out.println("Exit form main thread");
 L55 }
 L56 }

Output
 From child thread 1 :i =1
 From Main Thread : m =1
 From child thread 2 : j =1
 From child thread 3 : k =1
 From child thread 2 : j =2
 From child thread 1 :i =2
 From child thread 3 : k =2
 From child thread 2 : j =3
 From Main Thread : m =2
 From child thread 1 :i =3

Multithreading in Java 231

 From child thread 2 : j =4
 From child thread 3 : k =3
 From child thread 2 : j =5
 From child thread 1 :i =4
Exit from child thread 2
 From Main Thread : m =3
 From child thread 1 :i =5
 From child thread 3 : k =4
Exit from child thread 1
 From child thread 3 : k =5
 From Main Thread : m =4
Exit from child thread 3
 From Main Thread : m =5
Exit from main thread

Explanation
L1 Class ThreadOne extends the Thread class,
thus inheriting all the functions and members of the
Thread class.
L2–7 run() method, returning void is overridden.
The for loop incrementing the counter variable, i,
is looped 5 times (L3). Each value of i is displayed
on the screen (L4) and before moving to the next
value of i, the thread sleeps for 0.6 seconds (L6).
Thread.sleep() method throws an exception,
InterruptedException, so it should be within a
try…catch block.
L14 Just like the class ThreadOne, a new class
ThreadTwo, extending the Thread class is declared.
L15–20 run() method responsible for providing
the functionality of the thread of this class is
overridden. The code of this method is similar to that
of the run(), explained in the previous paragraph.
L27 Third class, ThreadThree, extending the
Thread class is declared.
L28–36 run() method for the third class’ thread
is implemented, similar to the previously explained
run() methods.
L39 Class ThreadDemo encapsulating the main()
method is declared. This class, which acts as the
main thread, is responsible for spawning the other
three child threads.

L40 main() method declared.
L41 Reference for ThreadOne class is created and
stored in a.
L42 The start() method is invoked on the thread
object a. This method puts the thread in a ready-to
execute state. As soon as the CPU is allocated to the
thread by the thread scheduler, the run() method
for the thread is called automatically. As you can see
in the example also, the run()method is not called
explicitly.
L43–46 Just like creating the object for ThreadOne,
we create the reference objects for ThreadTwo
and ThreadThree and store them in b and c,
respectively. L44 is responsible for starting the
second thread pertaining to ThreadTwo class and L46
is responsible for starting the third thread pertaining
to ThreadThree class, thus resulting in invocation of
the corresponding run() methods.
L47–55 Certain functionalities, similar to the
functionalities of the above child threads, are
provided inside the main thread also. It has been made
to sleep for 1.2 seconds (L50), which has been kept
more than the three child threads, so that the main
thread completes its execution at last, otherwise there
is always a possibility for the system to get hung.

8.5.2 Implementing the Runnable Interface
We have already mentioned that there can be two ways for implementing threads. First method
has already been discussed in the previous section. Now let us talk about the second way, i.e.,

232 Programming in Java

by implementing the Runnable interface. Before taking on the second method of implementing
Runnable interface, we must know the ins and outs of this interface. It is actually implemented
by class Thread in the package java.lang. This interface is declared public as,
 public interface Runnable

The interface needs to be implemented by any class whose instance is to be executed by a thread.
The implementing class must also override a method named as run(), defined as the only method
in the Runnable interface as,
 public void run()
 {

 }

 The object’s run() method is called automatically whenever the thread is scheduled for
execution by the thread scheduler. The functionality of the thread depends on the code written
within this run() method. One thing worth noting is that other methods can be called from within
run(). Not only this, use of other classes and declaration of variables, just like the main thread,
are also possible inside run(). The thread will stop as soon as the run() exits.
 The question that arises here is, when and how shall we resort to the second method? The
approach to be undertaken is dependent on the requirement of the class. If the class requires
inheriting any other class, then obviously the Thread class cannot be inherited, as multiple
inheritance is not allowed in Java. So the obvious solution in this case is to use the interface,
i.e., Runnable. [Remember: any numbers of interfaces can be inherited by a class.]
 Some other constructors belonging to the Thread class are worth mentioning here, as these
can be used while creating thread using Runnable interface.

  Thread(Runnable threadObj)
  Thread(Runnable threadObj, String threadName)

  Thread(ThreadGroup threadGroup, Runnable threadObj)

  Thread(ThreadGroup threadGroup, Runnable threadObj, String threadName)

 The above threadObj is a reference to an instance of a class that implements the Runnable
interface and overrides the run() method. This defines where the execution will begin. As
mentioned earlier, the object’s run() method’s code is responsible for giving the functionality
to the new thread. threadName is the name of the thread. In case no name is passed externally to
the constructors, the JVM is automatically going to name it. The third argument, threadGroup
is the group name to which the thread belongs. If no thread group is externally specified, the
group is determined by the security managing component or the group is set to the same group,
which the invoking thread is a part of.
 Once a class that implements the Runnable interface is created, an object of the Thread class
must be instantiated from within that class. In Example 8.3, we are going to use the second
constructor described in the previous paragraph, i.e.,
 Thread (Runnable threadObj, String threadName)

Even if a thread is created, it will not start executing unless the start() method of the Thread
class is called.

Multithreading in Java 233

Example 8.3 Creating a Thread Using Runnable Interface
 L1 class ThreadChild implements Runnable {
 L2 ThreadChild() {
 L3 Thread t = new Thread (this, "Example Thread");
 L4 System.out.println("Detail of child thread :" +t);
 L5 t.start();
 L6 }
 L7 public void run(){
 L8 try {
 L9 for(int i = 1; i<= 5; i++) {
 L10 System.out.println("\tFrom child thread 1 : i =" +i);
 L11 Thread.sleep(500);
 L12 }
 L13 } catch(InterruptedException e) {
 L14 System.out.println("child Thread 1 interrupted");
 L15 }
 L16 System.out.println("Exit from child Thread 1");
 L17 }
 L18 }
 L19 class ThreadDemo2 {
 L20 public static void main(String args[]) {
 L21 new ThreadChild();
 L22 try{
 L23 for(int m=1; m<=5; m++) {
 L24 System.out.println("\tFrom Main Thread : m =" +m);
 L25 Thread.sleep(1000);
 L26 }
 L27 } catch(InterruptedException e){
 L28 System.out.println("Main interrupted");
 L29 }
 L30 System.out.println("Exit from main thread");
 L31 }
 L32 }

Output
 Detail of child thread :Thread[Example Thread,5,main]
 From Main Thread : m = 1
 From child thread 1 :i = 1
 From child thread 1 :i = 2
 From child thread 1 :i = 3
 From Main Thread : m = 2
 From child thread 1 :i = 4
 From Main Thread : m = 3
 From child thread 1 :i = 5
Exit from child Thread 1
 From Main Thread : m = 4
 From Main Thread : m = 5
Exit from main thread

234 Programming in Java

Explanation
L1 A class, ThreadChild, implementing the
Runnable interface is declared. This class is
responsible for the creation of the child thread,
spawning out of the main thread.
L2 A constructor, ThreadChild(), is declared.
L3 Inside ThreadChild() constructor, a thread
object t is created. Passing this as the first
argument shows that the current class has inherited
the Runnable interface. It is this class’ object that
will tell what the thread is going to perform because
it has overridden the run() method.
L5 The start() method is called, which starts the
execution of the thread by invoking the run().
L7–15 run() is declared (L7) . It will be called
automatically whenever this thread is scheduled
by the thread scheduler. [Remember: explicit call
to run()will invoke it from the caller thread rather
than its own thread]. A for loop is declared to

loop five times to display the numbers from 1 to
5. After displaying each number on the screen, the
thread sleeps for half a second. You can see the
try...catch block, which is placed to catch the
InterruptedException thrown by the sleep()
method.
L16 We intend to display the exit of the child thread
created inside the ThreadChild class.
L19 Class ThreadDemo2 containing the main thread
is declared (L31).
L20–26 The main method is declared (L20). The
constructor ThreadChild() is instantiated (L21).
This instantiation invokes the constructor declared
between L2–6. The try...catch block between
L22–26 constitutes the body of the main thread. A for
loop is declared to loop five times and it displays the
number from 1 to 5. After displaying each number
on the screen, it sleeps for one second.

8.6 Thread.State IN JAVA

In the process-based multitasking, the operating system manages the context switching
between programs based on the time slice provided for each program segment, but in case of
multithreading, Java Runtime manages threads. Here, execution of one thread stops while the
other continues, as the switching takes place within the same program amongst different threads.
Before Java 5.0, Java had thread states similar to the thread states of an operating system.
Java 5.0 came up with a static nested class named as State, which is made a part of the Thread
class. This Thread class is made to inherit the abstract class Enum. This class Enum is a common
base class of all Java language enumeration types. In other words, Thread.State is actually an
enumeration type declared as follows:

 public static enum Thread.State extends Enum

The enumeration Thread.State has the possible states of a Java thread in the underlying JVM.
At any time, a thread is said to be in one of the states mentioned below. Figure 8.1 shows the
various states in which a Java thread exists during its life. Some of the methods responsible for
the transition from one state to another are also shown. Obviously, the diagram is not exhaustive,
as it does not mention all such responsible methods. It is just an overview of a thread’s life.

New In this state, a new thread is created but not started. The following line of code is responsible
for the same (assuming ThreadDemo class has inherited the Thread class or Runnable interface):

 Thread threadObj = new ThreadDemo();

Multithreading in Java 235

New Thread

New

interrupt()

start()

yield()

Runnable

Terminated

interrupt()

Dead

interrupt()

wait()

sleep()

join()

Not Runnable

Fig. 8.1 Thread States

 The above statement is responsible for creating a new Thread object. In ‘New’ state, no system
resource (such as CPU) is allotted to the newly born Thread object. From this state, the thread
can either be started (by using start() of Thread class) or stopped (by using interrupt() of
Thread class), thus moving to ‘Runnable’ or ‘Terminated’ state, respectively. No other method
apart from start() and interrupt() can be called from this state and if tried to do so, it would
cause an exception, IllegalThreadStateException.

Runnable In this state, a thread is ready for execution by the JVM. It represents the running
state of the thread, as well. Ready state of a thread can be defined as it is ready for execution
but it might be in the queue, waiting for the operating system to provide it the required resource,
like processor. Once a thread is actually being executed by the processor then it is termed as
“Running”. From ‘New’ state the thread might move to the ‘Runnable’ state on execution of
the following statements:

 Thread threadObj = new ThreadDemo();

 threadObj.start();

 As soon as start() is called, the thread is allotted the system resource as per the scheduling
done by the Java Runtime Environment. Now the thread has entered into the runnable state.
In Fig. 8.1, no differentiation is made between a running thread and a runnable thread. Even
the running threads are made a part of the runnable state. But there is a difference between the
two. A running thread is the one which is being executed by the processor. Such a thread can
be called as the current thread. Runnable threads are those which are not actually running,
but are scheduled in queue to get the processor. The scheduling scheme, under which all the

236 Programming in Java

runnable threads are prioritized for sharing the processor, is implemented by the Java Runtime
system. However, when a thread moves to ‘Running’ from ‘Runnable’, the instructions of the
run() method are being executed sequentially. During this phase the processor can be forced to
relinquish its control over the thread, thus forcing it to be a part of the queue again by the use
of yield() method as shown in Fig. 8.1.

 Not Runnable From runnable state, a thread might move to the not runnable state, as shown in
Fig. 8.1. This state is just a hypothetical state used by us to categorize the three valid states of
Java. A thread which is in any of these three states can be assumed to be in ‘not runnable’ state.
These three states are WAITING, TIMED_WAITING, and BLOCKED.

 Waiting In this state, a thread is waiting indefinitely for another thread to perform a particular
action (i.e., notify). Threads can move into this state either by calling the methods Object.wait()
(without time out) or Thread.join() (without time out).

 Timed_Waiting In this state, the thread is waiting for another thread to perform an action (notify)
up to a specified waiting time. A thread can get into this state by calling either of these methods:
Thread.sleep(), Object.wait(), and Thread.join() (all these methods should be called with
time out specified).

 Blocked In this state, a resource cannot be accessed because it is being used by another thread.
A thread can get into this state by calling Object.wait() method.

 Before proceeding further, we must discuss the concept of monitors in Java. This is taken
up in greater detail in Section 8.8. Monitor is an object that is a mutually exclusive lock on the
resource to be accessed. A monitor can be owned by only one thread at a time. When a thread
calls Object.wait() method, it releases all the acquired monitors and is put into WAITING
state, until some other thread enters the same monitor and calls notify()/notifyAll(). When
notify() is called, it wakes up a thread that called wait() on the same object. The method
notifyAll() will wake up all the threads that called wait() on the same object. The difference
between two methods is that, if notify() is used, then only one thread (selected by the JVM
scheduler) is granted the monitor and all other threads are put into BLOCKED state, whereas
if you use notifyAll(), it wakes up all the threads and puts them into ready state. The threads
that can execute, start executing, and the rest move into the waiting state.The three methods
mentioned above are final methods of the ObjectClass, so all classes have them.

 fi nal void wait() throws InterruptedException;

 fi nal void notify()

 fi nal void notifyAll()

Additional form of wait() where time can be specified for the thread to wait for that period,
is also available. It puts the thread in TIMED_WAITING state. We can easily figure out that a
WAITING state thread will always be dependent on an action performed by some other thread,
whereas a thread in TIMED_WAITING is not completely dependent on an action performed by

Multithreading in Java 237

some other thread, as in this case, the wait ends automatically after the completion of the time
out period. Similarly, if a thread has put itself into WAITING state by calling Thread.join()
method, then it will keep waiting until the specified thread terminates or the specified time
elapses. There seems to be no difference between sleep() and wait() as both of them do the
same job of making a thread wait for a specified time. The differences between the start methods
have been specified in Table 8.2.

Table 8.2 Difference between wait() and sleep()

Object.wait() Thread.sleep()

wait() belongs to Object class sleep() belongs to Thread class.

It can only be used from within the synchronized
method or statements.

It can be used from outside the synchronized methods and
statements.

Wait state can be terminated by calling Object.
notify() method.

The sleep state can be terminated by invoking interrupt()
method of the thread instance.

Object.wait() is used in concurrent thread
access codes only.

Thread.sleep(int ms) is used wherever and whenever
required method.

It stops the current thread execution and
releases the lock of the object. Now other
threads can use this released object.

Thread.sleep(int ms) causes the current thread to suspend
execution for a specified number of milliseconds. This can let
other threads to use the resources being held by the previous
thread

 Terminated
This state is reached when the thread has finished its execution. A thread can move to ‘Terminated’
state, from any of the above mentioned states. In this state, the thread is dead. The death of a
thread can either be natural or forceful. A thread dies naturally when it exits run() normally.
The normal exit from run() means the instructions of the run() has been processed completely.
For example, the for loop in the following method is a finite loop which would iterate 5 times
(i.e., from 1 to 5) and then exit.

 public void run(){

 for(int i = 1; i<= 5; i++)

 {

 System.out.println(“i =” +i);

 Thread.sleep(500);

 }

 }

 A thread with the above run() method will die naturally after the last statement of run()
completes. A thread can always be interrupted by using interrupt(). The following block of
code does the job of killing a thread by calling interrupt() method.
 We can know the state of a particular thread by using getState() method. The following
program shows the usage of getState() and interrupt() methods.

238 Programming in Java

Example 8.4 Using interrupt() and getState()

 L1 class ThreadInterrupt extends Thread {
 L2 boolean interrupt = false;
 L3 String name;
 L4 ThreadInterrupt(String n){
 L5 super(n);
 L6 name = n;
 }
 L7 public void run(){
 L8 while (!interrupt){
 L9 System.out.println("Thread running: " +name+ " state: " +getState());
 L10 try{
 L11 Thread.sleep(1000);
 L12 } catch(InterruptedException e){
 L13 System.out.println("Thread Interrupted:" +name + "state:" +getState());
 }
 }
 L14 System.out.println("Thread exiting under request: "+name + "state: "+getState());
 }
 L15 public static void main(String args[]) throws Exception {
 L16 ThreadInterrupt thread = new ThreadInterrupt("InterruptExample");
 L17 System.out.println("Starting Thread: " +thread.name + "state: " +thread.getState());
 L18 thread.start();
 L19 Thread.sleep(3000);
 L20 System.out.println("Stopping Thread: " +thread.name + "state: " +thread.getState());
 L21 thread.interrupt = true;
 L22 thread.interrupt();
 L23 System.out.println(thread.name +" state: "+thread.getState());
 L24 Thread.sleep(3000);
 L25 System.out.println("Exiting application state: " +thread.getState());
 L26 System.exit(0);
 }}

Output

 C:\javabook\programs\chap 8>java ThreadInterrupt
 Starting Thread: InterruptExample state: NEW
 Thread running: InterruptExample state: RUNNABLE
 Thread running: InterruptExample state: RUNNABLE
 Thread running: InterruptExample state: RUNNABLE
 Stopping Thread: InterruptExample state: TIMED_WAITING
 InterruptExample state: TIMED_WAITING
 Thread Interrupted: InterruptExample state: RUNNABLE
 Thread exiting under request: InterruptExamplestate : RUNNABLE
 Exiting application state: TERMINATED

Multithreading in Java 239

Explanation
L1 A thread class is created.
L2 A Boolean variable interrupt (similar to a
flag) has been defined to check the thread interrupted
status.
L3 A string instance variable name has been defined
to assign a name to the thread.
L4–6 Constructor for the class has been defined.
This constructor sets the name of the thread by using
the super constructor call and assigns the argument
value to the string variable name.
L7 The run() method which states what the thread
has to perform is overridden.
L8 It checks the status of the interrupt flag and if
it is false, the while loop keeps on executing.
L9 It is a print statement that displays the name of
the thread along with its state. The current state of the
thread is obtained using the method getState(). The
state of a thread if enquired from a run method will
always be RUNNABLE as the run method is only
executed when a thread is executing. (See output)
L10–13 A try...catch block has been defined
because the thread is made to sleep for a second using
Thread.sleep(1000) method and the sleep method
may throw InterruptedException, if interrupted.
So it has to be caught. The throws keyword cannot
be used with the run method as the method is
overridden and the parent interface (Runnable) does
not mention any throws clause with the definition of
the run method. So during overriding, the definition
of the method cannot be changed. If an exception
is generated, it is caught by the catch defined in
L12 and L13 is executed, which displays Thread
Interrupted: followed by the name of the thread
and its state (i.e. RUNNABLE).
L14 It is the final print statement in the run
method that displays the thread exiting under request
followed by the name of the thread and its state, i.e.,
RUNNABLE. This line will be executed after the
while loop exits.
L15 It defines the starting point for the execution
of the program, i.e., the main method.
L16 A new thread is created and the name for the
thread is passed as an argument in the constructor
of the thread.
L17 Shows a print statement that displays Starting

Thread followed by the name of the thread and its
state. The thread has just been created, so its state
will be NEW.
L18 Starts the thread by using the start() method
on the newly created thread instance in L16. The run
method for this thread will be called automatically
as the thread is scheduled for execution (L7). As
the interrupt flag is initially false, the while loop
in the run method will execute and L9 will keep on
executing.
L19 The main thread is made to sleep for 3 seconds.
So the other thread InterruptedExample will keep
on executing and sleeping (1 second only).
L20 Shows a print statement that displays the
Stopping Thread: followed by the name of the thread
and its state. If you see the output, the state of the
thread displayed is TIMED_WAITING because the
InterruptedExample thread is sleeping for 1 second
and the main thread is executing at this moment.
L21–22 The interrupt boolean variable is set to
true and the InterruptedExample thread is inter-
rupted using interrupt(). Note that the Interrupt-
edThread is sleeping and if a thread is interrupted
while it is sleeping, an InterruptedException is
generated. This exception will be caught at the catch
defined in L12 and this block will execute as soon as
the thread regains CPU, in other words is scheduled
by the scheduler.
L23 Shows a print statement that displays the name
of the thread and its state. If you see the output, the
state of the thread is still TIMED_WAITING because
the InterruptedExample thread is still not allowed
to execute as the main thread is executing.
L24 The main thread is deliberately made to sleep
to allow the other thread to execute. At this stage,
the control passes to catch in L12. L13 executes
followed by L14 and then the run method exits.
L25 Shows a print statement that displays Exiting
Application followed by the state of the child thread
(created from main) i.e., InterruptedExample. The
run method for the thread InterruptedExample
has exited, so the state is now TERMINTAED (see
output).
L26 The application is terminated using the exit
method of the System class.

240 Programming in Java

 There was one more method, stop(), which has now been deprecated, used to terminate a
thread. The reason for this deprecation is that it throws a ThreadDeath object at the thread to kill
it. Apart from this, calling stop() method results in sudden termination of thread’s run() method,
which might lead to the results achieved by the thread program in inconsistent or undesirable
state.

8.7 THREAD PRIORITY

Each thread has a set priority, which helps the scheduler to decide the order of sequence of thread
execution, i.e., when should which thread run? By default the threads created, carry the same
priority, due to which the Java scheduler schedules them for the processor on first-come-first-
serve basis. It is to be noted that Java follows preemptive scheduling policy, just like an operating
system. When a high priority thread becomes ready for execution, the currently executing low
priority will be stopped. On the contrary, a low priority thread cannot preempt a currently running
high priority thread. It has to wait until the high priority thread is dead or blocked because of
some reason or the other. The reasons for this can be any of the following:

  Thread stops as soon as it exits run()
  It sleeps (by using sleep())
  It waits (by using wait() or join())

Once it resumes from the blocked state, it will again preempt the low priority thread to which
it had relinquished its control earlier, thus forcing the low priority to move to the runnable state
from the running state.

Note Higher priority threads will always preempt the lower priority threads. Actually it depends on
how the priorities of threads set by the JVM are mapped to the operating system. It might
happen that a higher priority might not be considered higher by the operating system. So this
actually depends on the operating system and it varies from OS to another.

 As shown in Table 8.3, the Thread class has a method setPriority(), responsible for setting
the priority of the thread by programmer. The signature of the method is
 fi nal void setPriority(int x)

where x specifi es the value used to signify the thread’s priority. Thread class defi nes several
predefi ned priority constants (as static fi nal variables) as shown in Table 8.3.

Table 8.3 Priority Constants and their Corresponding Value for Threads

Constant Value Meaning
MIN_PRIORITY 1 Max priority a thread can have
NORM_PRIORITY 5 Default priority a thread can have
MAX_PRIORITY 10 Min priority a thread can have

 From the above table, it is clear that priority can be set in the form of values between 1 and
10. If this priority is not externally assigned, by default it is set to NORM_PRIORITY, i.e., 5.
 A thread’s current priority can be obtained by the getPriority() of the thread class, which
returns an integer value.

Multithreading in Java 241

 fi nalintgetPriority()

 Here is an example that shows the use of priority constants and getPriority() method.

Example 8.5 Setting and Getting Priorities of Threads
 L1 class ThreadOne extends Thread {
 L2 public void run(){
 L3 try {
 L4 for(int i = 1; i<= 5; i++){
 L5 System.out.println("\tFrom child thread 1 : i =" +i);
 L6 Thread.sleep(500);
 L7 }
 L8 } catch(InterruptedException e){
 L9 System.out.println("child Thraed 1 interrupted");
 L10 }
 L11 System.out.println("Exit from child Thread 1");
 L12 }
 L13 }
 L14 class ThreadTwo extends Thread {
 L15 public void run() {
 L16 try {
 L17 for(int j = 1; j <= 5; j++) {
 L18 System.out.println("\tFrom child thread 2 : j =" +j);
 L19 Thread.sleep(500);
 L20 }
 L21 } catch (InterruptedException e) {
 L22 System.out.println("child thread 2 interrupted");
 L23 }
 L24 System.out.println("Exit from child thraed 2");
 L25 }
 L26 }
 L27 class ThreadThree extends Thread {
 L28 public void run() {
 L29 try{
 L30 for(int k = 1; k <= 5; k++) {
 L31 System.out.println("\tFrom child thread 3 : k =" +k);
 L32 Thread.sleep(500);
 L33 }
 L34 } catch (InterruptedException e) {
 L35 System.out.println("child thread 3 interrupted");
 L36 }
 L37 System.out.println("Exit from child thread 3");
 L38 }
 L39 }
 L40 class ThreadPriority {
 L41 public static void main(String args[]) {
 L42 ThreadOne a = new ThreadOne();
 L43 ThreadTwo b = new ThreadTwo();
 L44 ThreadThree c = new ThreadThree();
 L45 System.out.println("Default Priority for thread 1:" +a.getPriority());
 L46 System.out.println("Default Priority for thread 2:" +b.getPriority());

242 Programming in Java

 L47 System.out.println("Default Priority for thread 3:" +c.getPriority());
 L48 System.out.println(" ");
 L49 a.setPriority(Thread.MIN_PRIORITY);
 L50 b.setPriority(Thread.NORM_PRIORITY);
 L51 c.setPriority(Thread.MAX_PRIORITY);
 L52 System.out.println("Priority set for thread 1 :" +a.getPriority());
 L53 System.out.println("Priority set for thread 2 :" +b.getPriority());
 L54 System.out.println("Priority set for thread 3 :" +c.getPriority());
 L55 System.out.println(" ");
 L56 System.out.println("All the Three threads start from here");
 L57 a.start();
 L58 b.start();
 L59 c.start();
 L60 }
 L61 }

Output

 Default Priority for thread 1 :5
 Default Priority for thread 2 :5
 Default Priority for thread 3 :5
 New Priority set for thread 1 :1
 New Priority set for thread 2 :5
 New Priority set for thread 3 :10
 All the Three threads start
 from here From child thread
 3 : k = 1 From child thread
 2 : j = 1 From child thread
 1 : i = 1 From child thread
 3 : k = 2 From child thread
 2 : j = 2 From child thread
 1 : i = 2 From child thread
 3 : k = 3 From child thread
 2 : j = 3 From child thread
 1 : i = 3 From child thread
 3 : k = 4 From child thread
 2 : j = 4 From child thread
 1 : i = 4 From child thread
 3 : k = 5 From child thread
 2 : j = 5 From child thread
 1 : i = 5
 Exit from child thread 3
 Exit from child thread 2
 Exit from child thread 1

Explanation
L1–39 These lines have the details about declaring
three different classes, ThreadOne, ThreadTwo, and
ThreadThree, each extending the Thread class.
Each of these child thread classes have already been
explained in Example 8.2.

L40 Main thread class threadPriority is declared.
L41 The main()method is declared.
L42–45 Reference objects for the three child thread
classes are created and stored in a, b, and c.

Multithreading in Java 243

L45 Default priority for child thread one is
displayed. You can see the use of getPriority()
method, which has been called using the object of
ThreadOne class. This method returns the current
priority of the thread pertaining to ThreadOne class.
L46–47 Just like child thread one, the current
priority of child thread two and child thread three
is displayed.
L49 Object a of child thread class, ThreadOne
invokes its setPriority() method to set the priority
for the execution of threads, so as to schedule the
threads externally. You can see that the priority for
thread one is set to minimum priority, i.e., 1, by
passing it as argument to setPriority().

L50 Similar to thread one, the object of child thread
two invokes its setPriority() method to set the
priority of the thread to normal priority, i.e., 5.
L51 The object of child thread three is used to call
its setPriority() method to set the priority of the
thread to highest priority, i.e., 10.
L52–54 New priorities of the three children threads
are displayed. Once more, getPriority() method
can prove to be instrumental for the purpose of
obtaining the newly set priorities of the threads.
L57–59 From within the main thread, all the
three threads started using the start()methods
corresponding the thread objects. The respective run
() methods of the thread objects will be executed as
and when the threads are scheduled for execution.

8.8 MULTITHREADING—USING isAlive AND join()

The main thread should always be the last thread to end, i.e., all the child threads spawned out
of the main thread should end executing before the main itself. The execution of main thread
can be prolonged using Thread.sleep() method. The time for which the main should be made
to sleep cannot be estimated exactly, as the time taken by child thread is difficult to estimate.
If we fall short on our estimation, then the child thread will terminate after the termination of
main thread, which is not something we want. This is the lacuna associated with sleep technique.
 Two other methods which generally work in tandem can be used to resolve the above mentioned
crisis: isAlive() and join(). Both the methods as mentioned in Table 8.1 are part of the Thread
class. isAlive() method returns a boolean value. It returns ‘true’ if the thread is active, i.e., it
has started and not stopped. If it returns ‘false’, the thread can either be a new thread or a dead
thread. In other words, if isAlive() returns ‘true’, the thread can be comprehended to be either
in ‘Runnable’ or ‘Not Runnable’ state, otherwise it is in ‘Dead’ state. The isAlive() method
can be used to check whether the child thread is running or not. The method as defined in the
Thread class is as follows:

 fi nal boolean isAlive()

As far as the join() method is concerned, it waits until the thread on which it is called terminates.
It waits for the child thread to terminate and then joins the main thread. Apart from this, join()
method can also be used to specify the amount of time you want the child thread to wait before
terminating. Example 8.6 shows the use of these two methods.

Example 8.6 Use of join() in Forcing a Thread to Wait for Other’s Termination
 L1 class ThreadJoin implements Runnable {
 L2 String thread;
 L3 Thread thrd;

244 Programming in Java

 L4 ThreadJoin (String threadName) {
 L5 thread = threadName;
 L6 thrd = new Thread (this, thread);
 L7 thrd.start();
 L8 }
 L9 public void run() {
 L10 try {
 L11 Thread.sleep(2000);
 L12 for(int i = 1; i<= 3; i++) {
 L13 System.out.println("\t From child thread " + thread + " : i = "+i);
 L14 }
 L15 } catch(InterruptedException e) {
 L16 System.out.println("Exception: Thread "+ thread + " interrupted");
 L17 }
 L18 System.out.println("Terminating thread: " + thread);
 L19 }
 L20 }
 L21 class JoinDemo {
 L22 public static void main (String args []) {
 L23 ThreadJoin threadA = new ThreadJoin ("A");
 L24 ThreadJoin threadB = new ThreadJoin ("B");
 L25 ThreadJoin threadC = new ThreadJoin ("C");
 L26 ThreadJoin threadD = new ThreadJoin ("D");
 L27 System.out.println("Thread Status: Alive");
 L28 System.out.println("Thread A: " +threadA.thrd.isAlive());
 L30 System.out.println("Thread B: " +threadB.thrd.isAlive());
 L31 System.out.println("Thread C: " +threadC.thrd.isAlive());
 L32 System.out.println("Thread D: " +threadD.thrd.isAlive());
 L33 try {
 L34 System.out.println("Threads Joining......");
 L35 threadA.thrd.join();
 L36 threadB.thrd.join();
 L37 threadC.thrd.join();
 L38 threadD.thrd.join();
 L39 } catch (InterruptedException e){
 L40 System.out.println("Exception: Thread main interrupted.");
 L41 }
 L42 System.out.println("Thread Status: Alive");
 L43 System.out.println("Thread A: " + threadA.thrd.isAlive());
 L44 System.out.println("Thread B: " + threadB.thrd.isAlive());
 L45 System.out.println("Thread C: " + threadC.thrd.isAlive());
 L46 System.out.println("Thread D: " + threadD.thrd.isAlive());
 L47 System.out.println("Terminating thread: main thread.");
 L48 }
 L49 }

Output
 Thread Status: Alive
 Thread A: true
 Thread B: true
 Thread C: true

Multithreading in Java 245

 Thread D: true
 Threads Joining......
 From child thread A :i = 1
 From child thread A :i = 2
 From child thread A :i = 3

Terminating thread: A
 From child thread B :i = 1
 From child thread B :i = 2
 From child thread B :i = 3

Terminating thread: B
 From child thread C :i = 1
 From child thread C :i = 2
 From child thread C :i = 3

Terminating thread: C
 From child thread D :i = 1
 From child thread D :i = 2
 From child thread D :i = 3

Terminating thread: D
 Thread Status: Alive
 Thread A: false
 Thread B: false
 Thread C: false
 Thread D: false
 Terminating thread: main thread.

Explanation
(Only those lines relevant to the topic are explained.)
L28–32 After the threads are declared using the
constructor of the MyThread class, the isAlive()
method is called for each thread. The value returned
by the isAlive() method is then displayed on the
screen.
L35–38 The join()method is called for each

thread. The join() method causes the main thread
to wait for all child threads to complete execution
before the main thread terminates.
L43–46 Again the isAlive() method is used
with each thread’s object to check whether the child
threads are alive or dead and the boolean values are
displayed on the screen.

8.9 SYNCHRONIZATION

There can be instances when two or more threads access a common resource, say a common
data or file. In order to maintain consistency, it becomes imperative that the resource is made
available to only one thread at a time. For example, there are two threads, one responsible for
writing to a file (here, a resource) and other for reading from the same file. If both the threads
start concurrently, both would try to access the file at the same time. Obviously, if the first thread
has not written the values completely, the values read by the second thread would be inconsistent.
Java has such inbuilt mechanism, which lets only one thread use a resource at a time, known
as synchronization. Usually, operating systems do provide for such mechanism, but Java has a
unique language level support for it.
 How does it work? Many of you, having the knowledge of operating systems, would know
what semaphores are. Likewise, we have the concept of monitors here. Monitor is an object that

246 Programming in Java

is used as a mutually exclusive lock on the resource to be accessed. A monitor can be owned
by only one thread at a time. A thread enters the monitor as soon as it acquires the lock. All the
other threads cannot enter the locked monitor, unless it is unlocked or the first thread exits the
monitor. During this period, other threads are waiting for the lock on the monitor. If a thread
exits the monitor, it can again enter the same monitor at some later stage.
 This synchronizing mechanism mentioned above can be achieved in Java in two ways:

 (a) By using the synchronized keyword with the method definition (synchronized methods)
 (b) By using the synchronized keyword with any block of code (synchronized statements)

8.9.1 Synchronized Methods
We can make a particular method synchronized by declaring it so, as under,
 class Xyz {
 synchronized anyMethod()
 {

 //method body
 }
 }

You can see the use of ‘synchronized’ prefixing the method declaration. Now, if ‘n’ number
of threads want to use the method, anyMethod(), the system will not allow them to do so. The
highest priority thread will lock the monitor for the method, making it inaccessible to other
threads. Once the thread locking for the monitor finishes its job, it releases the monitor for the
use of other waiting threads.

8.9.2 Synchronized Statements
We can synchronize a block of code by using the keyword synchronized. Just like synchronizing
a method, here the word synchronized is used before the block of code to be synchronized. This
synchronized statement must specify the object that provides the monitor lock. An example for
such a block is given below,
 public void anyBlock()
 {
 synchronized (this)
 {

 //statement for the body of block

 }
 }

8.10 SUSPENDING AND RESUMING THREADS

There are two methods, suspend() and resume(), used for suspending an executing thread
temporarily and resuming the suspension, respectively. But since Java 1.2, these methods have
been deprecated. Then, how will you deal with the requirements that used to be fulfilled by these
methods? These objectives can be achieved by defining your own suspend and resume methods,
as shown in the following example:

Multithreading in Java 247

Example 8.7 Suspending and Resuming a Thread
 L1 class SusResThread implements Runnable {
 L2 String n;
 L3 Thread thrd;
 L4 boolean suspended;
 L5 SusResThread() {
 L6 thrd = new Thread(this, "Suspend-Resume Thread");
 L7 suspended = false ;
 L8 thrd.start();
 L9 }
 L10 public void run() {
 L11 try {
 L12 for (int i = 0; i< 10; i++){
 L13 System.out.println("Thread: " + i);
 L14 Thread.sleep(200);
 L15 synchronized (this) {
 L16 while (suspended) {
 L17 wait();
 L18 }
 L19 }
 L20 }
 L21 } catch (InterruptedException e) {
 L22 System.out.println("thread interrupted.");
 L23 }
 L24 System.out.println("Exit from thread.");
 L25 }
 L26 void susThread() {
 L27 suspended = true;
 L28 }
 L29 synchronized void resThread(){
 L30 suspended = false;
 L31 notify();
 L32 }
 L33 }

 L34 class SuspendResume {
 L35 public static void main (String args []) {
 L36 SusResThread thrd1 = new SusResThread ();
 L37 try{
 L38 Thread.sleep(1000);
 L39 thrd1.susThread();
 L40 System.out.println("Thread has been Suspended");
 L41 Thread.sleep(1000);
 L42 thrd1.resThread();
 L43 System.out.println("Thread has been Resumed");
 L44 }catch (InterruptedException e) {
 L45 }
 L46 try {
 L47 thrd1.thrd.join();
 L48 } catch (InterruptedException e){

248 Programming in Java

 L49 System.out.println ("Main Thread: interrupted");
 L50 }
 L51 }
 L52 }

 You can easily see in the output shown below that the thread displays the value of the variable
used in the loop, i.e., i, until the thread is suspended. It resumes its work of displaying the values
from the point where it was suspended.

Output
 Thread: 0
 Thread: 1
 Thread: 2
 Thread: 3
 Thread: 4
 Thread: Suspended
 Thread: Resume
 Thread: 5
 Thread: 6
 Thread: 7
 Thread: 8
 Thread: 9
 Exit from thread.

Explanation
L1 Defines a SusResThread class that implements
the Runnable interface. This class houses three
methods, run(), susThread(), and resThread().
L4 An instance variable, suspended, is declared,
whose value is used to indicate whether or not the
thread is suspended.
L10–19 run() is declared, which contains a for
loop that displays the value of the counter variable,
i. Each time the counter variable is displayed, the
thread pauses briefly due to the method sleep(1000).
In L15, it then enters a synchronized statement
to determine whether the value of the suspended
instance variable is ‘true’. If so, wait() is called,
which causes the thread to be suspended until
notify() is called.
L26–28 susThread() is declared, which is used for

assigning ‘true’ to the instance variable, suspended.
L29–32 resThread() is declared, which is used for
assigning ‘false’ to the instance variable, suspended.
In L31, notify() is called to resume the processing
of the suspended thread.
L35–51 The main() method of the SuspendResume
class is declared, where an instance of SusResThread
class is created, as shown in L36. The execution then
pauses for about a second because of sleep(1000)
at L38, before calling susThread() and displaying
a message about the suspension of the thread on the
screen (L39). Similarly, it pauses for another second
because of another sleep (1000) at L41, before
calling resThread() (L42) and again displaying a
message about the resumption of the thread on the
screen, as shown in L43.

8.11 COMMUNICATION BETWEEN THREADS

As we have said, threads are parts of a program which execute simultaneously. But at times,
these threads need to coordinate amongst themselves. This communication between the threads,
while their simultaneous execution is on, can be termed as inter-thread communication.

Multithreading in Java 249

 We have already discussed about the methods, wait(), notify(), and notifyAll(). These are
the methods, which help the threads in communicating with each other. One important thing is
the use of synchronization in communication between threads, as the above three methods are
called from synchronized methods and synchronized statements.
 The following example shows you how to use the above methods in an application. This
example defines four classes: the Carrier class, the Giver class, the Taker class, and the Comm
Thread class. The objective of the program is to have the Giver class give a value to the Taker
class through the use of a Carrier class. The Giver class places a value on the Carrier and then
waits until the Taker class retrieves the value before the Giver class places another value on the
queue.

Example 8.8 Communication Between Threads
 L1 class Carrier {
 L2 int CommunicatedValue;
 L3 boolean busy = false;
 L4 synchronized void putValue (int CommunicatedValue){
 L5 if (busy)
 L6 try {
 L7 wait();
 L8 } catch(InterruptedException e) {
 L9 System.out.println("Put Value: InterruptedException");
 L10 }
 L11 this.CommunicatedValue = CommunicatedValue;
 L12 busy = true;
 L13 System.out.println("Put: " + CommunicatedValue);
 L14 notify();
 L15 }
 L16 synchronized int getValue() {
 L17 if (!busy)
 L18 try {
 L19 wait();
 L20 } catch (InterruptedException e) {
 L21 System.out.println("Get Value: InterruptedException");
 L22 } busy = false;
 L23 System.out.println("Get: " + CommunicatedValue);
 L24 notify();
 L25 return CommunicatedValue;
 L26 }
 L27 }
 L28 class Giver implements Runnable {
 L29 Carrier c;
 L30 Giver(Carrier c){
 L31 this.c = c;
 L32 new Thread (this, "Value Giver").start();
 L33 }
 L34 public void run(){
 L35 for (int i = 0; i< 5; i++){
 L36 c.putValue(i);

250 Programming in Java

 L37 }
 L38 }
 L39 }
 L40 class Taker implements Runnable {
 L41 Carrier c;
 L42 Taker (Carrier c){
 L43 this.c = c;
 L44 new Thread (this, "Taker thread").start();
 L45 }
 L46 public void run(){
 L47 for (int i = 0; i< 5; i++){
 L48 c.getValue();
 L49 }
 L50 }
 L51 }
 L52 class CommThread {
 L53 public static void main(String args []){
 L54 Carrier c = new Carrier ();
 L55 new Giver (c);
 L56 new Taker (c);
 L57 }
 L58 }

One thing worth noting is that the value placed on the Carrier by the Giver is retrieved by the
Taker. The Giver places the next value only when the previous value is retrieved by the Taker.

Output
 Put: 0
 Get: 0
 Put: 1
 Get: 1
 Put: 2
 Get: 2
 Put: 3
 Get: 3
 Put: 4
 Get: 4

Explanation
L1 The Carrier class is defined.
L2 Instance variable, communicatedValue, is used
to store the value placed on the Carrier by the Giver.
L3 A flag variable of boolean type, busy, is
declared, which is used to check whether a value
has been placed on the Carrier. It is set to ‘false’ by
default, which enables the Giver to place a value
onto the Carrier.
L4–15 putValue() is declared and defined (L4).
The purpose is to place a value on the Carrier (i.e., to
assign a value to the communicated Value variables

(L11)). Once the value is assigned, putValue()
changes the value of the flag from ‘false’ to ‘true’
(L12), indicating there is a value on the Carrier.
L5–15 The value of the flag is used within the two
methods to make the thread that calls the method
wait until either there is a value on the Carrier or
there is no value on the Carrier, depending on which
method is being called.
L16–27 getValue() is defined (L16). This method
is used to retrieve the value contained on the Carrier
(i.e., to return the value of communicatedValue (L23)).

Multithreading in Java 251

L28–38 The thread class Giver is declared, which
implements Runnable (L28). This class declares an
instance of the Carrier class (L29) and then calls
putValue() to place five integers on the Carrier
(L36). Although the putValue () method is called
within a for loop, each integer is placed on the
Carrier and then, there is a pause until the integer
is retrieved by the Taker class. The Taker class is
very similar in design to the Giver class, except the

Taker class calls getValue() five times from within
a for loop. Each call to getValue () is paused until
the Giver class places an integer in the Carrier.
L52–58 The main() method of the CommThread
class creates instances of the Carrier class (L45).
Notice that a reference to the instance of the Carrier
class is passed to both the constructors of the Giver
class and the Taker class. They use the instance of
the Carrier class for inter-thread communication.

8.12 PRACTICAL PROBLEM: TIME CLOCK EXAMPLE

Let us take a concrete example to illustrate the utility of threads in applications. We will create
a time thread which would display the current date and time on the console with every tick of
the second similar to a clock (as is evident from the output). The GUI cannot be implemented in
this example so we will be printing the time at the DOS prompt. We have not dealt with graphics
in Java as yet so we will defer that part till Applets and GUI. We will rework this example in
Applets to show how Threads can be used in Applets along with GUI. This example creates a
thread apart from the main thread when an object of the class is created.

Example 8.9 Time Clock
 L1 import java.util.*;
 L2 class TimeThreadDemo
 {
 L3 Thread t;
 L4 TimeThreadDemo(String name)
 L5 {
 L6 t = new Thread(new Task(),name);
 L7 t.start();
 }
 L8 public static void main(String args[])
 {
 L9 TimeThreadDemo d=new TimeThreadDemo("Digital clock");
 }
 }
 L10 class Task implements Runnable
 {
 L11 Calendar c;
 L12 Date d;
 L13 public void run()
 {
 L14 for(;;)
 {
 L15 try {
 L16 c = Calendar.getInstance();
 L17 d = c.getTime();

252 Programming in Java

 L18 System.out.println(d);
 L19 Thread.sleep(1000);
 }
 L20 catch(Exception e){}
 }
 }
 }

Output

Explanation
L1 The java.util package is imported because we
will be using Calendar and Date classes in this class
which are part of the java.util package.
L2 Class TimeThreadDemo is declared
L3 Instance variable of type Thread class is created
within the class.
L4 Constructor for the class has been defined to
accept a String argument which will be used to name
the thread created within the constructor.
L6–7 A thread is created by instantiating the
Thread class and assigning it to the instance variable
created in L3. The name of the thread (string
argument in L4) is passed within the constructor of
the Thread class along with the object responsible
for telling what the thread is going to perform. The
object of Task class has been passed within the
constructor of the Thread class to indicate that the
object will override the run method and will provide

implementation for the thread. What the thread is
going to perform will be implemented by the object of
Task class. In our earlier examples, we have used this
keyword while creating threads because the current
object was providing the implementation for run()
in those cases and setting the task for the threads.
start() method is invoked on the thread to put it in
a ready state where it can be scheduled by the thread
scheduler. Please note that this thread is a separate
thread now apart from the main thread.
L8–9 main method is defined and the object of the
TimeThreadDemo class is created within this method.
This results in calling the constructor of the class
which instantiates the Thread object and implicitly
instantiation of the task class also occurs.
L10 Class Task is defined to implement Runnable
interface. The Runnable interface is inherited because
we want this class to override run() and tell the

Multithreading in Java 253

thread what is expected of it. We want this thread to
perform a predefined set of task every second, i.e.,
print the date and time which keeps on ticking like
a clock. These steps are implemented within run().
L11–12 Instance variables of Calendar class and
Date classes are defined to get the current date and
time.
L13 run() is overridden. As soon as the thread
created in L6 is scheduled by the scheduler, this
method is invoked automatically.
L14 An infinite loop is created to print the time
indefinitely second on second.
L15 try block is created within the infinite for
loop.
L16 As Calendar is an abstract class, it cannot be
instantiated directly. The Calendar class provides

a static method getInstance() which return an
instance of Calendar class initialized to the current
date and time.
L17 Using the instance created in previous line,
getTime() is invoked to return the date and time
encapsulated as a Date object. This date object is
referenced by instance variable created in L12.
L18 Prints the Date object.
L19 We deliberately provide a delay of one second
using the Thread.sleep(1000) method to give it
a feeling of a normal clock. The Thread sleeps for
one second and return to its work of printing the
date object.
L20 catch block has been defined to catch the
InterruptedException that the sleep method
might throw.

Note Please note that as the thread works in an infinite loop, the program will not terminate on its
own. It has to be terminated by pressing Ctrl+C at the DOS prompt.

SUMMARY

Java has the capability to support multithreading.
Thread is a single sequential flow of execution. It
is not a program in itself, but it can just be a part
of a program. Multithreading enables to write such
programs which can have more than one thread, each
executing simultaneously. Multithreading ensures
running different parts of the same program (different
threads) concurrently. It simply helps in increasing the
efficiency of CPU, thus reducing its idle time.

Every program written in Java has at least one thread
running inside it, i.e., the main thread. At the start of
the program, JVM starts executing the main thread
which simply calls the main() method. The main class
supporting multithreading in Java is the Thread class,
which is a part of java.lang package. Threads are
created as the instances of this class, which contains
the run() method. Actually the functionality of the
thread can only be achieved by overriding this run()
method in the class extending the Thread class. This
Thread class is made to inherit the abstract class Enum.
The Enum class is a common base class of all Java
language enumeration types. There are two ways of

creating a new thread: (i) by extending the thread class
or (ii) by implementing the runnable interface which is
actually implemented by thread class. Thread.State
is an enumeration type, which has five possible states.
At any time, a thread is said to be in one of these
five states. These states are: new, runnable, waiting,
timed_waiting, and terminated.
Threads in Java run on the concept of preemptive

scheduling, done by the Java runtime system by
assigning priority to every thread. It simply means,
threads having higher priority are given preference
for getting executed over the threads having lower
priority. Thus, we can say that the lower priority thread
is preempted by higher priority thread. There is a
facility in Java, to synchronize threads so as to avoid
unwarranted interleaving between them.
A thread can either die naturally or be forced to

die. A thread dies naturally when it exits the run()
method normally. The normal exit from run() means,
the instructions of the run() have been processed
completely. A thread can always be killed or interrupted
by calling interrupt() method.

254 Programming in Java

EXERCISES

Objective Questions
 1. Which type of exception does a sleep() method

throw?
 (a) Arithmetic exception
 (b) Nullpointer exception
 (c) Arrayindex out of bounds exception
 (d) Interrupted exception
 2. Which state is entered once a thread is created?
 (a) Ready (b) Running
 (c) New (d) Terminated
 3. Which method is used to know the current state

of a thread?
 (a) geThreadState()
 (b) getState()
 (c) get()
 (d) getThreadCurrentState()
 4. Which package contains Thread classes and

interfaces?
 (a) java.lang
 (b) java.io
 (c) java.util
 (d) java.thread
 5. Which of the following are termed as not runnable

states?
 (a) READY (b) WAITING
 (c) TIMED_WAITING (d) BLOCKED

 6. Which type of exception does a join() method
throw?

 (a) Arithmetic exception
 (b) Null pointer exception
 (c) Array index out of bounds exception
 (d) Interrupted exception

 7. Which interface is used to create a Thread?
 (a) Thread (b) Runnable
 (c) Cloneable (d) Serializable

 8. Which class is used to create a Thread?
 (a) Thread (b) Runnable
 (c) ThreadGroup (d) Synchronization

 9. Which type of exception does an interrupt()
method throw?

 (a) Arithmetic exception
 (b) Null pointer exception
 (c) Array index out of bounds exception
 (d) Interrupted exception

 10. What is the priority assigned to all Java threads
by default?

 (a) 1 (b) 5
 (c) 10 (d) unassigned

Review Questions
 1. Defi ne each of the following terms:
 (a) Thread
 (b) Multithreading
 (c) Waiting state and Timed_waiting state
 (d) Running state
 (e) Preemptive scheduling
 (f) Runnable interface
 (g) Monitor
 (h) Notify method
 (i) Join() method
 (j) Thread class
 2. What is a thread? How do threads behave in

Java?
 3. Distinguish between preemptive scheduling and

non-preemptive scheduling. Which one does
Java use?

 4. What is the purpose of calling the yield()
method?

 5. What is multitasking? Is multithreading a form of
multitasking?

 6. What is thread priority? How can it be set for a
thread?

 7. What is synchronization and why is it important?
 8. What is runnable interface? How can you use

this interface in creating threads?
 9. When should you extend the Thread class for

creating a thread?
 10. If you create two threads in your program, how

many threads actually run? Explain the complete
fl ow of execution of threads inside a program.

Multithreading in Java 255

 11. Which method is responsible for creating the
body or giving the functionality to a thread in your
program? Explain with an example program.

 12. Distinguish among each of the following means
of pausing threads:

  wait()  sleep()
  yield()

Programming Exercises
 1. Create and run a threaded class using Runnable

interface.
 2. Write a Java program to demonstrate the

execution of a high-priority thread and how it
delays the execution of all lower-priority threads.

 3. Write a Java program that demonstrates how a
high-priority thread using sleep makes way for
the lower-priority threads to execute.

 4. Write a Java program showing the actions from
three threads. Use runnable interface to create
the threads. Make sure that the main thread
always executes last (Hint: use join()).

 5. Write a program that uses thread synchronization
to guarantee data integrity in a multithreaded
application.

Answers to Objective Questions
 1. (d) 2. (c) 3. (b) 4. (a)
 5. (b), (c), (d) 6. (d) 7. (b) 8. (a)
 9. (d) 10. (b)

 Unless each man produces more than he receives, increases his output, there will be
 less for him than all the others. Bernard Baruch

After reading this chapter, the readers will be able to
  understand the basics of file handling
  understand how input/output operation is done in Java
  understand how input is taken from the user
  understand the concept behind serialization and how it is done
  know about the new classes and interfaces in the new IO packages
  perform shallow copy and deep copy

9.1 INTRODUCTION

The two most important parts of a computer are input and output. It is the input that is processed
to generate output. Input/output classes form the core of any programming language. As of Java
1.4, there are two predefined packages named io (input/output) and nio (new I/O or non-blocking
i/o) which contain classes to perform I/O operations. java.io package deals with operations such
as reading/writing to console and reading/writing to files. The java.nio package contains classes
that support the classes in the java.io package and perform advanced operations such as buffering,
memory mapping, character encoding and decoding, pattern matching, and locking a file.
 The java.io package provides separate classes for reading and writing data (byte and character
data). The Java I/O facility is based on streams. Stream is a continuous flow of data. In Java,
streams for both types of data have been defined: byte stream classes and character stream
classes. Byte stream classes deal with reading and writing of bytes to files, socket, etc. Character
stream classes deal with reading and writing of characters to files, socket, etc.
 The java.io package contains two top level byte stream abstract classes: java.io.InputStream
(for reading bytes) and java.io.OutputStream (for writing bytes). It also contains two other
top level character stream abstract classes: java.io.Reader (for reading characters) and java.
io.Writer (for writing characters). The subclasses of these classes are actually used for reading
and writing data. We will discuss some of the subclasses in detail.

Input/Output,
Serialization, and
Cloning

99

 Input/Output, Serialization, and Cloning 257

9.1.1 java.io.InputStream and java.io.OutputStream
InputStream and OutputStream are abstract classes which specify certain methods that are
applicable to all its subclasses. A list of the methods of InputStream and OutputStream classes
is given in Tables 9.1 and 9.2.

Table 9.1 Methods of InputStream Class

Methods Description

int available() throws
IOException

Returns the number of available bytes that can be read from
an input stream.

void close() throws IOException Closes the input stream.

void mark(int readlimit) Makes a mark at the current position in the input stream.
readlimit defi nes after reading how many bytes this mark
is nullifi ed.

boolean markSupported() mark() method works if this method returns true.

abstract int read() Reads the next byte from the input stream. Subclasses
provide implementation for this method. It returns the byte
read and –1 if EOF encountered.

int read(byte[] b) Reads bytes and stores them in the byte array b. It returns
the number of bytes read into the array and –1 if EOF
encountered.

int read(byte[] b, int off,
int len)

Reads bytes and stores them in byte array b upto length (len)
starting from offset (off) in b.

void reset() Resets the current pointer to the mark set by the mark()
method only if readlimit has not expired.

long skip(long n) Skips the specifi ed number of bytes (n) and returns the
number of bytes actually skipped.

Table 9.2 Methods of OutputStream Class

Methods Description
void close() Closes the output stream.
void fl ush() Flushes the output stream.
void write(byte b[]) Writes the contents of the byte array to output stream.
void write(byte b[], int off,
int len)

Writes the specifi ed number of bytes (len) to the output
stream starting at offset (off) in b.

abstract void write(int b) Abstract method to write byte to the output stream. Sub-
classes to provide implementation.

Figures 9.1 and 9.2 show the hierarchy of classes (beneath input stream/output stream and reader/
writer) as well as the interfaces in java.io package that they inherit. These figures do not show
all the classes in java.io package. For all classes, refer JDK 6 documentation.

258 Programming in Java

<<interface>>

Closeable

<<interface>>

Readable
<<interface>>

Flushable

<<interface>>
Appendable

Reader Writer

InputStream

Reader

Buffered

Reader
PrintWriter BufferedWriter

Output

StreamWriter

FilterReader

FileReader

File Writer

Fig. 9.1 Few Classes Shown Under Reader and Writer

Fig. 9.2 Few Classes Shown under InputStream and OutputStream

9.2 java.io.FILE CLASS

The java.io.File class is worth mentioning, as it neither belongs to the byte stream nor the
character stream used for reading or writing a file. This class is used to know the properties of
a file-like path of the file, whether the file exists or not, whether the file is a file or a directory,
and length of the file. Let us take a look at the example of File class.

 Input/Output, Serialization, and Cloning 259

Example 9.1 File Class
 L1 import java.io.*;
 L2 class FileDemo {
 L3 public static void main(String args[]) {
 L4 File f = new File(args[0]);
 L5 System.out.println("File exists: "+f.exists());
 L6 System.out.println("File can be read:"+f.canRead());
 L7 System.out.println("File can be written: "+f.canWrite());
 L8 System.out.println("File can be executed:"+f.canExecute());
 L9 System.out.println("File name: "+f.getName());
 L10 System.out.println("parent of File:"+f.getParent());
 L11 System.out.println("path of the File:"+f.getPath());
 L12 System.out.println("Hidden File: "+f.isHidden());
 L13 System.out.println("length of the fi le: "+f.length());
 L14 System.out.println("last modifi ed time: "+f.lastModifi ed());
 L15 System.out.println("it is a File: "+f.isFile());
 L16 if(f.isDirectory()) {
 L17 System.out.println(f.getPath()+ "is a irectory");
 L18 String l[] = f.list();
 L19 System.out.println("\nDirectory Listing for "+f.getPath() + "is:");
 L20 for(String a:l) {
 L21 File f1 = new File(f.getPath() + "/" +a);
 L22 if(f1.isDirectory()) {
 L23 System.out.println(a+ "is a directory");
 L24 f1 = null;
 }
 L25 else
 L26 { System.out.println(a+ "is a File");
 L27 f1 = null;
 }
 }
 }}}

Output

For ‘Sample.txt’ file
 C:\javabook\programs\chap09>java FileDemo sample.txt
 File exists: true File can be read: true
 File can be written: true
 File can be executed: true
 File name: sample.txt
 parent of File: null
 path of the File: sample.txt
 Hidden File: false
 length of the fi le: 105
 last modifi ed time: 1236860698637
 it is a File: true

For ‘programs’ directory
 C:\javabook\programs\chap09>java FileDemo
 c:\javabook\programs
 File exists: true

260 Programming in Java

 File can be read: true
 File can be written: true
 File can be executed: true
 File name: programs
 parent of File: c:\javabook
 path of the File: c:\javabook\programs
 Hidden File: false
 length of the fi le: 12288
 last modifi ed time: 1237062320960
 it is a File: false
 c:\javabook\programs is a Directory
 Directory Listing for c:\javabook\programs is:
 A.class is a File
 B.class is a File
 chap 6 is a directory
 chap 7 is a directory
 chap09 is a directory
 chap3 is a directory

Explanation
L1 To use File class, we need to import the
package java.io.
L4 File object is created and the file name/
directory name is passed to it through command line
argument. Some of the methods of the File class are
used to know the properties of a file. All the methods
have been called from the println method so that
their return values can be printed.
L5 exists() returns boolean value to indicate
whether file/directory exists or not.
L6 canRead() returns boolean value to indicate
whether file/directory can be read or not.
L7 canWrite() returns boolean value to indicate
whether file/directory can be written or not.
L8 canExecute() returns boolean value to indicate
whether file/directory can be executed or not.
L9 getName() returns the name of the file/
directory.
L10 getParent() returns the name of the directory
of which the file/directory is a part of.
L11 getPath() returns the complete path of file/
directory (see output).
L12 isHidden() returns boolean value to indicate
whether file is hidden or not.
L13 length() returns long value to indicate length

of file in bytes.
L14 lastModifiedTime() returns the time the
file was last modified. The time was calculated in
milliseconds since 1 January 1970, GMT 00:00:00.
L15 isFile() returns true if argument to File
object is a file.
L16 isDirectory() returns true if argument to
File object is a directory. If it is, then the following
lines will be executed.
L18 list() method is used to list all the directory
and files within a directory and it returns them as a
string array.
L20 for-each loop is used to iterate through the
contents of the array one by one. L21–27 are executed
for all the elements of the array.
In the following lines, we find whether an element of
the array is a file or directory and print it accordingly.
L21 File object is created for each and every
element in the string array.
L22 isDirectory() method of the file object is
used to find whether the element is a Directory or not.
L23 Prints “it is a directory”.
L24 As we are creating a new File object in every
iteration, assigning null to the file object makes it
eligible for garbage collection.
L25–27 else prints, “it is a File” and null is
assigned to the File object.

 Input/Output, Serialization, and Cloning 261

9.3 READING AND WRITING DATA

The data can be read/written to files, console, sockets, etc. using both the streams. The classes under
these streams are used for reading/writing data. In the following subheadings, we will see how to read
and write data using the subclasses of InputStream, OutputStream, Reader, and Writer.

9.3.1 Reading/Writing Files Using Byte Stream
FileInputStream (inherits InputStream) class is used for reading a fi le and FileOutput-
Stream (inherits OutputStream) is used for writing to a fi le. A complete list of all methods of
FileInputStream and FileOutputStream is shown in Tables 9.3 and 9.4, respectively. Let us take
an example to see how fi les can be read and written using these classes.

Table 9.3 Methods of FileInputStream Class

Methods Description
int available() Returns the number of remaining bytes that can be read from

this input stream.
void close() Closes this fi le input stream and releases all system resources.
void fi nalize() Ensures that the close method of this fi le input stream is called

when there are no more references to it.
FileChannel getChannel() Returns the unique FileChannel object associated with this fi le

input stream.
fi nal FileDescriptor getFD() Returns the FileDescriptor object that represents the

connection to the actual fi le in the fi le system being used by this
FilelnputStream.

int read() Reads a byte of data from this input stream.
int read(byte[] b) Reads up to b.length bytes of data from this input stream into

the byte array b.
int read(byte[] b, int off, int len) Reads up to len bytes of data from this input stream into an array

of bytes starting at offset off in byte array b.

long skip(long n) Skips over and discards n bytes of data from the input stream.

Table 9.4 Methods of FileOutputStream Class

Methods Description
void close() Closes this fi le output stream and releases all system

resources.
protected void fi nalize() Cleans up the connection to the fi le.
FileChannel getChannel() Returns the unique FileChannel object associated with this

stream.
FileDescriptor getFD() Returns the fi le descriptor associated with this output stream.
void write (byte [] b) Writes bytes from the specifi ed byte array to this fi le output

stream.
void write (byte [] b, int off, int len) Writes len bytes from the specifi ed byte array starting at offset

off (in the byte array) to this fi le output stream.
void write(int b) Writes the specifi ed byte to this fi le output stream.

262 Programming in Java

Example 9.2 Reading and Writing Files
 L1 import java.io.*;
 L2 class ReadWriteDemo{
 L3 public static void main(String args[]) throws IOException
 {
 L4 if(args.length!= 2){
 L5 System.out.println("Usage: java ReadWriteDemoSample.txt Demo.txt");
 L6 System.exit(0); // terminate the program
 }
 L7 File f = new File(args[0]);
 L8 byte[] b = {};

 //Reading a fi le
 L9 if(f.exists()){
 L10 FileInputStream f1 = new FileInputStream(f);
 L11 int num = f1.available();
 L12 b = new byte[num];
 L13 int n = f1.read(b);
 L14 String s = new String(b);
 L15 System.out.println("Contents of "+args[0]+ ":"+ s);
 L16 f1.close();
 L17 f = null; }
 L18 else {
 L19 System.out.println("File does not exist");
 L20 System.exit(0); }

 //writing to fi le
 L21 f = new File(args[1]);
 L22 if(!f.exists())
 L23 System.out.println(args[1] + "is a New File");
 L24 else
 L25 System.out.println(args[1] + "File exists, will be overwritten");
 L26 System.out.println("Opening File: "+ args[1]);
 L27 FileOutputStream fs = new FileOutputStream(args[1]);
 L28 System.out.println("File Opened, now writing contents");
 L29 fs.write(b);
 L30 fs.fl ush();
 L31 System.out.println("contents written");
 L32 System.out.println("Closing File");
 L33 fs.close();
 }}

Output
 C:\javabook\programs\CHAP09~1>java ReadWriteDemo Sample.txt Demo.txt
 Contents of Sample.txt: This is my sample fi le
 Demo.txt is a New File
 Opening File: Demo.txt
 File Opened, now writing contents
 contents written
 Closing File

 Input/Output, Serialization, and Cloning 263

 C:\javabook\programs\CHAP09~1>java ReadWriteDemo Sample.txt Demo.txt
 Contents of Sample.txt: This is my sample fi le
 Demo.txt File exists, will be overwritten
 Opening File: Demo.txt
 File Opened, now writing contents
 Contents written
 Closing File

Explanation
Reading a File

L4–6 if statement checks whether the number
of command-line arguments is equal to 2. If the
condition is evaluated as true, it prints how to run
the program and terminates the program.
L7 File class object is created and the first
command line argument (args[0], i.e., Sample.txt)
is passed as an argument to the constructor. We have
mentioned only the name of the file, as the file exists
in the current working directory. If you wish to refer
to a file stored in some other directory, specify the
full path of the file.
L 8 An empty byte array is created. As we are using
byte stream classes, files will be read and written in
the form of bytes. The contents of the file will be read
into this byte array and later, the contents of the byte
array will be written on to a different file.
L9 A check is made using exists() of the File
object to check whether the file (denoted by args[0],
exists or not. If file exists, L10–17 are executed,
otherwise L19–20 are executed.
L10 FileInputStream object is created to read
the contents of the file and the File class object
(f) created in L7 is passed to the constructor of this
object.
L11 The available() method of the f1 object is
used to find the number of bytes that can be read from
the file. The return value is stored in num.
L12 Now when we know the number of bytes in a
file (num), we create a byte array of that size so that
the bytes from the file can be read into this byte array.
L13 read() is an overloaded method. It reads the
entire contents of the file into the byte array. It returns
the number of bytes actually read into the byte array.

This number should be equal to num.
L14 Directly displaying the bytes on to the standard
output would lead to confusion, as the contents of the
file are in the form of bytes. We want to read the file
as it was (readable string format). So we look up in
the String class for a constructor that accepts byte
array and converts it into a readable format. The one
we found is shown.
L15 Prints the contents of the file.
L16 Closes the FileInputStream object.
L17 File object is assigned null.
L18 Else part of if in L9.
L19 Prints File does not exist.
L20 Terminates the program.

Writing to a File
L21 Similar to L7. The only difference lies in the
argument.
L22 Similar to L9.
L23 Gets printed if L22 returns the statement file
does not exist, else L25 is printed.
L27 FileOutputStream object is created to
write bytes to a file and filename (string argument,
i.e., args[1]) is passed to the constructor of the
FileOutputStream object. We could have passed
the file object also created in L21 (as done in the
creation of FileInputStream object created in L11),
but we wanted to show you that the constructor in
these classes are overloaded to accept different kinds
of argument.
L28 Shows statement to print “File Opened, now
writing contents”.
L29 write method is used to write the entire byte
array to the file.
L30 Flushes the contents to the file if any in the
output stream using the flush() method.
L33 Closes the FileOutputStream.

264 Programming in Java

9.3.2 Reading/Writing Console (User Input)
Prior to JDK 6, JDK 5 introduced the Scanner class (java.util package) which can be used for
getting input from user (both lines of text as well as primitives) apart from breaking the input
string into tokens separated by a delimiter which is by default a white space. A snapshot of the
Scanner class is shown below.

Example 9.3 Scanner Class
 L1 import java.util.*;
 L2 class ScannerDemo {
 L3 public static void main(String args[]){
 L4 Scanner sc = new Scanner(System.in);
 L5 System.out.print("Enter your name: ");
 L6 String name = sc.nextLine();
 L7 System.out.print("Enter your age: ");
 L8 int age = sc.nextInt();
 L9 System.out.println("you entered "+name+ " as your name");
 L10 System.out.println("you entered "+age+" as your age");
 }}

Output
 C:\javabook\programs\chap 09>java ScannerDemo
 Enter your name: Tom
 Enter your age: 31
 you entered Tom as your name
 you entered 31 as your age

Explanation

L1 The java.util package is imported as Scanner
class belongs to it.
L4 An object of the Scanner class is created
and System.in is passed to the constructor of the
object.
L6 Reads the input from the user using nextLine()
method of Scanner class and returns the string.
nextLine() keeps on taking the user input until the
user presses enter.

L7 Print statement asking the user to enter his
age.
L8 Using the Scanner class, we can directly read
a primitive value from the user. This line shows
nextInt()that reads directly int from the user.
Similarly if required, nextByte(), nextDouble,
nextFloat(), nextBoolean(), etc. can be used.
A list of methods of scanner class is shown in
Table 9.5.

Note System is a class in the java.lang package. This class has three predefined variables:
in, out, and err.System.in refers to standard input stream, more specifically keyboard
input. Together they give an object of type InputStream. System.out refers to standard
output stream, more specifically display device. Together they give an object of type
PrintStream which contains println() method. We have been using this method from
our first example (System.out.println()). System.err refers to standard error output
stream, more specifically display device. Together they give an object of type PrintStream.

 Input/Output, Serialization, and Cloning 265

Table 9.5 Methods of Scanner Class

Methods Description
void close() Closes this scanner.
boolean hasNext() Returns true if this scanner has another token else false.
boolean hasNext(Pattern p) Returns true if the next token matches the specifi ed pattern (p).
boolean hasNext(String p) Returns true if the next token matches the pattern in the specifi ed string (p).

boolean hasNextBoolean() Returns true if the next token in this input can be interpreted as a boolean value.
boolean hasNextByte() Returns true if the next token in this input can be interpreted as a byte value.

boolean hasNextDouble() Returns true if the next token in this input can be interpreted as a double value.
boolean hasNextFloat() Returns true if the next token in this input can be interpreted as a fl oat.

boolean hasNextInt() Returns true if the next token in this input can be interpreted as an int.
boolean hasNextLine() Returns true if there is another line in the input.
boolean hasNextLong() Returns true if the next token in this scanner’s input can be interpreted as a long.
boolean hasNextShort() Returns true if the next token in this scanner’s input can be interpreted as a

short.
String next() Returns the next complete token from this scanner.
String next(Pattern pattern) Returns the next token if it matches the specifi ed pattern.
boolean nextBoolean() Scans the next token of the input into a boolean value and returns that value.
byte nextByte() Returns the next token of the input as a byte.
double nextdouble() Returns the next token of the input as a double.
fl oat nextFlot() Returns the next token of the input as a fl oat.
short nextInt() Returns the next token of the input as an int (L8, Example 9.3).
short nextLine() Advances this scanner past the current line and returns the input as a string

(L6, Example 9.3).
short nextLong() Returns the next token of the input as a long.
short nextShort() Returns the next token of the input as a short.
Scanner useDelimiter (String
pattern)

Sets the delimiting pattern for scan to pattern constructed from the specifi ed
string.

 In Example 9.3, nextLine() has been used before nextInt(). If nextInt() is used before
nextLine(), then the output is not what you would expect it to be. Let us take another example
to show what happens when nextLine is used after any of the nextInt or nextFloat methods.

Example 9.4 Scanner Class
 import java.util.*;
 class ScannerInput
 {
 public static void main(String args[])
 {
 Scanner in=new Scanner(System.in);
 // nextInt reads the next integer till the delimiter (whitespace by default)

266 Programming in Java

 L1 System.out.println("Enter First Integer");
 L2 int number = in.nextInt();
 L3 System.out.println("Enter a String:");
 L4 String string = in.nextLine();
 L5 System.out.println("Enter next Float: ");
 L6 fl oat real = in.nextFloat();
 L7 System.out.println("Enter next String:");
 L8 String string2 = in.nextLine();
 L9 System.out.println(number+" "+string+" "+real+" "+string2);
 }
 }

Output

Explanation
We run this example with two sets of input to clarify
the differences.
L2 nextInt() returns the integers value typed till
the delimiter which is a whitespace by default.
L4 The nextLine() method continues reading the
input till carriage return and returns it as a string. The
carriage return is consumed and not appended to the
string. So when a nextLine() is used after a number

is read using nextInt or nextFloat() or nextLong()
etc., the number is returned by the respective methods
and methods return. The empty string with the
carriage return is consumed by the nextLine() and
returned. So it does not prompt for an input on L4 as
the carriage return typed while reading integer input
for L2 is consumed by nextLine().

Note The first output of the program shows 12 is returned as an integer by nextInt() and user is
not prompted for value as carriage return is consumed by nextLine() and it returns. Similarly,
13 is returned as a float by nextFloat() and user is not prompted for any value for the same
reason explained above. The second output of the program clears the concept where 12 is
returned as an integer by nextInt() and 13 as a string by nextLine(). Similarly, 14 is returned
as a float by nextFloat() and 15 as a string by nextLine().

 Input/Output, Serialization, and Cloning 267

 Prior to JDK 5, BufferedReader was used to read inputs from the user. The following statements
show how to get the input from the user using the BufferedReader class.

 try
 {
 . . .

 L1 BufferedReader br = new BufferedReader(new InputStreamReader (System.in));
 L2 String x = br.readLine();
 . . .
 }
 catch(IOException e)
 {. . .}

Explanation
L1 BufferedReader object is created to get input
from the user. The constructor of BufferedReader
accepts an object of type InputStreamReader, which
in turn accepts an argument of type InputStream
(System.in). InputStream is a byte stream class
and InputStreamReader is a character stream
class. So actually the byte stream is getting

converted to character stream and then the concept
of buffering is used to enhance performance.
L2 readLine() of the BufferedReader class is
used to read the input. It can throw an IOException,
so either place readLine() call in a try/catch block
or specify throws in the method declaration using
readLine().

 Java 6 introduced the Console class in the java.io package for gathering user input from
the user and output it to the standard output. A list of methods of the console class is shown in
Table 9.6. Let us take an example to see the Console class.

Table 9.6 Methods of Console Class

Methods Description
void fl ush() Flushes the console and writes the buffered output immediately.
Console format(String fmt,
Object ... args)

Writes a formatted string to the console’s output stream using the
specifi ed format string and arguments.

Console printf(String format,
Object ... args)

Writes a formatted string to the console’s output stream using
the specifi ed format string and arguments (L10, Example 9.5).

Reader reader() Returns the unique Reader object associated with this console.
String readLine() Reads a single line of text from the console.
String readLine (String fmt,
Object ... args)

Provides a formatted prompt, then reads a single line of text from
the console (Lines 5, 7, and 9; Example 9.5).

char[] readPassword() Reads a password from the console with echoing disabled (L13,
Example 9.5).

char[] readPassword(String
fmt, Object ... args)

Provides a formatted prompt, then reads a password from the
console with echoing disabled.

Printwriter writer() Returns the unique PrintWriter object associated with this
console.

268 Programming in Java

Example 9.5 Console Input
 L1 import java.io.*;
 L2 class ConsoleDemo {
 L3 public static void main(String args[]) throws IOException {
 L4 Console c = System.console();
 L5 String user =c.readLine("Enter your username: ");
 L6 c.printf("Welcome %1$s. Hope You had a Nice Day. ",user);
 L7 String pno = c.readLine("\nEnter your Phone No.: ");
 L8 c.printf("You entered %1$s as your phone Number ",pno);
 L9 String age = c.readLine("\nEnter your Age: ");
 L10 c.printf("name: %3$s, Age: %2$s Phone No.: %1$s",pno,age,user);
 // another way of writing to the Console
 L11 PrintWriter out = c.Writer();
 L12 out.println("\nEnter your password");
 L13 char[] pass = c.readPassword();
 L14 c.printf("The password you entered is %1$s ", new String(pass));
 }}

Output
 Enter your username: Tom
 Welcome Tom. Hope You had a Nice Day.
 Enter your Phone No.: 34343434
 You entered 34343434 as your phone Number
 Enter your Age: 31
 Name: Tom, Age: 31, Phone No: 34343434
 Enter your password

 The password you entered is $T123

Explanation
L4 System class has a static method console() to
return the Console object.
L5 readLine() is an overloaded method in the
Console class, used to read input from the user. The
string argument is displayed on the console and then
program blocks for user input. The value entered by
the user method is returned as a string.
L6 Print statement, similar to C language, has been
added in this class, i.e., printf ("",""). The first
argument in the method ("Welcome %1$s. Hope you
had a Nice Day") is the format string to be displayed
on the standard output. The value for %1$s is picked
up from the arguments referred by the format string
which starts from the second argument of the method.
We have only two arguments in this method, but if
required, you can have more.
  % sign is for specifying literals.
  n$ specifi es the argument index in the argument

list. 1$ is the index of the fi rst argument. 2$ is
used to refer to the second argument, and so on.

  s specifi es strings.
c.printf("Welcome % 1$s. Hope You had a Nice Day.".user);

Format String First argument
in the argu-ment list

So in place of %1$s, the value in the string user (i.e., Tom)
is placed while displaying on the console (see output).
L7 Similar to L5. The‘ \n’ is placed in the beginning
of the string to print it on a new line.
L10 We have specifically added this line and
changed the order of the arguments in the argument
list so that you can better understand it.

c.printf("name: %3$s, Age: %2$s
Phone No: %1$s",pno,age,user);

First of all "name:"is printed followed by the
third argument (%3$s), i.e., user (Tom), then
"Age:"followed by the second argument (%2$s), i.e.,
age (31) and lastly "Phone No.:"followed by the first
argument (%1$s), i.e., pno (34343434).

 Input/Output, Serialization, and Cloning 269

L11 Another way of writing to the console is shown
in this line. You can get the PrintWriter object using
the writer() method of the Console class.
L12 println() of PrintWriter is used to write to
the console, prompting the user to enter password.
L13 Console class provides a unique method
readPassword(), used for reading the passwords

from the user without echoing it on to the screen. It
returns the password in a character array.
L14 Similar to the previous print statements. But
here, we have a character array that is to be displayed
on the screen. To display the character array, we have
passed the character array to String class constructor
and then it is displayed.

Note The readLine() method returns a string. Suppose we want numeric input, in that case, the
string returned can be converted to its respective numeric values using certain static methods
of the wrapper classes in the java.lang package.
int using Integer.parseInt()
fl oat using Float.parseFloat()
double using Double.parseDouble()
long using Long.parseLong()
byte using Byte.parseByte()
short using Short.parseShort()

9.3.3 Reading/Writing Files Using Character Stream
Files can be read and written using character stream classes also. FileReader class is used to
read the contents of a fi le. FileWriter class is used to write the contents to a fi le. Remember
reading and writing will be in the form of characters. Reading can be done character by charac-
ter (as shown in the Example 9.6) or line by line.

Example 9.6 Reading and Writing Files

 L1 import java.io.*;
 L2 class ReadWriteDemo1{
 L3 public static void main(String args[]) throws IOException
 {
 L4 File f = new File(args[0]);
 L5 int n;
 //Reading a File
 L6 if(f.exists())
 L7 { FileReader fr = new FileReader(f);
 System.out.println("Reading" +args[0]);
 L8 while((n = fr.read())!= –1)
 L9 System.out.print((char)n);
 L10 }else
 L11 System.out.println(args[0]+ "does not exist");
 //writing to a fi le
 System.out.println("\nWriting " +args[1]);
 L12 FileWriter fw = new FileWriter(args[1]);
 L13 String s = "This is my sample File";
 L14 fw.write(s);
 L15 fw.close(); }}

Output
 C:\javabook\programs\CHAP09~1>java ReadWriteDemo1 Sample1.txt Demo1.txt
 Reading Sample1.txt
 This is my sample File
 Writing Demo1.txt

270 Programming in Java

Explanation
 Reading a file
L4 File object is created and file name is passed as
a command line argument.
L5 Integer variable n is declared for reading
characters.
L6 Checks whether the file exists or not. If it exists,
L7–9 are executed, else L11 is executed.
L7 FileReader object is created and File
object created in L4 is passed to it. If the file
referenced by the FileReader object does not exist,
a FileNotFoundException results.
L8 A while loop that reads the file character by
character using read() of the FileReader object. This
method returns the character read as an integer or –1
if EOF is reached. The value read is put in variable n
and checked for equality to –1. read() is overloaded

to read the file character by character or place the
entire file into a character array. This method throws
an IOException in case of problem.
L9 Integer variable n is cast to character and
printed.
L10 else clause of if statement defined in L6.

Writing to a file
L12 FileWriter object is created and the second
command line argument is passed to the constructor
of the object. If the file exists, it is overwritten and
if does not, a new file is created.
L13 A sample string is declared.
L14 The string is written to the file using write() of
the Writer class. The write() method is overloaded
to accept character array, integer, and string.
L15 Closes the FileWriter object.

9.3.4 Reading/Writing using Buffered Byte Stream Classes
BufferedInputStream class is used for buffering the input and it supports operation to re-read
the files. BufferedOutputStream class is used to buffer the output and enhance the performance.
A list of methods of BufferedInputStream and BufferedOutputStream are shown in Tables 9.7
and 9.8, respectively. Let us take an example to show these two classes.

Table 9.7 Methods of BufferedInputStream Class

Methods Description
int available () Returns the number of bytes that can be read from this input stream without blocking.
void close () Closes this input stream and releases all the resources.

void mark (int readlimit) Similar to mark the methods of InputStream.
boolean markSupported () Tests if this input stream supports the mark and reset methods.
int read () Similar to read of InputStream class.
int read (byte [] b, int
off, int len)

Reads bytes from the inputStream into the byte array starting at offset off and returns
the number of bytes read. Len specifi es the maximum number of bytes to read.

void reset () Similar to reset method of InputStream class.
long skip(long n) Similar to skip method of InputStream class.

Table 9.8 Methods of BufferedOutputStream Class

Methods Description
void fl ush () Flushes the output stream.
void write(byte[] b,int off, int len) Writes the specifi ed number of bytes (len) to the output stream

starting from the offset (off).
void write(int b) Write the specifi ed byte to the output stream.

 Input/Output, Serialization, and Cloning 271

Example 9.7 Buffered Input/Output
 L1 import java.io.*;
 L2 class BufferedInOutStreamDemo {
 L3 public static void main(String args[]) throws IOException
 {
 L4 FileInputStream fi s = new FileInputStream(args[0]);
 L5 BufferedInputStream bis = new BufferedInputStream(fi s);
 L6 int n = fi s.available();
 L7 bis.mark(n);
 L8 System.out.println ("Marked the stream");
 L9 byte b[] = new byte[n];
 L10 byte b1[] = new byte[n];
 L11 bis.read(b);
 L12 System.out.println("Contents of "+args[0]+ ":"+new String(b));
 L13 System.out.println("Resetting the stream");
 L14 bis.reset();
 L15 System.out.println("Reading the stream again from the marked point");
 L16 bis.read(b1);
 L17 System.out.println(new String(b1));
 L18 bis.close();
 L19 fi s.close();
 L20 System.out.println ("Writing contents to : "+args[1]);
 L21 FileOutputStream fos = new FileOutputStream(args[1]);
 L22 BufferedOutputStream out = new BufferedOutputStream(fos);
 L23 out.write(b);
 L24 System.out.println ("Contents written");
 L25 out.close(); fos.close();
 }}

Output
 C:\javabook\programs\chap09>java BufferedInOutStreamDemo sample.txt Demo.txt
 Marked the stream
 Contents of sample.txt: This is my sample fi le
 Resetting the stream
 Reading the stream again from the marked point
 This is my sample fi le
 Writing contents to : Demo.txt
 Contents written

Explanation
L4 and 5 BufferedInputStream object is created
and the FileInputStream object created (L4) is
passed to the constructor of BufferedInputStream
object. The input is buffered and operations like mark
and reset are supported. mark() and reset() are the
methods of BufferedInputStream class. But why
are we using BufferedInputStream class? Since, it
is not possible to re-read the file with an object of
FileInputStream, we use mark and reset operations
to read the file again.
L7 The stream is marked. The reset method sets

the pointer to the marked point. The read operation
will begin from the marked point after resetting the
stream. The n passed as an argument is the limit
which is the maximum number of bytes that can be
read before the mark expires. A reset in that case
raises an IOException.
L9 and 10 Two byte arrays have been created. One
for reading the content before the stream is reset and
the second one for reading the stream after it is reset.
L11 read method reads the entire file into the
byte array.

272 Programming in Java

L12 byte array is converted to string and displayed
on the standard output.
L14 reset method is used to reset the stream to the
marked point. In our case, it is the beginning of file.
L16 read method again reads the entire file into
the second byte array. If the mark and reset methods
are not used, then it is not possible to read the file
again using FileInputStream class and its methods.

L21 FileOutputStream object is created and
filename is passed as argument.
L22 BufferedOutputStream object is created and
OutputStream object (created in L21) is passed to it.
L23 write method is used to write contents of
byte array to file.
L25 Closes the output streams.

9.3.5 Reading/Writing Using Buffered Character Stream Classes
BufferedReader class is used for buffering the input and it supports operation to re-read
the files (just like BufferedInputStream). BufferedWriter class is used to buffer the output
and enhance the performance (just like BufferedOutputStream). Let us take an example to
show these two classes.

Example 9.8 Buffered Character Stream
 L1 import java.io.*;
 L2 class BufferedReadWriteDemo {
 L3 public static void main(String args[]) throws IOException
 {
 L4 int n;
 L5 FileReader fr = new FileReader(args[0]);
 L6 System.out.println("File opened: "+args[0]);
 L7 BufferedReader br = new BufferedReader(fr);
 L8 PrintWriter out = new PrintWriter(System.out,true);
 L9 String str;
 L10 FileWriter fw = new FileWriter(args[1]);
 L11 BufferedWriter bw = new BufferedWriter(fw);
 L12 while((str = br.readLine()) != null)
 {
 L13 out.println(str);
 L14 bw.write(str+"\n");
 }
 L15 System.out.println("Contents copied to: "+args[1]);
 L16 br.close();
 L17 bw.close();
 L18 fr.close();
 L19 fw.close();
 }}

Output
 C:\javabook\programs\CHAP09~1>java BufferedReadWriteDemo Sample1.txt Demo2.txt
 File opened: Sample1.txt
 This is my sample fi le
 Contents copied to: Demo2.txt

 Input/Output, Serialization, and Cloning 273

Explanation
L5 FileReader object is created and file name
passed as an argument to the constructor of this class.
L7 BufferedReader object is created and
FileReader object is passed to it. The BufferedReader
object buffers the characters for efficiency purpose
and it also supports the mark and reset methods.
L8 PrintWriter object is created to write contents
to the standard output (system.out). The true
specified as the constructor is for auto-flushing the
output buffer.

L10 and 11 BufferedWriter object is created and
FileWriter object is passed into the constructor of
the BufferedWriter object.
L12 to 14 readLine() method of BufferedReader
is used to read the String from the file whose name
has been specified while creating the FileReader
object. The return value is placed in the str and is
checked for equality to null. The loop continues until
str is null (EOF). The while loop prints the file line
by line (L13) and then writes it to another File using
BufferedWriter object (L14).

9.4 RANDOMLY ACCESSING A FILE

RandomAccessFile gives an opportunity to read or write files from a specific location. This class
has a method named seek (long pos) that sets the file pointer at the specified position (pos).
Now any read/write operation on the file will start from this marked position. A complete list of
methods of RandomAccessFile class is shown in Table 9.9. In the following example, we have
used seek() to set the file pointer to end of file (EOF) and then write the contents to the file. In
other words, we are appending the file.

Table 9.9 Methods of RandomAccessFile Class

Methods Description
void close () Closes this random access fi le stream.
fi nal FileChannel getChannel() Returns the unique FileChannel object associated with this fi le.
long getFilePointer() Returns the current offset in this fi le.
long length () Returns the length of the fi le.
int read () Reads a byte of data from this fi le.
int read (byte [] b) Reads up to b.length bytes of data from this fi le into an array of bytes.
int read(byte[] b, int off, int len) Reads up to len bytes of data from this fi le into an array of bytes

starting at offset off in the byte array.
fi nal boolean readBoolean() Reads a boolean from this fi le.
byte readByte() Reads a signed eight-bit value from this fi le.
fi nal char ceadChar() Reads a character from this fi le.
fi nal double readDouble() Reads a double from this fi le.
fi nal fl oat readFloat() Reads a fl oat from this fi le.
fi nal int readlnt () Reads a signed 32-bit integer from this fi le.
fi nal String readLine() Reads the next line of the text from this fi le.
fi nal long readLong() Reads a signed 64-bit integer from this fi le.
fi nal short readShort() Reads a signed 16-bit number from this fi le.

(Contd)

274 Programming in Java

Methods Description
void seek(long pos) Sets the fi le-pointer, measured from the beginning of this fi le, at

which the next read or write operation occurs.
void setLength (long newLength) Sets the length of this fi le.
int skipBytes(int n) Skips n bytes of input discarding skipped bytes.
fi nal void write (byte [] b) Writes b.length bytes from the specifi ed byte array to this fi le, starting

at the current fi le pointer.
fi nal void write (byte [] b, int off,
int len)

Writes len bytes from the specifi ed byte array starting at offset off
to this fi le.

fi nal void write(int b) Writes the specifi ed byte to this fi le.
fi nal void writeBoolean(boolean v) Writes a boolean to the fi le as a one-byte value.
fi nal void writeByte(int v) Writes a byte to the fi le as a one-byte value.
fi nal void writeBytes(String s) Writes the string to the fi le as a sequence of bytes.
fi nal void writeChar(int v) Writes char to the fi le as a two-byte value, high byte fi rst.
fi nal void writeChars(String s) Writes string to the fi le as a sequence of characters.
fi nal void writeDouble(double v) Converts the double argument to a long using the doubleToLongBits

method in class Double, and then writes that long value to the fi le as
an eight-byte quantity, high byte fi rst.

fi nal void writeFloat (fl oat v) Converts the fl oat argument to an int using the fl oatTolntBits
method in class Float, and then writes that int value to the fi le as a
four-byte quantity, high byte fi rst.

fi nal void writelnt(int v) Writes an int to the fi le as four bytes, high byte fi rst.
fi nal void writeLong(long v) Writes a long to the fi le as eight bytes, high byte fi rst.
fi nal void writeShort(int v) Writes a short to the fi le as two bytes, high byte fi rst.

Note Java 5 added an interface java.lang.Appendable which is implemented by the writer class.
This interface has three methods to append characters and string to the writer object. The
methods have the following forms:

public Writer append(char c)
public Writer append(CharSequence c)
public Writer append(CharSequence c, int start, int end)

java.lang.CharSequence is another interface for denoting sequence of character values. Its
implementing classes are String, StringBuffer, StringBuilder, etc.

Example 9.9 Random Access File
 L1 import java.io.*;
 L2 class RandomAccessFileDemo {
 L3 public static void main(String args[]) throws IOException
 {
 L4 System.out.println("Opening the fi le in read write mode");
 L5 RandomAccessFile raf = new RandomAccessFile ("Sample.txt","rw");
 L6 raf.seek(raf.length());

(Table 9.9 Contd)

 Input/Output, Serialization, and Cloning 275

 L7 String str = "\nContents appended using RandomAccessFile";
 L8 System.out.println("Appending contents to fi le");
 L9 raf.write(str.getBytes());
 L10 System.out.println("Contents appended");
 L11 System.out.println("Reading the contents of the fi le....");
 L12 raf.seek(0);
 L13 while((str = raf.readLine())!= null)
 L14 System.out.println(str);
 L15 raf.close();
 }}

Output
 C:\javabook\programs\CHAP09~1>java RandomAccessFileDemo
 Opening the fi le in read write mode
 Appending contents to fi le
 Contents appended
 Reading the contents of the fi le....
 This is my sample File
 Contents appended using RandomAccessFile

Explanation
L5 An object of RandomAccessFile is created.
The filename is passed as the first argument and the
second argument is the mode in which to open the
file. There are four modes that can be applied as a
string. If the file denoted by the first argument does
not exist, a FileNotFoundException results. The
various modes are shown in Table 9.10.
L6 seek (long pos) method is used to set the file
pointer at a particular position (pos) in the file. read/
write begins from this point. We are setting the
pointer to the end of file, as we have passed the entire

length of the file as an agreement to seek method.
L7 Shows the contents to be written to file.
L9 write()method of RandomAccessFile is
used to write bytes to file. Writing of bytes starts
from the position set by seek method in the
file. This method can throw an IOException.
L12 seek(0)sets the file pointer to the beginning
of the file.
L13–14 readLine() reads an entire line of text from
file and puts it in str. This str is printed until str is null.
L15 RandomAccessFile object is closed.

Table 9.10 Modes of RandomAccessFile

Mode Description

r File will be opened in read-only mode.

rw File will be opened in read–write mode. If a fi le does not exist, it will be created.

rws File is opened in read–write mode and every update in fi le contents and its metadata will be
synchronously written to the storage device.

rwd Similar to “rws” with the exception that any update in metadata is not synchronously written to
the storage device, thereby reducing the number of interactions with the storage device.

276 Programming in Java

9.5 READING AND WRITING FILES USING NEW I/O PACKAGE

The java.nio package is used to perform advanced I/O operations like memory mapping of
files, file locking, buffer classes have been provided for all primitive types, channels representing
connections to files. Memory mapping is a concept used in virtual memory. The entire file or
region of a file (for large files) is mapped byte to byte between the file and the virtual memory.
The mapped file is treated as it is actually present in the primary memory, thereby increasing
the performance of I/O.

Note nio stands for non-blocking io. A non-blocking i/o or asynchronous i/o operation is one in which
the program is not blocked waiting for the i/o operations to complete. Instead the other parts
of the program that do not require i/o can proceed further. The parts requiring input or outputs
would still be blocked or waiting for the i/o to finish.

nio package provides extensive support for buffer management that is used in our example
below. So let us first understand what is a buffer? A buffer is a container which can be used
to store the contents of the file or primitive data types like byte, short, char, int, long,
float and double. Buffer is an abstract superclass of ByteBuffer, ShortBuffer, CharBuffer,
IntBuffer, LongBuffer, FloatBuffer, and DoubleBuffer in java.nio package. We also use the
MappedByteBuffer class which is a subclass of ByteBuffer class and which represents a memory
mapped region of a file. A mapped buffer is obtained using the map method of the FileChannel
object as shown in the example below.

Example 9.10 New I/O
 L1 import java.io.*;
 L2 import java.nio.*;
 L3 import java.nio.channels.*;
 L4 public class ReadWriteUsingNIO {
 L5 public static void main(String args[]) {
 L6 try {
 //Use a mapped fi le to read a text fi le
 L7 FileInputStream fi s = new FileInputStream ("Sample.txt");
 L8 FileChannel fc = fi s.getChannel();
 L9 long fs = fc.size();
 L10 MappedByteBuffer mBuf = fc.map(FileChannel.MapMode.READ_ONLY, 0, fs);
 L11 for (int i = 0; i < fs; i++)
 L12 System.out.print((char) mBuf.get());
 L13 fc.close();
 L14 fi s.close();
 // write to a fi le using nio
 L15 String str = "welcome, writing to a fi le using nio package";
 L16 FileOutputStream fos = new FileOutputStream ("samplenio.txt");
 L17 FileChannel fc1 = fos.getChannel();
 L18 ByteBuffer buffer = ByteBuffer.allocate(str.length());
 L19 byte[] b = str.getBytes();
 L20 buffer.put(b);
 L21 buffer.fl ip();
 L22 fc1.write(buffer);

 Input/Output, Serialization, and Cloning 277

 L23 fc1.close();
 L24 fos.close();
 }catch (Exception e){
 System.out.println(e); }}}

Output
 C:\javabook\programs\chap09>java ReadWriteUsingNIO
 This is my sample File
 C:\javabook\programs\chap09>edit samplenio.txt
 welcome, writing to a fi le using nio package

Explanation

L1–3 Show the importing of packages. The java.
io, java.nio and java.nio.channels packages are
imported. ByteBuffer and MappedByteBuffer classes
are part of java.nio package and FileChannel class
is a part of java.nio.channels package.
L7 and 8 Using the getChannel() method of
FileInputStream object, a FileChannel object is
obtained. Now this channel actually represents a
connection to the file (Sample.txt). A FileChannel
object apart from reading and writing a file can
(a) map the fi le to memory
(b) lock the fi le
(c) read and write fi les at specifi ed positions
(d) you can force the fi le changes to be written to

the storage device.
L9 size() method returns the size of the file.
L10 Static method map of FileChannel class is used
to get a MappedByteBuffer object. MappedByteBuffer
object is a byte buffer whose content defines the
memory mapped file. The map method takes three
arguments:
1. Mode Three modes for mapping are available.
 (a) Read read only mapping (FileChannel.

MapMode.READ_ONLY)
 (b) Read-write (FileChannel.MapMode.

READ_WRITE). If the contents of the buffer
are manipulated, then they are written to the
mapped fi le.

 (c) Private Buffer manipulations will not be
written to fi le.

 MapMode is a static inner class in FileChannel class.
READ_ONLY, READ_WRITE, PRIVATE are static fields
within the class.

2. Position Point at which mapping in a fi le starts.
This value cannot be negative.

 3. Size Size of the mapping. This value cannot be
negative.

L11 and 12 for loop to extract the characters from
the mapped buffer through get method. Get method
returns the byte read and then advances the positions.
The byte value read is cast to character and printed.
L13 and 14 closes the FileChannel and
FileInputStream objects.

Writing a String to a file
L15 String declared.
L16 and 17 Same as L7 and 8. The difference is
that here, FileOutputStream object is used to obtain
the FileChannel object.
L18 java.nio package contains a class ByteBuffer
used for storing bytes. The ByteBuffer class
has a static method allocate used for creating a
ByteBuffer. This method accepts an argument that
sets the size of the buffer in bytes.
L19 The string is converted to byte array using the
getBytes() method of the String class.
L20 put method is used to transfer the bytes from
byte array to ByteBuffer.
L21 flip method is used to set the position to the
beginning of the buffer. After the put operation, this
method prepares the buffer for write operations.
L22 The ByteBuffer is written to the FileChannel
connected to the FileOutputStream.
L23 and 24 Closes the FileChannel object and
the FileOutputStream object.

278 Programming in Java

9.6 JAVA 7 nio ENHANCEMENTS

java.nio.file package has been added to the java.nio package in Java 7 to enhance the nio
functionality and motivate the programmers to use the new classes like Files and interfaces
like Path instead of the legacy class like java.io.File. A new interface SeekableByteChannel
was also added in java.nio.channels package which provides functionality similar to the java.
io.RandomAccessFile, etc. java.nio.file.Files class provides a number of static methods that
operate on files and directories like move a file, copy a file, creating a new file, and deleting
it. The Path object is used to locate a file on the system. Let us take an example to illustrate
how these classes and interfaces can be used. The program below shows the various methods
of these interfaces and classes to check whether a file/directory exists, read a file, rename a file,
copy a file, traverse a directory, whether two files are same and much more.

Example 9.11 java.nio.fi le

 // To use IOException and File class
 L1 import java.io.*;

 // To Use classes like Paths, Files and Interface like Path,
 // DirectoryStream and Enum like StandardCopyOption
 L2 import java.nio.fi le.*;

 // To use classes like StandardCharsets
 L3 import java.nio.charset.*;

 L4 class NewFileIO
 {
 L5 public static void main (String args[]) throws IOException
 {
 // static method Paths.get(String fi rst, String... more) returns
 // a Path object. Converts a path string to a Path.
 L6 Path fi le = Paths.get("D:/javabook/chapter of java book/Second Edition/programs/
 chap9/DemoThis.java");

 // Returns the number of name elements in the path
 L7 System.out.println("Name Count: "+fi le.getNameCount());

 // Returns the fi le system (FileSystem object) that created
 // this object
 L8 System.out.println("File System: "+fi le.getFileSystem());

 // Returns the name of the fi le or directory denoted by this
 // path as a Path object
 L9 System.out.println("File Name: "+fi le.getFileName());

 // Returns the parent of path as a Path object or null if this path // does not have a parent.
 L10 System.out.println("Parent: " +fi le.getParent());

 // checks whether the path starts with the specifi ed string.
 L1 1 System.out.println ("Name starts with a DemoThis.java: "+fi le.startsWith("Demothis.java"));
 L12 System.out.println("Hidden File: " + Files.isHidden(fi le.getFileName()));

 L13 System.out.println("Directory: "+Files.isDirectory(fi le.getFileName()));

 L14 System.out.println("Regular File: " + Files.isRegularFile(fi le.getFileName()));

 Input/Output, Serialization, and Cloning 279

 L15 System.out.println("Executable:"+Files.isExecutable(fi le.getFileName()));

 L16 System.out.println("Readable:"+Files.isReadable(fi le.getFileName()));

 L17 System.out.println("Writable:"+Files.isWritable(fi le.getFileName()));

 L18 System.out.println("Exists: "+Files.exists(fi le.getFileName()));

 L19 System.out.println("Last Modifi ed Time: "+Files.getLastModifi edTime(fi le.getFileName()));

 L20 System.out.println("Size: "+Files.size(fi le.getFileName()) +" bytes");

 L21 Path anotherFile=Paths.get("D:/javabook/chapter of java book/Second Edition/
 programs/chap 9/ScannerInput.java");

 // checks whether path starts with d:/javabook not D or
 //DemoThis or chap 9
 L22 System.out.println("Name starts with d:/javabook : "+ anotherFile.startsWith("d:/ja
 vabook"));

 L23 System.out.println("Another File exits : "+ Files.exists(anotherFile));

 // checks whether two fi les in two paths are same
 L24 System.out.println(fi le.getFileName() +" is same as "+ anotherFile.getFileName() + ":
 "+Files.isSameFile(fi le.getFileName(),anotherFile.getFileName()));

 // make a copy of the fi le
 L25 Path copy = Paths.get("D:/javabook/chapter of java book/Second Edition/programs/chap
 9/CopyOfDemoThis.java");

 // static Path Files.copy(Path source, Path target, CopyOption... options)
 // Copy a fi le to a target fi le.
 // Apart from REPLACE_EXISTING - Replace an existing fi le if it exists.
 // ATOMIC_MOVE - Move the fi le as an atomic fi le system operation.
 // COPY_ATTRIBUTES - Copy attributes to the new fi le.

 L26 System.out.println ("File Copied: "+ Files.copy (fi le.getFileName(),
 copy.getFileName(), StandardCopyOption.REPLACE_EXISTING));

 // read the contents of the copied fi le and prints it on the screen
 L27 System.out.println(Files.readAllLines(copy.getFileName(),StandardCharsets.US_ASCII));

 // rename a fi le in the same directory
 L28 System.out.println (Files.move(copy.getFileName(),copy.getFileName().
 resolveSibling("Renamed"+copy.getFileName()), StandardCopyOption.REPLACE_EXISTING));

 // beacause fi le has been renamed so copy does not exists and thus only deleted
 // method raises exception so we used deleteIfExists()
 // delete a fi le
 L29 System.out.println("Copy File deleted if existed "+Files.deleteIfExists(copy));

 // check for deletion of fi le
 L30 System.out.println(copy.getFileName() +" Exists: "+Files.exists(copy.getFile
 Name()));

 // traversing a directory

 L31 try(DirectoryStream<Path>
 ds=Files.newDirectoryStream(Paths.get("d:/javabook/chapter of java book/Second
 Edition/programs/chap 9")))

280 Programming in Java

 {

 System.out.println("----------------------------------");
 L32 System.out.println("Directory Listing: "+ds);
 L33 for(Path iterate:ds)
 {
 L34 if(Files.isDirectory(iterate))
 L35 System.out.println("Directory: "+iterate.getFileName());

 L36 else
 L37 System.out.println(iterate.getFileName());
 }
 }
 L38 File f = fi le.toFile();
 L39 System.out.println ("File object : "+f);
 }
 }

Output

 Input/Output, Serialization, and Cloning 281

Explanation

L1–3 Imports the relevant packages so that the
new classes and interfaces in java.io and java.nio
packages can be used.
L6 get method of the Paths class is used specify the
path of the file whose attributes need to be accessed
and create a Path object. A few basic methods can be
used on this Path object as well as this can be passed
to some other methods as we will see.
L7–11 Shows the usage of various methods of Path
object to extract information about the path like
 getNameCount—is used to extract the names

present in the path.
 getFileSystem()—to know the files system on

which the files was created,
 getFileName()—to know the name of the file
 getParent()– to know the parent of the path

object (file).
 startsWith()—returns a boolean value to indicate
whether the path start with the string argument passed
to the method. The path starts with DemoThis.java
and not D or De (see Output).
L12–20 Shows the usage of static methods of Files
class to extract information about the file like.
  Files.isHidden()—returns a boolean value to

indicate whether the file is hidden or not.
  Files.isDirectory()— returns a boolean value

to indicate whether the path refers to a directory
or not.

  Files.isRegularFile()—returns a boolean
value to indicate whether the fi le is a regular fi le
or not.

  Files.isExecutable()—returns a boolean value
to indicate whether the fi le is executable or not.

  Files.isReadable()—returns a boolean value
to indicate whether the fi le is readable or not.

  Files.isWriteable()—returns a boolean value
to indicate whether the fi le is editable or not.

  Files.exists()—returns a boolean value to
indicate whether the fi le exists or not.

  Files.getLastModifiedTime()—returns a
FileTime object to indicate the fi les last modifi ed
time.

  Files.size()—returns a long value indicating
the size of the fi le in bytes.

 All the above methods accept an argument, i.e.,
the file name or path as a Path object.
L21 Creates another Path object.
L22 Same as L11.
L23 Checks for the existence of the file as already
discussed.
L24 Checks whether two files are same using the
static method is SameFile() of Files class. The two
files are passed as Path arguments to the method.
L25–26 Shows how to create a copy of a file. The
Files.copy static method is used copy the contents
of a file into another. The general notation for the
copy method is as follows:
 Files.copy(Path source, Path target,
CopyOption... options)
The first two arguments are source and destination
files as Path objects and last is the CopyOption
object. The CopyOption interface is inherited by an
Enum, StandardCopyOption which has three Enum
constants. These can be specified as the last argument.
These constants are:
 REPLACE_EXISTING—Replace an existing fi le
 ATOMIC_MOVE—Move the fi le as an atomic fi le system
 operation.
 COPY_ATTRIBUTES—Copy attributes to the new

fi le.
L27 readAllLines method of the Files class is
used to read all line of the Path object.
L28 Shows how to rename a file. The method
requires three arguments source, destination, and
copy options. Source and destination are Path objects.
If you want to rename a file and keep it in the same
directory then you can use the method as shown in
the program above. The destination Path object
(file name can be specified in it) can be specified
by using the resolveSibling method on the source
Path object. In case you want to move a file to a new
directory (newdir as Path object) then the destination
Path object can be obtained by using the resolve
method on the new directory Path object as shown
below keeping the file name same.
 Files.move(source, newdir.resolve(source.
getFileName()), REPLACE_EXISTING);

Or any name can be specified.

282 Programming in Java

 Files.move(source, newdir.resolve(" "),
REPLACE_EXISTING);

L29 Shows how to delete a file.
L31–37 Shows how to traverse a directory, i.e.,
it prints all the files within the directory. L31
demonstrates the usage of try with resources
statement. The newDirectoryStream method of
the Files class is used to access a Path object. The
Path object will refer to a directory that needs to be
traversed. The newDirectoryStream method returns

a collection DirectoryStream object that will hold
only Path objects, i.e., files and directories within
the Path object passed to the newDirectoryStream
method. Please refer to the syntax used:
 DirectoryStream<Path> ds

 (We will discuss more on this syntax in Chapter
10.) A for-each loop is used to iterate the contents
of the collection one by one.
L38–39 Shows how to convert a Path object to
legacy File object.

Some of the other methods of the Files class are shown in Table 9.11.

Table 9.11 Few methods of Files Class

Methods Description
long copy(InputStream in, Path target,
CopyOption... options)

Copies all bytes from an input stream to a fi le.

Path copy(Path source, Path target, Copy
Option... options)

Copy a fi le to a target fi le.

Path createDirectory(Path dir, File
Attribute<?>... attrs)

Creates a new directory.

Path createFile(Path path, File
Attribute<?>... attrs)

Creates a new and empty fi le, failing if the fi le already exists.

Path createLink(Path link,
Path existing)

Creates a new link for an existing fi le.

Path createSymbolicLink(Path link,
Path target, FileAttribute<?>... attrs)

Creates a symbolic link to a target.

Path createTempDirectory(Path dir,
String prefi x, FileAttribute<?>... attrs)

Creates a new directory in the specifi ed directory, using the
given prefi x.

Path createTempDirectory(String prefi x,
File Attribute<?>... attrs)

Creates a new directory in the default temporary-file
directory, using the given prefi x.

void delete(Path path) Deletes a fi le.
boolean deleteIfExists(Path path) Deletes a fi le if it exists.
boolean exists(Path path,
LinkOption... options)

Tests whether a fi le exists.

Path write(Path path, byte[] bytes, Open
Option... options)

Writes bytes to a fi le.

Path setAttribute(Path path,
String attribute, Object value,
LinkOption... options)

Sets the value of a fi le attribute.

Object getAttribute(Path path,
String attribute, LinkOption... options)

Reads the value of a fi le attribute.

Path walkFileTree(Path start,
FileVisitor<? super Path> visitor)

Walks a fi le tree.

(Contd)

 Input/Output, Serialization, and Cloning 283

Methods Description
InputStream newInputStream(Path path,
OpenOption... options)

Opens a fi le, returning an input stream to read from the
fi le.

OutputStream newOutputStream(Path path,
OpenOption... options)

Opens or creates a fi le, returning an output stream that may
be used to write bytes to the fi le.

SeekableByteChannel newByteChannel
(Path path, OpenOption... options)

Opens or creates a fi le, returning a seekable byte channel
to access the fi le.

9.7 SERIALIZATION

Serialization is the process of converting an object to bytes so that its state can be made persistent.
The state is made persistent by writing the bytes to a file. De-serialization is the reverse of
serialization. It is the process of converting bytes back to object.
 The question arises: Why should an object be made persistent? The state of object is defined by
its properties (value of the instance variables). Normally we create objects, work with them, and
when the job is done, they are garbage collected automatically. But suppose, we need the value
of the instance variables at a later point of time, then the values will not be available. So in this
case, serialization is helpful. A class that wants its objects to be serialized has to implement the
Serializable interface. This interface is empty. It does not contain any method. This interface is
implemented by the class to inform that the objects of that class can be serialized. The attributes
that we do not want to serialize are made transient, e.g. temperature. By default, static variables
of a class are also not serialized.

Example 9.12 Serialization and De-serialization

 L1 import java.io.*;
 L2 import java.util.*;
 L3 class DayTimeTemp implements Serializable {
 L4 Calendar d;
 L5 transient fl oat temperature;
 L6 public DayTimeTemp(Calendar d,fl oat f){
 L7 this.d = d;
 L8 this.temperature = f; }}
 // class to test serialization
 L9 class TestSerialization {
 L10 public static void main(String args[]) throws Exception
 {
 L11 Calendar c = Calendar.getInstance();
 L12 DayTimeTemp t = new DayTimeTemp(c,94.3f);
 L13 FileOutputStream fos = new FileOutputStream("Serialize");
 L14 ObjectOutputStream oos = new ObjectOutputStream (fos);
 L15 System.out.println("Serializing Object......");
 L16 System.out.println("Values to be serialized......");
 L17 System.out.println("Time:" +c.getTime());
 L18 oos.writeObject(t);
 L19 System.out.println("Object Serialized......");
 L20 oos.close();

(Table 9.11 Contd)

284 Programming in Java

 L21 fos.close();
 L22 FileInputStream fi s = new FileInputStream("Serialize");
 L23 ObjectInputStream ois = new ObjectInputStream(fi s);
 L24 System.out.println("Deserializing Object......");
 L25 DayTimeTemp c1 = (DayTimeTemp)ois.readObject();
 L26 System.out.println("Temperature: " +c1.temperature);
 L27 System.out.println("Day, Date & Time: " +c1.d.getTime());
 L28 ois.close();
 L29 fi s.close();
 }}

Output
 C:\javabook\programs\CHAP09~1>java TestSerialization
 Serializing Object......
 Values to be serialized......
 Time: Thu Mar 12 20:46:12 IST 2009
 Object Serialized......
 Deserializing Object......
 Temperature: 0.0
 Day, Date & Time: Thu Mar 12 20:46:12 IST 2009

Explanation
L1 io package is imported.
L2 util package is imported as Calendar class
is part of it.
L3 Class inherits the serializable interface.
L4 Reference variable of Calendar class is created.
L5 float transient variable is declared. The values
in transient fields are not written during serialization.
L6 Constructor of the class has been defined and it
accepts two arguments: the Calendar object and the
float value for temperature.
L7 and L8 Instance variables are initialized with
the values passed in the constructor.
L9 Test class is created to serialize the DayTimeTemp
class created in previous lines.
L11 As Calendar is an abstract class, it cannot be
instantiated directly. So getInstance()static method
of Calendar class is used to get Calendar instance.
L12 An object of DayTimeTemp class is created and
Calendar instance is passed to it along with a float
value as temperature. This object t will be serialized.
L13 For serialization, we need to write bytes to a
file. So we need a byte stream class which can write
to a file. FileOutputStream has been chosen and it
is used to open the file ‘serialize’. If the file already
exists, it will be overwritten and if does not exist, a
new file will be created.

L14 Now we need a class which can write object
to OutputStream. So the ObjectOutputStream object
is created and the FileOutputStream object (L13)
is passed to the constructor of ObjectOutputStream
object.
L15 Prints "Serializing Object......".
L16 Prints "Values to be serialized......".
L17 getTime() method of the Calendar class is
used to return the Date object. This Date object when
printed results in a call to the toString() method of
the Date class automatically. The toString method
of Date class returns a String containing current day
(Sun), month (March), day of the month (15), time
(HH:MM:SS format), time zone (IST), and year
(2009) (see output).
L18 writeObject(t) method is used to write the
DayTimeTemp object t to the FileOutputStream
connected to it.
L19 Prints "Object Serialized......".
L20 and 21 Closes the ObjectOutputStream and
FileOutputStream.
L22 We have to convert the bytes stored in the file
(serialize) back to the object. So for this purpose, we
need to first open the file for reading the bytes. That
is why, FileOutputStream object is created and the
filename is passed to the constructor of this object.

 Input/Output, Serialization, and Cloning 285

L23 ObjectInputStream is used for de-serialization
of objects. Its object is created and FileInputStream
object (L23) is passed to it.
L24 Prints "Deserializing Object......".
L25 readObject() method is used to read the
object from the ObjectInputStream. This method
returns an object of type ‘Object’ which is casted to
type of your defined class, i.e., DayTimeTemp. If it

is not casted, an attempt to access the variables of
DayTimeTemp will result in a compile time error, as
these variables are not a part of the Object class.
L27 Prints the temperature in the retrieved object,
i.e., 0.0, as it was a transient field (see output).
L28: Same as L17 but in this line, the object used is
the de-serialized object.
L28 and 29 Closes the InputStream.

9.8 CLONING

Cloning is basically making copy of an existing object. There are two types of cloning: shallow
copy and deep copy. Shallow copy creates a new instance of the same class and copies all the
fields to the new instance and returns it. In case a class contains references to other classes as
instance variables, shallow copy does not create new object (for instance variables defined in
the class) when cloned, instead the objects (defined as instance variables in the class) are shared
in the original and cloned object. In deep copying the object references contained within the
original object are copied recursively and the important point is that they are different objects.

Note Serialization could also be used as an alternative to deep copying because serialization
includes deep copying implicitly.

 Java offers two more ways to create objects, i.e., clone() and newInstance() apart from the
new operator. The newInstance() is a method of java.lang.Class class, it is commonly used by
class loaders and dynamic program extension. The clone() method is a member of Object class
and is used for creating copies of objects. Let us discuss the clone() method in detail.
 The clone method is available to all the classes of Java as it is a part of the Object class. If
you wish to create a copy of an existing object then you can invoke the clone method on that
object provided the object inherits the Cloneable interface. The Cloneable interface is an empty
interface. A class that wants its objects to be cloned must implement the Cloneable interface. If
a class does not implement the Cloneable interface and clone method is invoked on its object,
then a CloneNotSupportedException is thrown. Otherwise it returns an exact copy of the object
as an Object reference. Let us take an example to show how cloning is done. The example below
illustrates shallow copying.

Example 9.13 Shallow Copy
 L1 class CloneDemo implements Cloneable
 {
 // instance variable
 L2 private int value;
 // Constructor
 L3 CloneDemo(int v)
 {
 value=v;
 }
 L4 public Object clone()

286 Programming in Java

 {
 L5 try {
 L6 return super.clone();
 }
 L7 catch(CloneNotSupportedException e)
 {
 L8 System.out.println(e);
 L9 return null;
 }
 }
 L10 public int increment()
 {
 L11 return ++value;
 }
 L12 public int getValue()
 {
 L13 return value;
 }
 L14 public void setValue(int v)
 {
 L15 value=v;
 }
 }// CloneDemo class ends here

 L16 class TestClone
 {
 L17 public static void main(String args[])
 {
 L18 CloneDemo d=new CloneDemo(23);

 L19 System.out.println("Value in original object: "+d.getValue());

 L20 CloneDemo cd=(CloneDemo)d.clone();

 L21 System.out.println("Original object d: "+d);

 L22 System.out.println("Cloned object cd: "+cd);

 L23 System.out.println("Value in Cloned object: "+cd.getValue());

 L24 cd.increment();

 L25 System.out.println("Value after increment in Cloned object: "+cd.getValue());

 L26 System.out.println("Value in original object: "+d.getValue());
 }
 }

 Input/Output, Serialization, and Cloning 287

Output
 D:\javabook\Second Edition\programs>java TestClone
 Value in original object: 23
 Original object d: CloneDemo@18a992f
 Cloned object cd: CloneDemo@4f1d0d
 Value in Cloned object: 23
 Value after increment in Cloned object: 24
 Value in original object: 23

Explanation
L1 Class implements the Cloneable interface to
signify that the objects of this class can be cloned.
L2 Declares an instance variable
L3 Declares a constructor which initializes the
instance variable.
L4 Overrides the clone method of the Object class.
L5–6 Declares a try block with a call to the
superclass clone() method from within itself
(super.clone()).The clone method creates a copy
of the object from which it has been invoked with
similar values for its instance members. The clone()
method might throw CloneNotSupportedException if
the class did not implement the Cloneable interface.
This clone method creates a copy of the object on
which this method has been invoked. This copy is a
new object which is a replica of that object.
L7–9 Declares a catch block corresponding to the
try block to catch CloneNotSupportedException.
Lastly a null is returned in case an exception is
generated by the clone method.
L10–11 increment method is declared to increment
the value of the instance variable.
L12–13 getValue method is defined to return the
value of the instance variable.
L14–15 setValue method is defined to set the value
of the instance variable.
L16 TestClone class is defined to test cloning of
CloneDemo objects.

L17 main method is declared.
L18 An object of CloneDemo is created
(see Fig. 9.3).
L19 The value in the object created is obtained
using the getValue method and printed (see output).
L20 A clone of the original object (created in L18)
is created using the clone method. The return type
of the clone method is Object so it returns the copy
of the cloned object as an Object which has to be
casted back to the CloneDemo to access the method
and variables of that class (see Fig. 9.3).
L21–22 Prints both the objects: the original and the
cloned one to show that they are different objects. It
is evident from the output printed on the screen. The
hexadecimal representation of the internal addresses
of the objects is not same. It clearly states that they
are two different objects not referring to the same
memory location (see output and Fig. 9.3).
L23 Prints the value of the instance variable of the
cloned object, i.e., 23.
L24 Increments the value of the instance variable
of the cloned object.
L25 Prints the value of the instance variable of
the cloned object. Now the value is 24 (see output).
L26 Prints the value of the instance variable of
the original object, i.e., 23. The increment on the
cloned object does not have any effect on the instance
variable of the original object.

Note The clone method is a protected method in the object class. Thus, only subclasses and
classes within a package are able to access it. In case you wish to make it accessible to any
class in any package, then you need to override it and declare it as a public method.

288 Programming in Java

Fig. 9.3 Shallow Copy of Primitive Type

 The above class contains a primitive type value and when cloned the object contains its own
copy of the primitive type. Let us see what happens when the same class contains a reference
type.

Example 9.14 Shallow Copy of a Class Containing References to Other Classes
 /* class whose reference will be used as instance variable in another class */
 L1 class CloneReferenceTest
 {
 L2 int value;
 L3 CloneReferenceTest(int v)
 {
 L4 this.value=v;
 }
 }
 L5 class CloneDemo implements Cloneable
 {
 // object reference created
 L6 CloneReferenceTest br;
 L7 CloneDemo()
 {
 L8 br = new CloneReferenceTest(12);
 }
 // clone method overridden
 L9 public Object clone()
 {
 L10 try {
 L11 return super.clone();
 }
 L12 catch(CloneNotSupportedException e)
 {

 Input/Output, Serialization, and Cloning 289

 L13 System.out.println(e);
 L14 return null;
 }
 }
 }
 // class declared for Testing Cloning
 L15 class TestClone
 {
 L16 public static void main(String args[])
 {
 L17 CloneDemo d = new CloneDemo();
 L18 CloneDemo cd =(CloneDemo)d.clone();
 L19 System.out.println("Original object d: " +d);
 L20 System.out.println("Original object inner reference: " +d.br);
 L21 d.br.value--;
 L22 System.out.println("Original object inner reference instance variable: "+d.
 br.value);

 L23 System.out.println("Cloned object cd: "+cd);
 L24 System.out.println("Cloned object inner reference: "+cd.br);
 L25 System.out.println("Cloned object inner reference instance variable: "+cd.
 br.value);
 }
 }

Output
 D:\javabook\Second Edition\programs>java TestClone
 Original object d: CloneDemo@c3c749
 Original object inner reference: CloneReferenceTest@150bd4d
 Original object inner reference instance variable: 11
 Cloned object cd: CloneDemo@1bc4459
 Cloned object inner reference: CloneReferenceTest@150bd4d
 Cloned object inner reference instance variable: 11

Explanation

L1–4 Declares a class, i.e., CloneReferenceTest
which will be used within the class CloneDemo. Earlier
we used a primitive as an instance variable. In this
example we will be using a reference variable of class
CloneReferenceTest as an instance variable of class
CloneDemo. This reference variable is instantiated
within the constructor of class CloneReferenceTest.
L5 Class CloneDemo is defined. This class inherits
the Cloneable interface as we want to create clone
of this class.
L6 Instance variable for the class if defined. It is
basically a reference variable of type CloneRefer-
enceTest.

L7–8 Constructor for CloneDemo is declared. This
constructor initializes the instance variable of the class.
So basically the reference variable (L6) is initialized
by creating an object of CloneReferenceTest and
assigning it to the reference variable.
L9–14 The clone method is overridden and imple-
mented as in the previous example.
L15 For testing and cloning the object we have
created a class TestClone as in the previous example.
L16 Main method declaration.
L17–18 An object of class CloneDemo and its clone
is created. An object of class CloneDemo results in
creation of an object of CloneReferenceTest auto-

290 Programming in Java

matically from within the constructor of CloneDemo
class. The CloneReferenceTest constructor initializes
its value instance field to 12. The return type of the
clone method is Object so it returns the copy of the
cloned object as an Object which has to be casted
back to the CloneDemo to access the method and
variables of that class.
L19–20 Prints the original object and the object
reference it is using (as its instance variable).
L21 Instance variable in the original object is
decremented. This variable is contained within the
class CloneReferenceTest. So to access the variable
we use d.br.value where br being an instance
member of d can be accessed using dot operator and
similarly for value instance variable of br.
L22 Prints the decremented value of the instance
variable: value.

L23–24 Prints the cloned object and the object
reference it is using (as its instance variable). The
hexadecimal representation of the internal addresses
of the original and the cloned objects is not the same.
It clearly states that they are two different objects.
But the hex representation of the internal addresses of
the object references that both these objects are using
(their respective instance variables) is same. It means
both original and cloned objects instance variable
object references are pointing to the same memory
location. A change in instance variable (value) of
CloneReferenceTest through original object (d)
will be reflected when the instance variable will be
accessed using cloned object (cd) (see Fig. 9.4).
L25 Prints the instance variables value using cloned
object. This value is similar to the value printed using
original object for the reason explained above.

Fig. 9.4 Shallow Copy of Reference Types

 As we have seen from Example 9.13 that the object references contained within an object are
not copied during cloning instead they are shared. In case we want to clone object with all the
object references contained within the object, we should deep copy the object. For deep copying,
the object references (used within the class) should also implement the Cloneable interface and
override the clone method in their respective classes.

Example 9.15 Deep Copy
 L1 class CloneReferenceTest implements Cloneable
 {
 L2 int value;

 Input/Output, Serialization, and Cloning 291

 L3 CloneReferenceTest(int v)
 {
 L4 value = v;
 }
 L5 public Object clone()
 {
 L7 try {
 L8 return super.clone();
 }
 L9 catch(CloneNotSupportedException e)
 {
 L10 System.out.println(e);
 L11 return null;
 }
 }
 }
 L12 class CloneDeepDemo implements Cloneable
 {
 // reference of another class declared here
 L14 CloneReferenceTest br;
 L15 CloneDeepDemo()
 {
 L16 br = new CloneReferenceTest(12);
 }
 // clone method
 L17 public Object clone()
 {
 L18 CloneDeepDemo cdd = null;
 L19 try {
 L20 cdd =(CloneDeepDemo) super.clone();
 }
 L21 catch(CloneNotSupportedException e)
 {
 L22 System.out.println(e); //return null;
 }
 L23 cdd.br =(CloneReferenceTest)br.clone();
 L24 return cdd;
 }
 }
 L25 class TestDeepClone
 {
 L26 public static void main(String args[])
 {
 L27 CloneDeepDemo d = new CloneDeepDemo();
 L28 CloneDeepDemo cd = (CloneDeepDemo)d.clone();
 L29 System.out.println("Original object d: "+d);
 L30 System.out.println("Original object inner reference: "+d.br);
 L31 d.br.value--;
 L32 System.out.println("Original object inner reference instance variable:
 "+d.br.value);
 L33 System.out.println("Cloned object cd: "+cd);
 L34 System.out.println("Cloned object inner reference: "+cd.br);
 L35 System.out.println("Cloned object inner reference instance variable:
 "+cd.br.value);
 }
 }

292 Programming in Java

Output
 D:\javabook\Second Edition\programs>java TestDeepClone
 Original object d: CloneDeepDemo@c3c749
 Original object inner reference: CloneReferenceTest@150bd4d
 Original object inner reference instance variable: 11
 Cloned object cd: CloneDeepDemo@1bc4459
 Cloned object inner reference: CloneReferenceTest@12b6651
 Cloned object inner reference instance variable: 12

Explanation
L1–11 Class CloneReferenceTest is defined as in
Example 9.14. The difference is that now it inherits
Cloneable interface and overrides the clone()
method. It clearly signifies that this class objects
can also be cloned. The implementation of the clone
method is similar to that of previous programs.
L12 Declares CloneDeepDemo class similar to
CloneDemo of the previous program. The only
difference lies in the implementation of the clone
method.
L17–24 We have to deep copy the object. So, an
empty reference variable of class CloneDeepDemo is
created and the clone method is invoked through
the existing CloneDeepDemo object i.e., d. This

gives us a clone of CloneDeepDemo object (i.e.,
d). In order to deep copy, all the references types
within CloneDeepDemo should also be cloned so
on L24 we invoke the clone method on br (i.e., of
CloneReferenceTest class) object to create a clone of
this object. It returns an object of type Object which is
casted into CloneReferenceTest and stored in the br
instance variable of the cd object. Note that we have
not enclosed L24 in the try catch block because the
clone method of CloneReferenceTest class includes
a try-catch and catches all exceptions thrown from
clone method (Fig. 9.5).
L25–35 TestDeepClone class is declared. (Same
as TestClone of the previous program).

d

cd

CloneDemo

Java References

Objects in

Heap Memory

CloneReferenceTest

Value:11

CloneDemo

CloneReferenceTest

Value:12

Original object

Reference type used by

original object

Cloned object

Different reference type

used by cloned object

Fig. 9.5 Deep Copy

Note Clone method should be applied only to mutable objects which are referenced by instance
variables of the cloned object. Objects whose state can change are mutable and whose state
cannot are immutable like String and wrapper classes.

 Input/Output, Serialization, and Cloning 293

SUMMARY
JDK 1.4 introduced java.nio package in addition
to the java.io package. The I/O in Java is based
on streams: byte and character. A few classes in
both categories have been discussed in the chapter.
These files show how to read and write data (both
byte and character) to files. RandomAccessFile class
is used for reading and writing a file randomly by
setting the file pointer at a particular position in the
specified file. Java 6 introduced Console class for
user input and output to the user. java.nio has a few
subpackages also like java.nio.channels (used for
creating channels to files). The FileChannel is used

for establishing connection to file so that they can be
read, written, mapped, and locked. MappedByteBuffer
class provided in java.nio package is used for
mapping files. Serialization is used to convert object
to bytes and de-serialization does the reverse. Java
7 introduced java.nio.file package and added new
classes like files and interfaces like Path to replace
the legacy class like java.io.File. A new interface
SeekableByteChannel was also added in java.nio.
channels package which provides functionality similar
to the java.io.RandomAccessFile, etc. This chapter
also discusses in detail about cloning—shallow and
deep.

EXERCISES

Objective Questions

 1. Which abstract class is the superclass of all
classes used for reading characters?

 (a) Reader (b) FileReader

 (c) ByteReader (d) InputStream

 2. Which abstract class is the superclass of all
classes used for writing bytes?

 (a) Writer (b) FileWriter
 (c) CharWriter (d) OutputStream

 3. Name the class that allows reading of binary
representations of Java primitives from an input
byte stream.

 (a) DataWriter (b) FileWriter
 (c) DataInputStream (d) DataOutputStream

 4. Which of these classes are abstract?
 (a) FilterWriter (b) Reader
 (c) InputStream (d) All the above

 5. Name the exception thrown by the read method
defi ned in the InputStream class.

 (a) ArithmeticException
 (b) NullPointerException
 (c) IOException
 (d) IllegalAccessException

 6. What will happen when you try to compile and
run the following code and pass the following at
the user prompt–“MyValue”?

 import java.io.*;
 class Demo6{
 public static void main(String
 args[]){
 Console c = System.console();
 String x = c.readLine("Enter ur value");
 int a = Integer.parseInt(x)+10;
 c.printf("the value is %1$d",a);
 }}
 (a) ArithmeticException
 (b) NullPointerException
 (c) IOException
 (d) NumberFormatException
 7. What will happen when you try to compile and

run the following code?
 (Assuming abc.txt exists in the current directory)
 import java.io.*;
 class Demo6{
 public static void main(String
 args[]){
 FileInputStream f = new
 FileInputStream("abc.txt");
 System.out.println("size:"
 +f.available());
 }}
 (a) does not compile
 (b) compiles successfully but generates an

exception at run time.

294 Programming in Java

 (c) executes successfully
 (d) generates an IOException while reading the

available byes in fi le
 8. What will happen when you try to compile and

run the following code and the fi le abc.txt does
not exist?

 import java.io.*;
 class Demo6{
 public static void main(String args[])
 throws Exception{
 FileInputStream f = new
 FileInputStream("abc.txt");
 System.out.println("size:"
 +f.available());
 }}
 (a) ArithmeticException is thrown

 (b) NullPointerException is thrown
 (c) IOException is thrown
 (d) FileNotFoundException is thrown
 9. Which of the following was introduced in Java 7

to replace RandomAccessFile class?
 (a) java.nio.SeekableByteChannel
 (b) java.nio.channels.ByteChannel
 (c) java.nio.channels.SeekableByteChannel
 (d) java.nio.fi les.SeekableByteChannel
 10. Which of the following was introduced in Java 7

to replace java.io.File class?
 (a) Files class and Path interface
 (b) ava.nio.Files class
 (c) java.nio.fi le.File class
 (d) none of the above

Review Questions
 1. Explain the utility of RandomAccessFile class with

all its modes.
 2. Explain in detail all the possible ways of taking

inputs from the user.
 3. Explain the difference between FileInputStream

and BufferedInputStream. Show an example in
support of your answer.

 4. Explain the following terms:
 (a) Memory mapping (b) Virtual memory
 (c) File channel
 5. What is serialization and de-serialization? Why

is it required? Name the interface used for
serialization.

 6. Explain Java 7 new io enhancements.
 7. Explain shallow copy and deep copying.

Programming Exercises
 1. Write a program that lists all the fi les in a directory

including the fi les present in all its subdirectories
as well. Get name/path of the directory from the
user through standard input. [Hint: Use recursion]

 2. Using classes under the Appendable interface,
append string data to a fi le. Get the name of the
fi le from the user.

 3. Write a program to read the contents of a fi le byte
by byte and copy it into another fi le. Get names
of the fi les from the user through standard input.

 4. Write a program to read the contents of a fi le into
a character array and write it into another fi le. Get
names of the fi les from the user through standard
input.

 5. Write a program that writes primitives (byte,
short, int, long) followed by the string “Starting
F i l e N o w….” to the beginning of a file.
 [Hint: Use RandomAccessFile]

 6. Write a program that appends data to the fi le
using FileWriter class.

 [Hint: Use a different constructor of
FileWriter class]

 7. Write a program that maps a file. Use this
mapping to write contents to the fi le.

 [Use java.nio package]
 8. Create a class that has a static fi eld x, a non-

static fi eld y, and a transient fi eld z. Initialize
them through a constructor. Serialize the class
and then deserialize it.

 9. Write a program to create a sequential fi le that
could store details about the employees of an
organization. Details include empId, empName,
empAge, empDept, and empSal. These are
provided through keyboard.

 10. How many lines, words, and characters does a
fi le have? Write a program for the same.

 Input/Output, Serialization, and Cloning 295

PROJECT WORK
Simulate an Employee database using files in Java.
This database contains name, address, phone number,
designation, and salary. The provision of adding
new record, deleting an existing record, searching
a record, and updating a record should be provided.
An employee id should be automatically generated
whenever a new record is added. This employee id

will be similar to the primary key in databases. For
searching, deleting, and updating a record, the user
should be prompted to enter the Employee ID. Before
deletion and updating, the user must be prompted for
a confirmation, e.g.
“Are you sure you want to delete the record? yes/no”.

Answers to Objective Questions
 1. (a) 2. (d) 3. (c) 4. (d)
 5. (c) 6. (d) 7. (a) Compile time error as in two statements, two

exceptions may be thrown, so a try/catch or throws clause should be used
 8. (d) 9. (c) 10. (a)

 In the absence of willpower, the most complete collection of virtues and talents is
wholly worthless. Aleister Crowley

After reading this chapter, the readers will be able to
  understand collections
  understand and use generics
  understand how basic data structures are embedded in util
  know the basic concept of LinkedList, ArrayList, and Vector
  understand the basic concept behind Set, HashSet, and TreeSet as also Map, HashMap, and

TreeMap
  use collections class, enumeration, and iterator
  understand the usage of random class
  implement observer pattern using observer class and observable interface
  understand runtime class
  learn about reflection API

10.1 INTRODUCTION

Utility means usefulness. Utility classes are those that help in creation of other classes. The
java.util package contains utility classes such as Date, Calendar, Stack, LinkedList, and
StringTokenizer, etc. The classes in java.util package use collections, i.e., a group of objects.
Collection classes work on objects, i.e., they store/retrieve objects.

Note Primitives cannot be directly stored and retrieved in collections. Wrapper classes representing
primitives were created in java.lang package to work with collections.

The java.util package has an interface called collection. A collection supports a group of objects.
A collection may be ordered/unordered as well as some collections may possess duplicates while
others may not. This collection interface has sub-interfaces such as set, list, and queue. Figure 10.1
shows the inheritance hierarchy of collection interface. These interfaces have concrete subclasses

Generics, java.util,
and other API

1010

Generics, java.util, and other API 297

Fig. 10.1 Collection Inheritance Hierarchy

such as LinkedList, Stack, and Vector. Besides collection, we have shown another interface Map
which work on pairs—key/value pairs. This interface has a nested interface named entry. We
will discuss the details later in the chapter. Table 10.1 lists the methods of collection interface.

Table 10.1 Methods of collection Interface

Method Description
boolean add(E e) Adds the specifi ed element to the collection and returns true. It returns

false only in case the collection does not accept duplicates (like Set).
boolean addAll (Collection<?
extends E> c)

Adds all the elements in the specifi ed collection to this collection and
returns true if collection changed.

void clear() Clears the collection by removing all the elements from this
collection.

boolean contains(Object o) Returns true if this collection contains the specifi ed object.
boolean containsAll
(Collection<?> c)

Returns true if this collection contains all the elements in the specifi ed
collection.

boolean equals(Object o) Compares the specifi ed object with this collection for equality and
returns true if equal.

int hashCode() Returns the hash code value for the collection.
boolean isEmpty() Returns true if this collection is empty.
Iterator<E> iterator() Returns an iterator to iterate the elements in this collection.
boolean remove(Object o) Removes a single instance of the specifi ed element from this

collection, if it is present.

(Contd)

298 Programming in Java

Method Description
boolean removeAll
(Collection<?> c)

Removes all the elements of this collection that are also contained in the
specifi ed collection.

boolean retainAll
(Collection<?> c)

Retains only the elements in this collection that are contained in the
specifi ed collection.

int size() Returns the number of elements in this collection.
Object[]toArray() Returns an array containing all the elements in this collection. The return

type of array of object will be of type Object class.
<T> T[] toArray(T[] a) Creates an array containing all the elements in this collection. The return

type of the array of objects will be according to the type of objects in
the collection.

Note Figure 10.1 does not show all the interfaces in the collection. Refer JDK 6 documentation for
the complete interface list.

 The java.lang.Iterable interface was added by JDK 1.5 and collection interface was made
to inherit it so that the objects can be iterated using a for-each loop. This interface provides a
method named iterator() that returns an iterator object to iterate all the objects in the collection.
The collection interface is implemented by an abstract class AbstractCollection, which is the
parent of all the collection classes and it implements almost all the methods of the collection
interface.
 List interface refers to an ordered but duplicate collection of objects. We refer to a list as
ordered because the user has full control over the order in which an object is inserted into the
list. The top level class for list interface is an abstract class AbstractList (which is a subclass
of AbstractCollection). AbstractList implements almost all the methods of list interface (as
given in Table 10.2) and has three subclasses AbstractSequentialList, ArrayList, and Vector.
LinkedList class is subclass of AbstractSequentialList and its definition has been modified in
JDK 1.6 to implement the Queue interface. Methods of Queue interface are listed in Table 10.3.
Stack is a subclass of the vector class. We will discuss these classes later in the chapter.

Table 10.2 Methods of list Interface

Method Description
boolean addE(E e) Appends the specifi ed element to the list.
void add (int index, E element) Inserts the specifi ed element at the specifi ed position in this list.
boolean addAll(Collection<?
extends E> c)

Appends all the elements in the specifi ed collection to the end of this list,
in the order that they are returned by the specifi ed collection’s iterator.

boolean addAll(Collection<?
extends E> c)

Appends all the elements in the specifi ed collection to the end of this list,
in the order that they are returned by the specifi ed collection’s iterator.

boolean addAll(int index,
Collection<? extends E> c)

Inserts all of the elements in the specifi ed collection into this list at the
specifi ed position.

void clear() Clear by removing all the elements from this list.
boolean contains(Object o) Returns true if this list contains the specifi ed element.

(Table 10.1 Contd)

(Contd)

Generics, java.util, and other API 299

Method Description
boolean containsAll
(Collection<?> c)

Returns true if this list contains all the elements of the specifi ed collection.

boolean equals(Object o) Compares the specifi ed object with this list for equality.
E get(int index) Returns the element at the specifi ed position in this list.
int hashCode() Returns the hash code value for this list.
int indexOf(Object o) Returns the index of the fi rst occurrence of the specifi ed element in this

list, or –1 if this list does not contain the element.
boolean isEmpty() Returns true if this list contains no elements.
Iterator<E> iterator() Returns an iterator over the elements in this list in proper sequence.
int lastIndexOf (Object o) Returns the index of the last occurrence of the specifi ed element in this

list, or –1 if this list does not contain the element.
ListIterator<E> listIterator() Returns a list iterator over the elements in this list.
ListIterator<E> list
Iterator(int index)

Returns a list iterator of the elements in this list, starting at the specifi ed
position in this list.

E removeint(int index) Removes the element at the specifi ed position in this list.
boolean removejava.lang.
Object(Object o)

Removes the fi rst occurrence of the specifi ed element from this list, if it
is present.

boolean removeAll
(Collection<?> c)

Removes from this list all of its elements that are contained in the specifi ed
collection.

boolean retainAll
(Collection<?> c)

Retains only the elements in this list that are contained in the specifi ed
collection.

E set(int index, E element) Replaces the element at the specifi ed position in this list with the specifi ed
element and returns the elements previously stored at the specifi ed position.

int size() Returns the number of elements in this list.
List<E>subList(intfrom Index,
int toIndex)

Returns a sub list containing elements between the specifi ed from Index,
inclusive, and to Index.

Object[]toArray() Returns an array containing all of the elements in this collection. The return
type of array of object will be of type Object class.

<T> T[] toArray(T[] a) Creates an array containing all of the elements in this collection. The
return type of the array of objects will be according to the type of objects
in the collection.

Table 10.3 Methods of queue Interface

Method Description
boolean addE(E e) Inserts the specifi ed element into this queue and returns true and throws an IllegalStat-

eException if no space is currently available.
E element() Retrieves, but does not remove, the head of this queue.
boolean offer(E e) Preferred over add(E e) when using a capacity based queue, as it returns a boolean value

if unsuccessful rather than an exception.
E peek() Retrieves, but does not remove, the head of this queue, or returns null if this queue is empty.

E poll() Retrieves and removes the head of this queue, or returns null if this queue is empty.
E remove() Retrieves and removes the head of this queue.

(Table 10.2 Contd)

300 Programming in Java

 Queue interface was added in JDK 1.5 to support the data structure. Queue operates in
FIFO (first in first out fashion). Elements inserted into the collection first are removed from
the collection first. It provides methods to examine elements at the head of the queue. This
interface is inherited by the Queue interface to support double-ended queue. These queues support
operations to add/remove/examine elements at both ends (head and tail) of the queue. Table 10.3
shows the methods of Queue interface.
 Set is a collection that does not contain duplicate objects. This interface is implemented by
an abstract class AbstractSet which implements some of the methods of Set interface. The
concrete classes, HashSet, EnumSet, etc., are subclasses of AbstractSet. This interface is inherited
by SortedSet interface to access the element in a sorted order (ascending). The class TreeSet
inherits the SortedSet interface and the AbstractSet class. Table 10.4 shows the methods of Set
interface.
 Map interface provides mapping of key/value pairs. These key/value pairs are unique. A static
inner interface named Entry is declared inside the Map interface for referring to each key/value
pair. This Map is inherited by an interface SortedMap to access the elements stored in Map in a sorted
order. AbstractMap class inherits the Map interface and provides implementation for most of the

Table 10.4 Methods of Set Interface

Methods Description
boolean add(E e) Adds the specifi ed element to this set if it is not already present and

returns true, else false.
boolean addAll(Collection<? extends
E> c)

Adds all the elements in the specifi ed collection to this set if they
are not already present, and returns true if set is changed, else false.

void clear() Clears the set by removing all the elements from this set.
boolean contains(Object o) Returns true if this set contains the specifi ed object.
boolean containsAll(Collection<?> c) Returns true if this set contains all the elements of the specifi ed

collection.
boolean equals(Object o) Compares the specifi ed object with this set for equality.
int hashCode() Returns the hash code value for this set.
boolean isEmpty() Returns true if this set is empty.
Iterator<E> iterator() Returns an iterator over the elements in this set.
boolean remove(Object o) Removes the specifi ed element from this set if it is present.
boolean removeAll(Collection<?> c) Removes from this set all its elements that are contained in the

specifi ed collection.
boolean retainAll(Collection<?> c) Retains only the elements in this set that are contained in the specifi ed

collection.
int size() Returns the number of elements in the set.
Object[]toArray() Returns an array containing all the elements in this set. The return

type of array of objects will be of type Object class.
<T> T[]toArray(T[] a) Creates an array containing all the elements in this set. The return

type of the array of objects will be according to the type of objects
in the collection.

Generics, java.util, and other API 301

methods in the interface. This class is inherited by concrete classes such as HashMap, EnumMap,
etc. TreeMap also inherits this class as well as the interface SortedMap.
 Most of the interfaces and classes in the java.util package use generics. This is evident from
the syntax (e.g.,<E>, <?>, <? extends E>) used in most of the interface and class declaration as
well as some of the methods. So first let us discuss the concepts behind generics.

10.2 GENERICS

This feature was added in Java 5 with an aim to provide strict-type checking at compile time.
Generic feature also allows same class to be used by many different collections of objects such as
string, integer, etc. Consider the following example, where we have created three classes named
A, B, and GenericTest. The class GenericTest has a collection of ArrayList class to hold objects.
The objects of A and B are placed in it and later we try to retrieve them. When we try to compile
the program, two notes appear at the DOS prompt asking the user to recompile the program
specifying the –Xlint:unchecked option of javac. This option is used to show all lint warning,
specifically the unchecked warnings (as shown in the section ‘what happens while compiling
the program?’ below). These warnings are appearing as the code does not use the newer generic
syntax. These warnings can be suppressed if we compile the program using the –source option
and specify the JDK version prior to 1.5 (i.e., javac –source 1.4 GenericTest.java).

Example 10.1(a) Use of Generics
 L1 import java.util.*;
 L2 class A
 {
 L3 public String toString(){return "Class A Object";}
 }
 L4 class B
 L5 {
 public String toString(){return "Class B object";}
 }
 L6 class GenericTest {
 L7 public static void main(String args[])
 {
 L8 List v = new ArrayList();
 L9 v.add(new A());
 L10 v.add(new A());
 L11 v.add(new B());
 L12 Iterator en = v.iterator();
 L13 while(en.hasNext())
 {
 L14 A o = (A)en.next();
 L15 System.out.println(o);
 }
 }}

 What happens while compiling the program?
 C:\javabook\programs\chap 10>javac GenericTest.java
 Note: GenericTest.java uses unchecked or unsafe operations.
 Note: Recompile with -Xlint:unchecked for details.

302 Programming in Java

 C:\javabook\programs\chap 10>javac -Xlint:unchecked GenericTest.java
 GenericTest.java:14: warning: [unchecked] unchecked call to add(E) as a member of the raw
 type List v.add(new A());
 ^
 where E is a type-variable:
 E extends Object declared in interface List
 GenericTest.java:15: warning: [unchecked] unchecked call to add(E) as a member of the raw
 type List v.add(new A());
 ^
 where E is a type-variable:
 E extends Object declared in interface List
 GenericTest.java:16: warning: [unchecked] unchecked call to add(E) as a member of the raw
 type List v.add(new B());
 ^
 where E is a type-variable:
 E extends Object declared in interface List
 3 warnings

Output
 C:\javabook\programs\chap 10>java GenericTest
 Class A Object
 Class A Object
 Exception in thread "main" java.lang.ClassCastException: B cannot be cast to A
 at GenericTest.main(GenericTest.java:21)

Explanation
L1 Import java.util package.
L2–5 Two classes named A and B are defined with
their own toString() methods.
L6 Class GenericTest defined.
L7 main method is defined within it.
L8 An object of ArrayList class is created. This
object will act as a container for other objects.
ArrayList supports the functionality of dynamic
array. Array have a limitation that they cannot grow/
shrink in size but ArrayList objects can grow and
shrink in size as and when required.
L9–11 Using the add method, objects are added to
the ArrayList. Two objects of class A are added and
one object of B is added to collection.
L12 An Iterator object is obtained using iterator()
method to iterate the collection one by one.

L13–15 A while loop to iterate the collection
one by one. The hasNext() method tells whether
the collection has more elements or not. The loop
continues till the time collection has more elements
to iterate. The next()method returns the next object
in the collection. The return type of next() method
is an object of type Object (Parent class). This object
is cast to A and then printed. When you try to run the
program for the first two iterations, the cast is legal
as the object retrieved is of type A. But in the third
iteration the object retrieved is of type B, so the cast is
illegal. That is why a ClassCastException results as
shown in the output. (It is for this very reason that we
have received unchecked warnings on compilation
of the program).

Note The problem occurred because there was no restriction on the type of objects that can be put
into a collection. In the earlier example we had put objects of A as well as B into the collection
and we are casting all objects into A which raised an alarm at runtime. It would be much better
to check at compile-time what goes into a collection so that no exception occurs at run time.

Generics, java.util, and other API 303

If we could ensure only objects of A should go into the collection then the problem can be
solved and that is where generics help. Most of the interfaces, classes as well as some of
the methods have been modified to use generic syntax. The generic declaration of list is as
follows:

List<E> v = new ArrayList<E>();
//This E has been replaced by A as shown. Normally single Capital
//character are used to denote generic Formal parameterized types
//refer JDK6 docs for details
List<A> v = new ArrayList<A>();
// a List of objects of A (actual parameter)

The name placed in the angle brackets (commonly known as specifying parameterized type) is
class name whose objects we want to put into a collection. Now this collection will not contain
objects of class other than the class-name mentioned in the angle brackets. For example, if we
try to insert an object of type B into collection ‘v’ (after using parameterized types), a compile
time error results.
 Note that the list now contains only objects of type ‘A’ and the compiler assures us of this.
So is the cast on L14 really required? Well logically it should not be required but if you remove
the cast on L14, the compiler complains about it. Why? The reason is we did parameterize the
list but we did not parameterize the iterator which continued to return an object of type object on
invocation of the next method. Similar to list, iterator also uses the generic parameterized types.
So if we change L12 as shown, the problem gets solved and the cast can now be removed safely.

Iterator<A> en = v.iterator();
 while(en.hasNext())
 {
 A o = en.next();
 System.out.println(o);
 }

Also note that if you rewrite the program that uses the generics parameterized types the
warnings are all gone.

Example 10.1(b) Generics Parameterized Types
class GenericTest {
 public static void main(String args[])
 {
 // Collection that will hold only object of A
 List<A> v = new ArrayList<A>();
 v.add(new A());
 v.add(new A());
 // to show that the Iterator will also hold objects of A
 Iterator<A> en = v.iterator();
 while(en.hasNext())
 {
 A o = en.next(); // the cast in this line is gone
 System.out.println(o);
 }
 }}

Output
 Class A object
 Class A object

304 Programming in Java

10.2.1 Using Generics in Arguments and Return Types
Generics are applicable for passing parameters to a method as well as returning parameters from
a method. Let us take a look at how parameterized type is used in passing arguments and how to
return parameterized types. The following example creates a list that holds only string objects.

Example 10.2 Parameterized Type as Argument and Return Types
 L1 import java.util.*;
 L2 class ParamArgsGeneric
 {
 // method returning parameterized types
 L3 List<String>getList()
 {
 L4 List<String> l = new ArrayList<String>();
 L5 l.add("Hello");
 L6 l.add("Generics");
 L7 return l;
 }

 // method accepting parameterized types
 L8 void print(List<String> c)
 {
 L9 Iterator<String> i = c.iterator();
 L10 while(i.hasNext())
 L11 System.out.println(i.next());
 }

 public static void main(String args[])
 {
 L12 ParamArgsGeneric pag = new ParamArgsGeneric();
 L13 List<String> l = pag.getList();
 L14 pag.print(l);
 }}

Output
 C:\javabook\programs\chap 10>java ParamArgsGeneric
 Hello
 Generics

Explanation
L3 The method getList() returns a List object
that holds only string objects.

L8 Shows a method print() accepting a List that
should hold only string objects.

10.2.2 Wildcards
In Example 10.2, if we change L13 as follows:
 List<Object> l = pag.getList();

Anybody would consider it legal arguing Object is the superclass of String so the assignment
should be legal, but that is not the case. A List of Object is not a List of String. Why?

Generics, java.util, and other API 305

 Consider the case if a List of String is a List of Object that means the above modified L13
is supposedly working. Then we could also insert lines in the program to add objects of type
Object to the List. Now when we retrieve them and try to store in a List of String it gives a
cast exception because we are trying to store an Object into a String. So a List of Object is not
a List of String and vice versa.
 If you want to be flexible in using the classes as they were used earlier (i.e., without
parameterized types), then either you will have to suppress the warnings or you will have to be
rigid in using the collection of a particular type. Well, there is a midway wherein we can use the
collection to hold different types of object not just a particular type using generic syntax. This
is possible with the help of wildcards, i.e.,‘?’. Let us take a look at how wildcards can be used.

Example 10.3 Usage of Generics Wildcards
 L1 import java.util.*;
 L2 class ParamArgsGeneric {
 L3 List<?>getList()
 {
 L4 List<String> l = new ArrayList<String>();
 L5 l.add("Hello");
 L6 l.add("Generics");
 L7 return l;
 }
 // accepts any Collection
 L8 void print(Collection<?> c)
 {
 L9 Iterator<?> i = c.iterator();
 L10 while(i.hasNext())
 L11 System.out.println(i.next());
 }
 public static void main(String args[])
 {
 L12 ParamArgsGeneric pag = new ParamArgsGeneric();
 L13 List<?> l = pag.getList();
 L14 pag.print(l);
 // another List created and passed to print()
 L15 List<Integer> li = new ArrayList<Integer>();
 L16 li.add(new Integer(1));
 L17 li.add(new Integer(2));
 L18 li.add(new Integer(3));
 L19 pag.print(li);
 }}

Output
 C:\javabook\programs\chap 10>java ParamArgsGeneric
 Hello
 Generics
 1
 2
 3

306 Programming in Java

Explanation
L3 The getList method returns a list of unknowns,
i.e., List<?>. Just to show you that list of unknown
can be returned from a method we have used this
syntax here.
L4 An ArrayList of string is created.
L8 Method print has been defined to accept a
collection that can hold any type of object. You
would probably think that a collection holding
any type of object would also be rewritten as
Collection<Object> but that is not the case as
explained earlier. This method (as shown in the
example) prints a list of strings as well as integers.

L9 The iterator object obtained, can hold any
type of objects to be iterated as the wildcard has
been specified. Iterator<?> i=c.iterator();
In Example 10.2 we had created an iterator of
string objects specifically so it could iterate only
on a collection of string. Iterator<String> i=c.
iterator();
L10–11 Loops through the iterator and prints any
type of collection.
L13 The getList method is called to return a
collection in the form of a list of any type of objects.
The return list is captured in a list of unknowns, i.e.,
List<?>.

Note Can we re-write L4 as:
List<?> l = new ArrayList<String>();

This is illegal because a list of unknowns need not necessarily be a list of strings. So wildcards
can be used in passing parameterized types as arguments or return types as well as capturing
the return values from the methods.

10.2.3 Bounded Wildcards
In the previous section, we have discussed wildcards (?) which means unknown types. There is
no restriction on the type of object that can be contained in the collection. Bounded wildcards
place certain restriction on the type of objects that a collection can hold. For example,? extends X.

Note ? specifies unknown type, but this unknown type will be a subclass of X. So in this case we
know that this unknown type is either X or one of its subclasses.

In the following example we have created three classes A, B, and C. Class B inherits from A. C is
an independent class. Now let us see how bounded wildcards place a restriction on collection
of objects.

Example 10.4 Bounded Generic Wildcards
 import java.util.*;
 class A
 L1 { public String toString(){return "class A";}}
 L2 class B extends A
 L3 { public String toString(){return "class B";}}

 L4 class C {}

 L5 class BoundedWildcard { // shows Bounded wildcard
 L6 void print(List<? extends A> c)
 L7 {
 L8 Iterator<?> i = c.iterator();
 L9 while(i.hasNext())

Generics, java.util, and other API 307

 L10 System.out.println(i.next());
 }
 L11 public static void main(String args[]){
 L12 BoundedWildcard pag = new BoundedWildcard();
 L13 List li = new ArrayList();
 L14 li.add(new B());
 L15 li.add(new B());
 L16 pag.print(li);
 L17 List<A> la = new ArrayList<A>();
 L18 la.add(new A());
 L19 la.add(new A());
 L20 pag.print(la);
 L21 List<C> lc = new ArrayList<C>();
 L22 lc.add(new C());
 L23 lc.add(new C());

 /*illegal to pass List holding objects of class C to print method as it will
 accept only those list that have either objects of A or the objects of its sub-
 classes*/
 L24 //pag.print(lc);
 }}

Output
 C:\javabook\programs\chap 10>java BoundedWildcard
 class B
 class B
 class A
 class A

Explanation
L6 Shows a method print that accepts any
unknown type (?) of objects with the restriction
that it must either be an object of A or an object of
subclass of A.
L13–16 A list collection is created to hold objects
of class B only. The object of B are added using add
method and the list is passed to the print method. The
print method accepts the list as B is a subclass of A.
L17–20 Another List collection is created to
hold objects of class A only. The object of A are added

using add method and the list is passed to the print
method. The print method accepts the list as objects
are of type A.
L21–24 A third List collection is created to hold
objects of class C only. The object of C are added using
add method and the List is not passed to the print
method as it will not accept this List because C is
not a subclass of A. we have specifically commented
L24 because it is illegal.

 Now if you revisit Tables 10.1 to 10.4, you will realize most of the methods defined in the
interface return and accept generic types.

10.2.4 Defi ning Your Own Generic Classes
You can create your own classes that use generic syntax. For using a generic syntax in your
classes, a normal naming convention should be followed for specifying parameterized types. The
naming convention is a single capital letter used for specifying parameterized types. For example,

308 Programming in Java

T is for specifying any type. The letter E has been used in the Java collection API extensively
to denote collection elements. In Map, the alphabet K is for keys and V is for values. Let us take
an example to see how to use generics in user defined classes. In the following example we will
create a class that will hold objects of a particular type and we can get and set (change) the object.

Example 10.5 User Defi ned Generic Class
 L1 class A<T> {
 L2 private T var;
 L3 public A()
 {
 L4 var = null;
 }
 L5 public A(T a)
 {
 L6 var = a;
 }
 L7 public T getVar()
 {
 L8 return var;
 }
 L9 public void setVar(T a)
 {
 L10 var = a;
 }}
 class TestGeneric{
 public static void main(String args[]){
 System.out.println("The User Defi ned Generic class holds Integer Object");
 L11 A<Integer> v = new A<Integer>(new Integer(1));
 L12 System.out.println("Value: " +v.getVar());
 L13 v.setVar(new Integer(3));
 L14 System.out.println("New Value: " +v.getVar());
 System.out.println("The User Defi ned Generic class holds String Object");
 L15 A<String> a = new A<String>("User Defi ned Generics");
 L16 System.out.println("Value: " +a.getVar());
 }}

Output
 C:\javabook\programs\chap 10>java TestGeneric
 The User Defi ned Generic class holds Integer Object
 Value: 1
 New Value: 3
 The User Defi ned Generic class holds String Object
 Value: User Defi ned Generics

Explanation
L1 We have created a class named A that accepts
a parameterized type T. This class will hold objects
of only a particular type ‘T’.
L2 An instance variable var has been defined in

this class and the type of this var will be determined
by the parameterized type.
L3 and 4 Default constructor for the class has been
defined which assigns null to the var.

Generics, java.util, and other API 309

L5 and 6 Parameterized constructor is defined that
takes an argument of type T and assigns it to var.
L7 and 8 getVar() method is defined to return the
var instance variable. The return type of the method
has to be T as the type of var is still unknown.
L9 and 10 setVar(T a) method has been defined
to set and mutate the value of var. The method
accepts an argument of type T.
L11 We create an object of A and specify the
type of object that A will hold as integer. (T is now
automatically an integer). The type of var is now
integer. The return type of getVar() is integer and
the setVar(Integer a) method now accepts an
argument of type integer.

L12 getVar() is used to return the value of var.
L13 An integer object is passed in the setVar(T
a)method.
L14 getVar() is used to return the new value of
var.
L15 We create another object of A and specify the
type of object that A will hold as string now. (T now
automatically becomes a string). The type of var is
now string. The return type of getVar() is string
and the setVar (String a) method now accepts an
argument of type String.
L16 getVar() is used to return the value of var
initialized by passing string in the parameterized
constructor.

10.3 LINKED LIST

 Linked list is a fundamental data structure that contains records. A record contains data as well
as a reference to the next record. A record can be inserted or removed at any point in the Linked
List. In comparison to normal arrays which allow random access, linked lists allow sequential
access. To support this data structure, Java has a class named LinkedList. LinkedList is a collection
class that can act as a stack, queue as well as a double-ended queue. LinkedList permits null to
be added to the list. Let us take an example to see how LinkedList can act as a list, stack, queue
as well as a double-ended queue.

Example 10.6 Demonstration of LinkedList Class
 import java.util.*;
 class LinkedListDemo {
 public static void main(String args[])
 {
 L1 LinkedList<String> lis = new LinkedList<String>();
 L2 lis.add("Hello");
 L3 lis.add("Linked List");
 L4 lis.add("Demo");
 L5 lis.add(null);
 L6 for(String s:lis)
 System.out.println(s);

 // as a Stack (LIFO order)
 L7 LinkedList<Integer> st = new LinkedList<Integer>();
 L8 st.push(new Integer(1));
 L9 st.push(new Integer(2));
 L10 st.push(new Integer(3));
 L11 st.add(new Integer(4));
 L12 System.out.println("Object popped: " +st.pop());

310 Programming in Java

 L13 System.out.println("Object popped: " +st.pop());
 L14 System.out.println("Object popped: " +st.pop());
 L15 System.out.println("Object popped: " +st.pop());
 L16 LinkedList<Long> l = new LinkedList<Long>();
 // as queue (FIFO order)
 L17 l.add(new Long(1));
 L18 l.add(new Long(2));
 L19 l.add(new Long(3));
 L20 l.add(new Long(4));
 L21 System.out.println("Queue : "+l);
 L22 System.out.println("head of queue: "+l.peek());
 L23 System.out.println("head of queue removed and returned: " +l.poll());
 L24 System.out.println("Queue : " +l);
 //as a double ended queue
 // insertion and deleltion at both ends
 L25 l.addFirst(new Long(0));
 L26 System.out.println("Double ended Queue : "+l);
 L27 l.addLast(new Long(5));
 L28 System.out.println("Double ended Queue : "+l);
 L29 System.out.println("head of queue removed and returned:" +l.removeFirst());
 L30 System.out.println("tail of Queue removed and returned:" +l.removeLast());
 L31 System.out.println("Double ended Queue : " +l);
 }}

Output
 C:\javabook\programs\chap 10>java LinkedListDemo
 Hello
 Linked List
 Demo
 null
 Object popped: 3
 Object popped: 2
 Object popped: 1
 Object popped: 4
 Queue : [1, 2, 3, 4]
 head of queue: 1
 head of queue removed and returned: 1
 Queue : [2, 3, 4]
 Double ended Queue : [0, 2, 3, 4]
 Double ended Queue : [0, 2, 3, 4, 5]
 head of queue removed and returned: 0
 tail of Queue removed and returned: 5
 Double ended Queue : [2, 3, 4]

Explanation

L1 A linked list of String is created.
L2–5 Objects of type String are added to the
linked list using add() method. This method adds
elements to the end of the list and returns a boolean
to indicate the element has been added to the list.

L6 for-each loop is used to iterate through each
element of the linked list. The next element of linked
list is assigned to s in every iteration and then it is
printed.
L7–15 Show how linked list acts as a stack.

Generics, java.util, and other API 311

L7 A new linked list is created which holds Integer
objects.
L8–10 The push method is used to add elements
at the head of the list. (push method is used to push
contents to the top of the stack). Top of the stack is
now 3 and bottom is 1.
L11 add method is used to add contents to the end
of the list. So the new bottom of the stack now is 4.
L12–15 pop operation of the stack is used to
remove the top of the stack. The first pop operation
removes 3, the second one 2, third 1, and last pop
results in 4 (see output).
L16–31 Shows how linked list can be used as a
queue and a double-ended queue.
L16 A new linked list is created which holds Long
objects.
L17–20 Elements are added to the end of the list
using the add method.
L21 Prints the list.

L22 The first element of the list is returned (but
the element is not removed from the list) by the
peek method.
L23 poll method is used to return and remove the
first element of the list.
L24 Prints the list (see output).
L25–31 Show that a LinkedList can be used as a
double ended queue. A double ended queue is one
that supports addition and deletion from both ends.
L25 addFirst() method adds the element at the
head of the list.
L26 Prints the list (see output).
L27 addLast method is used to add element at
the end of the list.
L28 Prints the list (see output).
L29 removeFirst() method removes the
element at the head of the list.
L30 removeLast() method removes the element
at the end of the list.
L31 Prints the list (see output).

10.4 SET

Set is a collection that does not contain duplicates. Set collection in java.util models the
mathematical concept set. The concepts of union, intersection, and the difference of a set are
available in the Set interface and supported by its subclasses. We will discuss two classes under
this interface, i.e., HashSet and TreeSet. TreeSet is a sorted collection as it inherits the SortedSet
interface (sub-interface of Set), whereas HashSet is not a sorted collection. HashSet uses the
concept of hashing.

Note Hashing is a technique to quickly find, add, and remove elements from a collection. This
technique is useful in situations like we have a directory of words and we need to find a
particular word. A directory would contain thousands and thousands of words. If we want
to search a word; matching each and every word with the word we wanted to search would
consume a lot of time.
 Hashing stores the data in such a way that retrieval of data is fast. It uses a function (hash
function) to create an index (hash code) and this index is used to narrow down the search.
These indexes are maintained in a hash table, as shown in Fig. 10.2.
 The hash table is an array of linked list. To find a place in the bucket array, the index is
divided by the total number of buckets in the array. The remainder that we get is the position
of the element in the array. If no element is present at that position in the bucket then it is
added else a collision occurs. If bucket is full, then also a collision occurs and the table has
to be rehashed. Actually the load factor (i.e., n/m where n is the number of items to be stored
and m is the size of the bucket) determines when a table needs to be rehashed. The default
value for load factor is 0.75; it means when the table is 75% full, it will be rehashed and the
bucket size will be doubled.

312 Programming in Java

Note

Linked List Bucket Array

Fig. 10.2 Hash Table

The size of the bucket is always specified in power of 2. Even if you provide a value that is not
a power of 2, it is automatically rounded to the next power of 2.

10.4.1 HashSet Class
This class can be used for effectively storing and retrieving the elements but the order is not
guaranteed by this class. In case you need to retrieve the elements in a sorted order use TreeSet
class. HashSet permits null to be added to the collection. Let us take an example to demonstrate
HashSet class

Example 10.7 Demonstration of HashSet
 import java.util.*;
 class HashSetDemo{
 public static void main(String args[])
 {
 L1 HashSet<String> hs = new HashSet<String>();
 L2 hs.add("D");
 L3 hs.add("B");
 L4 hs.add("A");
 L5 hs.add("C");
 L6 hs.add(null);
 L7 hs.add("E");
 L8 System.out.println("Hash Set: " +hs);
 L9 System.out.println("Re-adding C to set:" +hs.add("C"));
 L10 System.out.println("Iterating contents of Hash Set one by one");
 L11 for(String s:hs) System.out.println("\t"+s);
 L12 System.out.println("Size of Hash Set: " +hs.size());
 L13 System.out.println("null removed: " +hs.remove(null));
 L14 System.out.println("Hash Set: " +hs);
 L15 System.out.println("check whether Set contains C :" +hs.contains("C"));
 L16 HashSet<String> hs1 = new HashSet<String>();
 L17 hs1.add("D");
 L18 hs1.add("B");
 L19 hs1.add("E");
 //subset
 L20 System.out.println("hs: " +hs);
 L21 System.out.println("hs1: " +hs1);
 L22 System.out.println("hs1 is a subset of hs: " +hs.containsAll(hs1));
 //Intersection

Generics, java.util, and other API 313

 L23 hs.retainAll(hs1);
 L24 System.out.println("Intersection of hs and hs1: " +hs);
 //Difference
 L25 hs.removeAll(hs1);
 L26 System.out.println("Difference of hs and hs1: " +hs);
 //Union
 L27 System.out.println("Hash Set to be united with previous set: " +hs1);
 L28 hs.addAll(hs1);
 L29 System.out.println("Union of hs and hs1: " +hs);
 }}

Output
 C:\javabook\programs\chap 10>java HashSetDemo
 Hash Set: [null, D, E, A, B, C]
 Re-adding C to set: false
 Iterating contents of Hash Set one by one
 null
 D
 E
 A
 B
 C
 Size of Hash Set: 6
 null removed: true
 Hash Set: [D, E, A, B, C]
 check whether Set contains C :true
 hs: [D, E, A, B, C]
 hs1: [D, E, B]
 hs1 is a subset of hs: true
 Intersection of hs and hs1: [D, E, B]
 Difference of hs and hs1: []
 Hash Set to be united with previous set: [D, E, B]
 Union of hs and hs1: [D, E, B]

Explanation
L1 A HashSet of string is created.
L2–7 add method is used to add String to the
HashSet.
L8 Prints the HashSet (see output to check the order
is not maintained).
L9 When you try to add the element which is
already present in the set the method call is ignored
and false is returned by the add method. (Remember:
Set does not contain duplicates) (see output).
L10 and 11 Iterating the contents of the HashSet
using the for-each loop.
L12 size() method is used to return the size of
the HashSet, i.e., 6 as six objects have been added
to the collection.

L13 remove() method is used to remove an
element from HashSet and this method returns true
if element is present.
L14 Prints the HashSet.
L15 To find a particular element in the set, the
contains(Object o) method is used. This method
returns true if element is found, else false.
L16 A new HashSet is created to show the basic
operations of mathematical set: union, intersection,
and difference.
L17–19 Objects of type string are added to this
new HashSet.
L20 and 21 Prints both the HashSet.
L22 If a HashSet (hs) contains all the elements
of another HashSet (hs1) then hs1 can be called

314 Programming in Java

as a subset of hs . The set provides a method
containsAll(Collection<?> c) which returns true
if the invoking collection contains all the element of
the argument collection, else false.
L23 and 24 Intersection of two sets produces the
common elements in both sets. The method provided
by set is retainAll(Collection<?> c). This method
removes all elements from the invoking set (hs)
which are not a part of argument set (hs1) and returns
true if the invoking set is changed.
L25 and 26 The elements of set A that are not
contained in set B gives the difference of two set. The

method removeAll(Collection<?> c) serves the
same purpose for us and returns true if the invoking
set is changed. The result in our case is that after this
operation, hs does not contain any element because
(before this operation) all elements of hs were
already present in hs 1.
L27–29 L27 prints the Collection (hs1) to be united
with the set (hs). addAll(Collection<?> c)is used to
add all the element of the collection into the invoking
set. This operation resembles the union of two sets
and returns true if the invoking set is changed. L29
prints Set ‘hs’ (See output).

10.4.2 TreeSet Class
TreeSet offers a strict control over the order of elements in the collection. The collection is a
sorted collection. But this may not offer you the best performance in terms of retrieving elements
speedily (use HashSet instead of TreeSet). TreeSet does not permit null in the collection.

Example 10.8 Demonstration of TreeSet
 import java.util.*;
 class TreeSetDemo
 {
 public static void main(String args[])
 {
 L1 TreeSet<String> ts=new TreeSet<String>();
 L2 ts.add("D");
 L3 ts.add("B");
 L4 ts.add("A");
 L5 ts.add("C");
 L6 ts.add("A");
 L7 ts.add("C");
 //ts.add(null); does not accepts null values
 L8 for(String s:ts)
 System.out.println(s);
 L9 System.out.println("TreeSet: "+ts);
 L10 System.out.println("First element of TreeSet: "+ts.fi rst());
 L11 System.out.println("Last element of TreeSet: "+ts.last());
 L12 System.out.println("Size of TreeSet: "+ts.size());
 }}

Output
 C:\javabook\programs\chap 10>java TreeSetDemo
 A
 B
 C
 D
 TreeSet: [A, B, C, D]

Generics, java.util, and other API 315

 First element of TreeSet: A
 Last element of TreeSet: D
 Size of TreeSet: 4

Explanation

L1 A TreeSet of String is created.
L2–7 String objects are added using the add
method. The objects have been added in a random
order. Duplicates as we have already discussed are
ignored and add method returns false.
L8 Using for-each loop the contents of TreeSet
are iterated.

L9 Prints the TreeSet.
L10 and 11 The first and the last elements of the
TreeSet can be obtained using first() and last()
methods of the TreeSet object.
L12 Prints the size of the TreeSet, i.e., 4.

10.5 MAPS

Map allows unique key/value pairs to be added. For searching an element from the set, you need
to have an exact copy of the element to be searched from the collection but normally we do not
have the exact copy. What we have is some key information about the element. We need a way
to look up the element with the help of that key. A Map collection is helpful in these cases as
it stores key along with their associated values. These keys in Map are unique. Map does not
allow null key and values. We will discuss two of the subclasses of Map interface, i.e., HashMap
and TreeMap.

10.5.1 HashMap Class
HashMap, like HashSet uses hashing as a technique to store key/value pairs so that the values
can be searched efficiently according to the key. There order is not guaranteed by HashMap. The
HashMap does not allow null key and null value pair to be stored.

Example 10.9 Demonstration of HashMap
 import java.util.*;
 class HashMapDemo
 {
 public static void main(String args[])
 {
 L1 HashMap<String,String> hm = new HashMap<String,String>();
 L2 hm.put("Emp001","Tom");
 L3 hm.put("Emp002","Peter");
 L4 hm.put("Emp003","Watson");
 L5 //hm.add(null,null); unlike HashSet it does not accept null values
 L6 System.out.println("HashMap: "+hm);
 L7 System.out.println(hm.put("Emp003","David"));
 L8 System.out.println("HashMap: "+hm);
 L9 System.out.println("Key in Map");
 L10 for(String s:hm.keySet())
 L11 System.out.println(s);
 L12 System.out.println("Values in Map");

316 Programming in Java

 L13 for(String s:hm.values())
 L14 System.out.println(s);
 L15 System.out.println("value associated with Emp002:" +hm.get("Emp002"));
 L16 System.out.println("Size of HashMap:" +hm.size());
 L17 System.out.println("remove mapping associated with Emp002:" +hm. remove("Emp002"));
 L18 System.out.println("HashMap after removal:" +hm);
 }}

Output
 C:\javabook\programs\chap 10>java HashMapDemo
 HashMap: {Emp002=Peter, Emp003=Watson, Emp001=Tom}
 Watson
 HashMap: {Emp002=Peter, Emp003=David, Emp001=Tom}
 Key in Map
 Emp002
 Emp003
 Emp001
 Values in Map
 Peter
 David
 Tom
 value associated with Emp002: Peter
 Size of HashMap: 3
 remove mapping associated with Emp002: Peter
 HashMap after removal: {Emp003=David, Emp001=Tom}

Explanation
L1 HashMap object is created to store string
key and string value. This has been specified as
HashMap<String, String>.
L2–4 put (K key, V value) method is used for
adding keys and values to the HashMap. This method
returns null if no mapping for the key exists in
the HashMap. If mapping exists the previous value
associated with the key is returned.
L5 Shows null is not entertained in HashMap.
L6 Prints the HashMap (see output. All key/value
pairs are shown).
L7 put method is used to overwrite the value
associated with the key Emp003 and as the mapping
was already present, this method returns the previous
value associated with the key, i.e., Watson (see
output).
L8 Prints the HashMap. The output now reflects
value associated with Emp003 as David.

L9–11 Prints all the keys one by one on the standard
output. The method keySet() returns a Set object
of keys which is used in the for-each loop to print
all the keys in the Set.
L12–14 Prints all values one by one on the standard
output. The method values() returns a Collection
object of all values which is used in the for-each
loop to print all the values in the Collection.
L15 If you want to get the value associated with
a particular key; use get method. The get method
accepts the key as an argument and returns the value.
L16 size() method returns the size of the HashMap.
L17 If you want to remove ant mapping; use the
remove method. This method accepts an argument,
i.e., the key whose mapping is to be removed
(Emp002) and returns null if key is not found or else
the return the previous value associated with the key,
i.e., ‘Peter’ (see output).
L18 Prints the resultant HashMap.

Generics, java.util, and other API 317

10.5.2 TreeMap Class
TreeMap contains sorted mapping of key/value pairs. In case we need to get sorted mapping we
should use this class.

Example 10.10 Demonstration of TreeMap
 import java.util.*;
 class TreeMapDemo
 {
 public static void main(String args[])
 {
 L1 TreeMap<String,String> tm = new TreeMap<String,String>();
 L2 tm.put("Emp001","Tom");
 L3 tm.put("Emp002","Peter");
 L4 tm.put("Emp003","Watson");
 L5 // tm.add(null,null); alike TreeSet, it does not accept null as key and value
 L6 System.out.println("TreeMap: " +tm);
 L7 tm.put("Emp003","David");
 L8 System.out.println("TreeMap: " +tm);
 L9 System.out.println("Key in Map");
 L10 for(String s:tm.keySet())
 System.out.println(s);
 L11 System.out.println("Values in Map");
 L12 for(String s:tm.values())
 System.out.println(s);
 L13 System.out.println("value associated with Emp002: " +tm.get("Emp002"));
 L14 System.out.println("Size of TreeMap: " +tm.size());
 }}

Output
 C:\javabook\programs\chap 10>java TreeMapDemo
 TreeMap: {Emp001=Tom, Emp002=Peter, Emp003=Watson}
 TreeMap: {Emp001=Tom, Emp002=Peter, Emp003=David}
 Key in Map
 Emp001
 Emp002
 Emp003
 Values in Map
 Tom
 Peter
 David
 value associated with Emp002: Peter
 Size of TreeMap: 3

Explanation
 We have discussed all the methods in the previous example.

318 Programming in Java

10.6 Collections CLASS

A Collections class contains a number of static methods that operate on Collection such as
copy a collection, reversing the elements of a collection, replacing an element with another and
so on. Let us take an example to understand better the usage of Collections class.

Example 10.11 Collections Class
 import java.util.*;
 public class CollectionsDemo
 {
 public static void main(String[] args) {
 L1 List<String> l = new LinkedList<String>();
 L2 l.add("Ignorance");
 L3 l.add("is");
 L4 l.add("a");
 L5 List<String> sb = new LinkedList<String>();
 L6 sb.add("Bliss");
 L7 List<String> srch = new LinkedList<String>();
 L8 srch.add("Bliss");
 L9 System.out.println ("Elements in list : " + l);
 // create a copy of defi ned list and print objects of copy list.
 L10 Collections.copy(l,sb);
 L11 System.out.println ("copy of list : " + l);
 // fi nd and display index of fi rst occurrence of sublist in the list.
 L12 System.out.println("First index of 'Bliss':" + Collections.indexOfSubList(l, srch));

 // replace all objects in list by a new given object.
 L13 Collections.replaceAll(l, "Bliss", "welcome");
 L14 System.out.println("After replace all 'Bliss': " + l);
 // list in reverse order.
 L15 Collections.reverse(l);
 L16 System.out.println("List in reverse order: " + l);
 // swaps specifi ed element with element at 1st(second) position
 L17 Collections.swap(l, 1, l.size() – 1);
 L18 System.out.println("List after swapping : " + l);
 // Replace all the element with given element using fi ll()
 L19 Collections.fi ll(l, "Bliss");
 L20 System.out.println("After fi lling all 'Bliss' in list : "+ l);
 // getting an enum type of specifi ed list through enumeration().
 L21 Enumeration<String> e = Collections.enumeration(l);
 L22 while (e.hasMoreElements())
 L23 System.out.println(e.nextElement());
 }}

Output
 C:\javabook\programs\chap 10>java CollectionsDemo
 Elements in list : [Ignorance, is, a]
 copy of list : [Bliss, is, a]

Generics, java.util, and other API 319

 First index of 'Bliss': 0
 After replace all 'Bliss': [welcome, is, a]
 List in reverse order: [a, is, welcome]
 List after swapping : [a, welcome, is]
 After fi lling all 'Bliss' in list : [Bliss, Bliss, Bliss]
 Bliss
 Bliss
 Bliss

Explanation
L10 All elements from list sb are copied to list
l starting from the first location in the list l. The
elements in l will be overwritten by the elements in
sb. The only requirement is that the destination list
should be as long as source list to accommodate the
elements otherwise an IndexOutOfBoundsException
is generated. The signature of copy method is as
follows:

 public static <T> void copy(List<? super T>
dest, List<? extends T> src)

L11 Prints the list after copying (see output).
L12 Prints the first occurrence of srch in list l.
The method

index Of SubList(List<?> src, List<?>
target)

returns the first occurrence of target in src. (see
output)
L13 and 14 All occurrences of a given object are
replaced by another in a given specified list. The
method replaceAll (List<T> list, T oldval, T
newval) replaces oldval with newval in list l. L14
prints the modified list (see output).

L15 and 16 reverse(List<?> l) reverses the
specified list l and prints it.
L17 and 18 swap method is used to swap two
elements in the list l at position i and j. swap
(List<?> l, int i,int j). L18 prints the revised
list after swapping (see output).
L19 and 20 The fill (List<? super T> l, T
obj) method is used to replace all the elements in
list l with the object obj.
L21–23 A linked list works with iterators rather
than an enumeration. Both interfaces are used for the
same purpose, i.e., iterating through the collection
elements yet they have differences which we will
discuss in the next section. In case you want to
obtain an enumeration of the LinkedList; use the
enumeration method of the Collections class as
shown in L21. This method accepts the collection
(List) and returns an enumeration. Now you can
iterate through the elements of the collection list
using methods of the enumeration, as shown in L22
and 23.

Note List <? super T> means that the list will hold objects of either T or any of its superclass. This is
in contrast to ‘? extends T’ which means the collection will hold objects of T or its subclasses.

10.7 LEGACY CLASSES AND INTERFACES
In this section, we will discuss one legacy class, i.e., vector, and one interface, i.e., enumeration.
Also we would highlight the difference between the legacy class/interface and newer class
(ArrayList)/interface (Iterator).

10.7.1 Difference Between Vector and ArrayList
Vector and ArrayList classes are both used to support the functionality of dynamic arrays. Array
cannot grow/shrink in size so these classes have been provided in java.util package to support
collection that can grow/shrink in size. Although these classes are used for the same purpose
yet they have differences and based on these differences a programmer can decide which class
has to be used when.

320 Programming in Java

 Vector is synchronized whereas ArrayList is not. That means a vector collection is thread-safe
when accessed by multiple threads. On the other hand, an ArrayList offers better performance
as it is not synchronized. ArrayList can be used when the collection will not be accessed by
multiple threads. To iterate through the Vector collection we use a legacy interface Enumeration
whereas for ArrayList, we use iterator interface.
 We have already used ArrayList in the examples throughout the chapter. A Vector object can
be created in a similar fashion as shown:
 Vector<String> v = new Vector<String>();

The elements can be added to the vector using the add(E e) method as shown
 v.add("One");
 v.add("Two");

The method v.elements() returns an enumeration of object in the vector which can be iterated
as shown earlier.
 Enumeration<String> e = v.elements();
 while(e.hasMoreElements())
 System.out.println(e.nextElement());

10.7.2 Difference Between Enumerations and Iterator
Enumeration is a legacy interface. The enumeration interface works with classes like vector.
Suppose the vector contains integer objects. To iterate through the collection we obtain an
enumeration by calling the elements() method of the vector object. This enumeration has two
methods: hasMoreElements() that returns a boolean value to indicate that the collection has more
values and nextElement() that returns the next element in the collection.
 Enumeration<Integer> en = v.elements();
 while(e.hasMoreElements())
 System.out.println(e.nextElement());

This enumeration is replaced by a newer interface; iterator. The iterator works with new classes
such as ArrayList, LinkedList, and so on. The iterator differs from enumeration in the sense
that it provides a method to delete element from the collection during the iteration. It has three
methods:

  hasNext() returns boolean value to indicate that the iterator has next element in the
collection.

  next() returns the next element in the collection.
  remove() method removes the last element returned by the iterator.

 We have already shown you how to use iterator with ArrayList in Example 10.1.

10.8 UTILITY CLASSES: Random Class

Java provides an easy to use Random class to generate random numbers. This class is defined in
the java.util package. The easiest way to create a random number generator is to instantiate
the Random class using the parameter less constructor as shown below:

Generics, java.util, and other API 321

 Random generator r = new Random();

Or use a parameterized constructor that accepts an argument, i.e., seed for the random generator.
A seed is a number used to initialize a pseudorandom number generator,
 Random generator r = new Random(long seed);

A random integer can be generated from a Random object using two methods: nextInt() and
nextInt(int n).They may return any integer: positive or negative. The overloaded method that
accepts an argument can be used to generate random integers between 0 and some limit. For
example, the following will generate a number between 0 and n – 1.
 int randomInt = r.nextInt(n);

A random real number uniformly distributed between 0.0 and 1.0 can be generated using the
nextDouble or nextFloat() method. Table 10.5 lists the methods of the Random class.

Note Math.random() also generates a random double number between 0.0 and 1.0.

Table 10.5 Methods of Random Class

protected int next (int bits) Returns the next random number as int.
public boolean nextBoolean () Returns the next boolean value.
public void nextBytes (byte[] bytes) Generates random bytes and puts them into a byte array.
public double nextDouble () Returns the next random uniformly distributed double value

between 0.0 and 1.0.
public fl oat nextFloat () Returns the next random uniformly distributed fl oat value

between 0.0 and 1.0.
public double nextGaussian () Returns the next random Gaussian distributed double value with

mean 0.0 and standard deviation 1.0.
public int nextInt () Returns the next random, uniformly distributed int value.
public int nextInt (int n) Returns a random uniformly distributed int value between a

range 0 (inclusive) and the user specifi ed value (exclusive).
public long nextLong () Returns the next random uniformly distributed long value.
public void setSeed (long seed) Sets the seed of this random number generator.

Let us take an example to show how random numbers can be generated.

Example 10.12 Random Class
 L1 import java.util.Random;
 L2 class RandomNumbers {
 L3 public static fi nal void main(String args[]){
 // creates a Random Object
 L4 Random randomGenerator = new Random();
 L5 for (int i = 1; i <= 6; ++i)
 {
 /** Generate a random integers in the range 1 and 6 for e.g. A Dice has numbers
 from one to six so when you roll the dice, any number can appear within this
 range*/

322 Programming in Java

 L6 int randomInt = randomGenerator.nextInt(6)+1;
 L7 System.out.println(i+ ". Integer Random Number: "+randomInt);
 }
 /** Generate random double in the range 0.0 to 1.0 */
 L7 double randomDouble = randomGenerator.nextDouble();
 L8 System.out.println("Double Random Number: "+ randomDouble);

 /** Generate random fl oat in the range 0.0 to 1.0 */
 L9 fl oat randomFloat = randomGenerator.nextFloat();
 L10 System.out.println("Float Random Number: "+randomFloat);

 /** Generate random long */
 L11 long randomLong = randomGenerator.nextLong();
 L12 System.out.println("Long Random Number: "+ randomLong);
 }
 }

Output

10.8.1 Observer and Observable
The Observer interface and Observable class is based on Observer pattern. This pattern states
that a particular object (i.e., Observer) should be notified when the state of another object (i.e.,
Observable object) changes. In other words, the Observer observes the state of another object
and wants itself to be notified about any changes in that object and the Observable object is
the one in which the Observer is interested in. For example, you (Observer) are notified about
the transaction updates of your bank account (Observable), as soon as the data (Observable)
related to the pie chart or bar chart is updated the graphs (Observer) automatically adjust to the
changes and so on.

Note This pattern is also used in MVC architecture. MVC stands for Model View Controller. The
model object manages the behavior and data of the application, view takes care of the
graphical or textual representation and the controller is used to interpret the user commands.
The model responds to user requests from the controller by changing its state which is
presented to the user through view. View can be treated as the observer on the model, i.e.,
observable object.

Generics, java.util, and other API 323

 To illustrate the concept of observer pattern implementation, we consider a sample situation of
customer and account. The account is held by a customer (account holder) of the Bank. As soon
as the customer account balance is credited and debited, the customer will be updated about the
information of his/her transaction. In this case customer is the observer and account possessed
by the customer is the observable entity.

Example 10.13 Observer and Observable
 L1 import java.util.Observable;
 L1 import java.util.Observer;
 L3 class Bank
 {
 // Two References of Account
 L4 Account a,a1;
 // Two customer references created
 L5 Customer c,c1;
 L6 public Bank()
 {
 L7 c = new Customer("Rahul","C001",a=new Account(12000,"A001"));
 L8 c1 = new Customer("Ram","C002",a1=new Account(12000,"A002"));
 L9 a.addObserver(c);
 L10 a1.addObserver(c1);
 }

 L11 public static void main(String[] args)
 {
 L12 Bank b = new Bank();
 L13 b.demo();
 }

 L14 public void demo()
 {
 L15 a.credit(1000);
 L16 a.debit(500);
 L17 a1.debit(2000);
 L18 a1.credit(6000);
 }
 }// Bank class ends here

 L19 class Customer implements Observer
 {
 L20 String custName; // customer name
 L21 String custId; // customer id
 L22 Account account; // account object held by customer
 L23 Customer(String custName,String custId, Account account)
 {
 L24 this.custName = custName;
 L25 this.custId = custId;
 L26 this.account = account;
 }

324 Programming in Java

 /** Print the fact that are notifi ed. */
 L27 public void update(Observable obs, Object x)
 {
 L28 System.out.println(custName+ " Account Update" + ": " + ((Account)obs).getBal
 ance());
 }
 } // Customer class ends here

 /** The Observable entity i.e., Account maintains the data */
 L29 class Account extends Observable
 {
 L30 fl oat balance;
 L31 String accountNo;
 L32 Account(fl oat b, String acc)
 {
 L33 balance = b;
 L34 accountNo = acc;
 }
 L35 Account()
 {
 L36 balance = 0;
 L37 accountNo = "";
 }
 L38 fl oat getBalance()
 {
 L39 return balance;
 }
 L40 void setBalance(fl oat b)
 {
 L41 balance = b;
 }
 L42 String getAccountNo()
 {
 L43 return accountNo;
 }
 L44 void setAccountNo(String acc)
 {
 L45 accountNo = acc;
 }
 L46 public void credit(fl oat amount)
 {
 L47 balance = balance+amount;
 /* Mark the Observable object as having been changed*/
 L48 setChanged();
 // Notify observers of change
 //notifyObservers(this);
 L49 notifyObservers();
 }
 L50 public void debit(fl oat amount)
 {
 L51 balance=balance-amount;

Generics, java.util, and other API 325

 L52 setChanged();
 // Notify observers of change
 //notifyObservers(this);
 L53 notifyObservers();
 }
 }// Account class ends here

Output

Explanation
L1–2 Import the Observer interface and Observable
class.
L3 class Bank is defined.
L4–5 A Bank has many customers and a customer
owns an account. (Although a customer can hold
more than one account but for simplicity we assumed
that a customer will have only one account. You can
change the program to accommodate n number of
customers by creating an array of customers). So for
the same two customers are created with two account
references which are instantiated (in L7 and 8) within
the constructors of the Bank class.
L9–10 We wish that as soon as the account of a
customer is credited or debited, the customer should
be notified about it. So the customer is the observer
on the account (i.e., observable entity).
Customer objects (c and c1) are added as observers to
the account (a and a1) objects using the addObserver
method.
L11–13 main method.
L14–18 demo method is created. The account
balance is credited and debited using the two methods
of the account class, i.e., credit (L45–48) and debit
(L49–52).
L19 Customer, in order to become an observer has
to inherit the Observer interface and override the
update method.

L20–26 Instance variable for the customer class
are defined, which are initialized by the constructor
of the customer class.
L27 update method is overridden. This method
is invoked automatically as soon as the Observable
entity is changed and the Observer is notified using
notifyObserver method (L49 and 53). This method
accepts two arguments: first one is the Observable
object which is being watched and second one is an
object passed to the notifyObserver() method.
L28 Prints the customer name along with the
updated balance. The updated balance is obtained
using the getBalance() method of the Account class.
L29 Class Account inherits the Observable class
to denote that its object will be watched.
L30–31 An account will have a number and
balance. Therefore, two instance fields have been
defined for the same.
L32–37 Overloaded constructor for initializing the
instance variables are defined.
L38–45 getter and setter methods have been
defined for the returning and setting the value of the
instance fields of the account class.
L46–53 Account will be either credited (added)
or debited (deducted) with amount. Two methods
credit and debit have been created. They accept an
argument, i.e., the amount to be credited or debited.

326 Programming in Java

After the credit or debit operations have been
performed, i.e., the account balance either increases
or decreases, the observer has to be notified about this
change. So setChanged() method is used to mark this

object as its state has changed and notifyObserver()
method is used to notify the Observer about this
change thereby calling the update (L28) method of
the Observer (i.e., customer in our case).

Note As getBalance() is a method of the Account class and not the observable class we need to
cast it back into the account and then invoke the getBalance() method. This cast is legal
because the Observable reference actually would contain an Account object and also Account
is a subclass of Observable class.

10.9 Runtime CLASS

The Runtime class is used to know the information about free memory and total memory. In
addition to that it is also used for executing additional processes. The current runtime instance
is obtained using a static method of the Runtime class, i.e., getRuntime().Table 10.6 shows few
methods of Runtime class.

Table 10.6 Few methods of Runtime Class

Method Description
Process exec(String command) Executes the command in a separate process.
Process exec(String[] cmdarray) Executes the command stored in an array in a separate process.
void exit(int status) Terminates the currently running JVM.
long freeMemory() Returns the amount of free memory as a long in the JVM.
void gc() Runs the garbage collector.
static Runtime getRuntime() Returns the runtime object associated with the current Java application.
void halt(int status) Forcibly terminates the currently running JVM.
void load(String fi lename) Loads the specifi ed fi lename as a dynamic library.
void loadLibrary(String libname) Loads the dynamic library with the specifi ed library name.
long maxMemory() Returns the maximum amount of memory in the JVM as a long.
void runFinalization() Runs the fi nalization methods of any objects pending fi nalization.
long totalMemory() Returns the total amount of memory in the JVM.
void traceInstructions(boolean on) Enables or disables tracing of instructions.
void traceMethodCalls(boolean on) Enables or disables tracing of method calls.

Let us take an example to see how Runtime class can be used to know the memory details and
execute processes.

Example 10.14 Runtime Class
 L1 import java.io.*;
 L2 class RuntimeDemo
 {
 L3 public static void main(String args[])
 {

Generics, java.util, and other API 327

 L4 try{
 //
 L5 Runtime r = Runtime.getRuntime();
 L6 System.out.println("Free Memory"+r.freeMemory());
 L7 System.out.println("Total Memory"+r.totalMemory());

 // for opening a new dos prompt
 L8 Process pr1 = r.exec("cmd /c start");

 // for creating a new process opening notepad
 L9 Process pr2 = r.exec("notepad RuntimeDemo.java");

 // creates a new command to be executed
 L10 Process pr3 = r.exec("cmd /c dir");
 L11 InputStream is = pr3.getInputStream();
 L12 InputStreamReader isr = new InputStreamReader(is);
 L13 BufferedReader br = new BufferedReader(isr);
 L14 String line=null;
 L15 while ((line = br.readLine()) != null)
 L16 System.out.println(line);
 }
 L17 catch(Exception e)
 {
 L18 System.out.println(e);
 }
 }}

Output

Explanation
L1 The java.io package is imported to use
classes like BufferedReader , InputStream ,
InputStreamReader, and IOException.

L2 Class declaration.
L3 main method defined for the class.
L4 try block starts.

328 Programming in Java

L5 A Runtime object, associated with the current
Java application, is obtained using the static method
getRuntime().
L6–7 freeMemory() method returns the free
amount of memory available in the Java virtual

machine and totalMemory() returns the total amount
of memory in the Java virtual machine.
L8–10 The exec method can be used to execute
commands and create process objects. The commands
that are passed as arguments to the exec method are
as follows:

cmd /c start – for starts a new dos prompt (See Output)
notepad fi lename – for opening notepad with the fi le within it. (See Output)
cmd /c dir – for showing all directories and fi les within the current directory (See Output)
/c option of the cmd, executes the command specifi ed and then terminates

L11–16 The dir command within the exec method
creates a process which will return the names of file
and directories present in the current directory. In
order to display it to the user we will have to read the
output from the Process object created in L10. For
reading the getInputStream method is used (in L11)
to obtain an InputStream object from the Process
object. This object is converted to a character stream

using the InputStreamReader object (L12) and then
buffered by passing the InputStreamReader object
within the constructor of BufferedReader (L13).
Now you can use the readLine method (L15) of the
BufferedReader object to read from the Process
object (created in L10) line by line.
L17–18 For catching any exceptions that may arise.

10.10 REFLECTION API

The reflection API is used to obtain information about the class with its various characteristics
like attributes, constructors, methods, packages, modifiers (public, private, etc.), interfaces,
arrays, exceptions, and generic types at runtime. It can also be used to instantiate new objects,
call methods, know about the setter/getter methods of a class and get or set fields. Java reflection
API is available through java.lang.reflect package. Before you can use reflection API on a
class you need to obtain its java.lang.Class object. A class object can be obtained in two ways:
 (a) Class cl = MyClass.class;
 where MyClass is the name of the class
 (b) Class cl = Class.forName(cn);

where cn is the name of the class passed as a string. The forName method causes the class represented
by cn to be initialized and returns a Class object. It may throw a ClassNotFoundException if the
class cannot be found at runtime.

Note Fully qualified class name including all package names must be specified while using Class.
forName(). This fully qualified name can be obtained using the c1.getName() method (This
method is extensively used in our example below). If the class name is only desired, it can be
obtained using the cl.getSimpleName() method.

 Not only we can know about the name of the class but can also get details about the
 (a) Superclass of a class.
 (b) Constructors of a class, their arguments with their types and modifi ers as well.
 (c) Fields with their arguments along with their types and modifi ers.

Generics, java.util, and other API 329

 (d) Package that a class belongs.
 (e) Methods of a class along with their modifi ers, exceptions thrown by methods.
 (f) Interface that a class inherits.

 and much more. Let us take an example to show how.

Example 10.15 Refl ection API
 L1 package ref;
 L2 import java.lang.refl ect.*;
 L3 import java.io.*;
 L4 class Refl ection implements Serializable
 {
 L5 private int demo;
 L6 public Refl ection(int d, fl oat b)
 {
 L7 demo=d;
 }

 L8 public fi nal void show() throws ArithmeticException{
 L9 System.out.println("Within show method of Refl ection class");
 }

 L10 public static void main(String args[]) throws Exception
 {
 L11 Refl ection r=new Refl ection(10,20);
 L12 System.out.println("Class Name: "+ r.getClass().getName());

 // constructors
 L13 Class c=Class.forName("ref.Refl ection");
 L14 System.out.println("class modifi er is : "+Modifi er.toString(c.getModifi ers()));

 L15 Constructor cs[] = c.getDeclaredConstructors();

 L16 System.out.println("Constructor:"+ cs[0].getName());

 L17 System.out.println("Constructor Modifi er:"+ Modifi er.toString(cs[0].getModifi ers()));

 L18 System.out.println("Constructor Modifi er is public: "+Modifi er.isPublic(cs[0].
 getModifi ers()));

 // parameter types in the constructor
 L19 Class pt[] = cs[0].getParameterTypes();
 L20 System.out.print("Constructor Parameter Types: ");
 L21 for(int i = 0;i<pt.length;i++)
 System.out.print(pt[i] + " ");
 L22 System.out.println();

330 Programming in Java

 // Methods
 L23 Method m[] = c.getDeclaredMethods();
 L24 for(int i = 0;i<m.length;i++)
 {
 L25 System.out.println("Method: "+ m[i].getName());
 L26 System.out.println("Method Modifi ers is : "+Modifi er.toString(m[i].
 getModifi ers()));
 L27 System.out.println("Method Modifi ers is public: "+Modifi er.
 isPublic(m[i].getModifi ers()));
 L28 System.out.println("Method return type: "+m[i].getReturnType());
 }
 L29 m[0].invoke(r);

 // Exception declared to be thrown by methods
 L30 Class et[] = m[0].getExceptionTypes();
 L31 for(int i = 0;i<et.length;i++)
 L32 System.out.println("Method Exception Types: "+et[i].getName());

 // Super class info
 L33 Class s = c.getSuperclass();
 L34 System.out.println("Super Class Name: "+s.getName());

 // Fields and their values
 L35 Field f[] = c.getDeclaredFields();
 L36 for(int i = 0; i<f.length;i++)
 {
 L37 System.out.println("Field name: "+f[i].getName());
 L38 System.out.println("Field Type: "+f[i].getType());
 L39 System.out.println("Field value: "+f[i].get(r));
 L40 System.out.println("Field value Modifi ers is "+Modifi er.toString(f[i].
 getModifi ers()));
 L41 f[i].set(r,56);
 L42 System.out.println("New Field value: "+f[i].get(r));
 }

 // interfaces
 L43 Class in[]=c.getInterfaces();
 L44 System.out.println("Interfaces: "+in[0].getName());

 //packages
 L45 Package cpackage=c.getPackage();
 L46 System.out.println("Package of the class: "+cpackage);

 }
 }

Generics, java.util, and other API 331

Output

Explanation
L1 Package ref is declared to hold the class
Reflection.
L2 java.lang.reflect subpackage is imported
to use the reflection API. Please remember the sub-
packages have to be imported explicitly.
L3 java.io package is imported as the class
implements Serializable interface. (The class will
not be serialized in our program. This interface is
inherited to demonstrate how reflection API can be
used to know the interfaces inherited by a class. So
we need to inherit an interface and for the same we
had inherited the Serializable interface.)
L4 Class declaration.
L5–7 A private field: demo, is declared within the
class which is initialized using the constructor. The
constructor accepts two arguments one is used in our
program to initialize the instance variable: demo and
the other parameter is used for illustration purpose.
L8–9 Show method is declared and it specifies that
it may throw ArithmeticException.
L10 main method.
L11 An object of the Reflection class is created.
L12 The name of the class can be obtained at

runtime by invoking the method getClass() on the
object. getClass() method returns an object of type
java.lang.Class and getName() is invoked on
this object to return the name of the class, i.e., ref.
Reflection (see output).
L13–18 A Class object is created to represent
the class whose details are required. The class
name is passed as an argument to the forName
static method of the java.lang.Class class. All
constructors of a class can be accessed using the
getDeclaredConstructors() method of the Class
object as it returns an array of all constructors present
in it (as a java.lang.reflect.Constructor array).
The constructors name can be obtained by invoking
the getName() method (L16) on the individual
constructor object present in the array (L15). The
modifiers used in the constructors can be obtained
by invoking the method getModifier() (L17) on
the individual constructor object present in the array.
This method returns an int representing the different
modifiers of Java which can be converted to string
using the Modifier.toString method (as shown in
L16). [Note 1]

332 Programming in Java

L19–22 If constructors accept arguments of any
type, their respective types can also be known using
the getParameterTypes method on the java.lang.
reflect.Constructor object. This method returns an
array of type Class. The array length is determined
to loop through and display the types of all the
arguments within a constructor. [Note 2]
L23–28 Shows how to get details about methods of
a class using reflection API at runtime. getDeclared-
Methods()method is invoked on the Class object
(created in L13) to extract details about methods of
a class. This method returns an array of type java.
lang.reflect.Method. The method name is obtained
by invoking the method getName() on the individual
elements of the Method array. The method modifiers
can be obtained using the method getModifiers().
This method returns an int representing the modifier.
To get the name of the modifier we convert the int
value of the modifier into its name using the Method.
toString (int modifier) method.
L29 The methods of a class can be invoked at
runtime using the invoke() method of the java.
lang.reflect.Method class. The method object is
used to call invoke() and the object on whom to
invoke this method is passed as an argument to the
invoke method (In other words an instance of the
class that declares the method). [Note 3]

L30–32 Shows how to get details about exceptions
thrown by the methods of a class. getException()
method of the Method object returns an array of type
Class containing all the exceptions declared in the
throws clause of a particular method. The exception
name is obtained by invoking the method getName()
on the individual elements of the array object.
L33–34 The getSuperClass() method of the class
java.lang.Class is used to determine the superclass
of a class whose object is created in L12. This method
returns an object of type java.lang.Class.
L35–42 Shows how to determine the fields of a
class with their respective names, types, modifiers
and values. getDeclaredFields() method of the
java.lang.Class returns an array of type java.
lang.reflect.Field class. Each element of the
Field array object represents the fields of the class.
The name, type, value, and modifier of the fields
can be extracted using the methods of the Field
class like getName() used in L33, getType() in
L34, get(r) (for extracting value of that field) and
getModifiers() respectively. Not only the value can
be extracted, they can also be set using the setter
method as shown in Table 10.7. The first argument
is the object whose fields value is to be set and the
second is the value which is to be set. We have use the
set method wherein the first argument is the object
on which to set the value and second is the value to
be set. The question that may arise at this point is

Table 10.7 Setter Methods of the java.lang.refl ect.Field Class

public void set(Object obj, Object val) Changes the fi eld value represented by this Field
object on the object obj to the new value specifi ed in
the second argument.

public void setBoolean(Object obj,
boolean b)

Sets the boolean value (b) in a boolean fi eld of the
object obj.

public void setByte(Object obj, byte b) Sets the byte value (b) in the byte fi eld of the object obj.
public void setChar(Object obj, char c) Sets the char value (c) in the char fi eld of the object obj.
public void setDouble(Object obj, double d) Sets the double value (d) in the double fi eld of the

object obj.
public void setFloat(Object obj, fl oat f) Sets the fl oat value (f) in a fl oat fi eld of the object obj.
public void setInt(Object obj, int i) Sets the int value (i) in a int fi eld of the object obj.
public void setLong(Object obj, long l) Sets the long value (l) in long fi eld of the object obj.
public void setShort(Object obj, short s) Sets the short value (s) in short fi eld of the object

obj.

Generics, java.util, and other API 333

that: The second argument in the set method is of
type Object and we are passing an int value in our
method yet still it compiles and executes. Why? The
answer is because of autoboxing features of Java you
are able to pass values to Object directly. You can
also use setInt method for the same.
L43–44 Shows how to get the details of the
interfaces inherited by the class. getInterfaces()

method of the java.lang.Class class is used to
return an array of interfaces inherited by the class.
The name of the interface is printed using the method
getName(). [Note 4]
L45–46 getPackage() is invoked through the
Class object (created in L13) to returns the package to
which this class belongs as a Package object.

Notes 1. You can also check these modifiers using the following methods of java.lang.reflect.
Modifier class:

 Modifi er.isAbstract(int modifi ers)
 Modifi er.isFinal(int modifi ers)
 Modifi er.isInterface(int modifi ers)
 Modifi er.isNative(int modifi ers)
 Modifi er.isPrivate(int modifi ers)
 Modifi er.isProtected(int modifi ers)
 Modifi er.isPublic(int modifi ers)
 Modifi er.isStatic(int modifi ers)
 Modifi er.isStrict(int modifi ers)
 Modifi er.isSynchronized(int modifi ers)
 Modifi er.isTransient(int modifi ers)
 Modifi er.isVolatile(int modifi ers)

2. You can also get the types of parameters used in the methods by using the
getParameterTypes() method explained in L19–22.

3. If the method is static, then the specified object argument is ignored and it may be null.
4. The interfaces specifically declared by the class will only be returned by the getInterfaces()

method. If the superclass of the class implements an interface and this fact is not
specifically stated by the class, then the interface name will not be returned. For getting
a complete list of the interfaces implemented by a class you will need to look in the class
as well as its super class/classes recursively.

SUMMARY
The java.util revolves around collections (bag of
objects). To provide compile-time safety for collections,
generics were introduced in Java 5. The collection
can be ordered or unordered and may also contain
duplicates. For example, a Set does not allow
duplicates whereas a LinkedList does. This package
deals with data structure concepts such as Linked list,
stack, queues, trees, and hashing. The classes like
LinkedList, Stack, HashSet, TreeSet encompass

these concepts. For mapping keys to their values java.
util package provides a Map interface.
In addition to these, the util package also provides

utility classes such as Date and Calendar for getting
date and time which we have already discussed in
the earlier chapters. StringTokenizer class used for
splitting strings has already been discussed in the
earlier chapters under the topic ‘String’. This package

334 Programming in Java

also came up with a Scanner class which we had
touched in Chapter 9. Dynamic array functionality
is provided by two classes: ArrayList and Vector.
ArrayList methods are not synchronized but Vector
is synchronized. Legacy interface Enumeration and
newer Iterator interface are used for iterating over
the collection of objects.
This chapter discusses about utility classes like the

Random class for generating random values (like int,
double, float, and long), the observer pattern
along with Observable class and Observer interface
for keeping an eye on other objects. Runtime class,
although a part of java.lang is also discussed here
to show its features and utilities.
Finally the reflection API is discussed in detail to show

how the details of a class can be known at runtime.

EXERCISES

Objective Questions
 1. What will happen if a list is created as shown

below:
 List l = new LinkedList(); ?

 (a) compiles and executes
 (b) compile time error
 (c) run time error
 (d) raises an unchecked exception
 2. Which collection does not contain duplicates?
 (a) Set (b) List
 (c) Map (d) Queue
 3. Which collection contains the mapping of keys

to their values?
 (a) Set (b) List
 (c) Map (d) Queue
 4. What collection class is synchronized to hold

elements?
 (a) HashMap (b) TreeMap
 (c) Vector (d) ArrayList
 5. Which collection contains an unordered collection

of elements?
 (a) TreeSet (b) HashSet
 (c) TreeMap (d) LinkedList

 6. Which collection contains an ordered collection
of elements?

 (a) TreeSet (b) HashSet
 (c) TreeMap (d) LinkedList
 7. What are used to provide compile-time safety to

your programs?
 (a) List (b) collections
 (c) Interfaces (d) Generics
 8. What feature of Java 5 enables a collection class

to hold objects as elements of same type?
 (a) Generics (b) Annotations
 (c) Enumerations (d) Assertions
 9. In case, you do not use generics in your programs

what option of javac is used to compile the
program?

 (a) javac -d
 (b) javac -s
 (c) javac -classpath
 (d) javac -Xlint:unchecked
 10. What collection class is used to hold elements

(similar to dynamic arrays) and is not
synchronized?

 (a) HashMap (b) TreeMap
 (c) Vector (d) ArrayList

Review Questions

 1. What is a collection in Java? Can you identify any
real life example which is similar to a collection
in Java?

 2. Explain the difference between:
 (a) Vector and ArrayList
 (b) Enumeration and Iterator

 3. What are Generics and how are they used
in Java? (Use an example in support of your
answer)

 4. What are bounded wildcards? How are they
used?

Generics, java.util, and other API 335

Answers to Objective Questions
 1. (b) 2. (a) 3. (c) 4. (c)
 5. (b) 6. (a) 7. (d) 8. (a)
 9. (d) 10. (d)

 5. Explain the union, intersection, and the difference
operation of a mathematical set. How is it related
to the Set interface in Java?

 6. Explain the unique features of a Map interface.

 7. What is refl ection API used for?
 8. What is observer pattern? How is it useful?
 9. Explain Runtime class with its features.

Programming Exercises
 1. Reverse the LinkedList and then copy all the

elements of a LinkedList into another list.
 2. Write a program to iterate a LinkedList

using for-each and traditional for with a
ListIterator.

 3. Write a program to convert an array to a collection
and back.

 4. Create a Collection class named Queue to
implement the FIFO order of queues. [Use
Generics]

 5. Demonstrate the Collections class and use the
following methods in the class:

 (a) rotate (b) max
 (c) min (d) disjoint
 (e) sort (f) binary search

 6. Create a class to simulate a dictionary of words
along with their meanings. The words/meaning
should be stored in such a way that retrieval of
meaning is as fast as possible.

 7. Rewrite the above program to display the list of
words along with their meanings in the dictionary
in a sorted order.

 8. Write a program to generate 20 unique random
integers from 1 to 100.

 9. Rewrite the observer example to use n customers
instead of just two customers as depicted in the
example. You are required to get the details of
the Customer from the user. Also try to fi gure out
whether there can be more than one Observer
on an Observable object?

 Communication is a continual balancing act, juggling the conflicting needs for
intimacy and independence. To survive in the world, we have to act in concert with
others, but to survive as ourselves, rather than simply as cogs in a wheel, we have to
act alone. Deborah Tannen

After reading this chapter, the readers will be able to
  understand the programming concepts behind client and server
  learn the concepts behind sockets
  understand how threads can be used to create concurrent servers
  learn about network interface

11.1 INTRODUCTION

Computer network is an interconnected collection of computers. The nodes of a network
communicate with each other using a wired/wireless medium. This communication is actually
carried between two processes residing in two different machines. The process on one machine
initiates the request and another responds to the requests. The initiator is the client and the
responder is the server.
 Network programming deals in the implementation of client/server concept. The client and
server communicate via protocols. TCP/IP protocol suite is followed in all networks including
the Internet. Protocols are a set of rules and regulations to be followed for the purpose of
communication.

11.1.1 TCP/IP Protocol Suite
 TCP/IP protocol suite contains a number of protocols. It is a four-layered model followed by the
networks. Internet also follows the same model. Figure 11.1 shows the TCP/IP model.
 The client and server applications created by the users reside at application layer. They
interact with the transport layer using sockets API, i.e., classes in the java.net package. The
transport layer takes data from the application layer (sender) and breaks it up into segments,
attaches the port number used by application to the data, and passes it to the network layer.

Network
Programming

1111

Network Programming 337

Depending upon the protocol used, a connection is established (TCP) or not (UDP) at the transport
layer.

Application layer

Transport layer

Network layer

Link layer

Socket
API

Contains protocols like ftp, http, smtp, etc.

Contains TCP and UDP. Provided by the O.S.
Performs port addressing

Contains IP. Provided by the O.S. Performs IP
addressing

Commonly known as LAN card/NIC/Ethernet.
Performs Mac addressing

Fig. 11.1 TCP/IP Model

 The two protocols used for the purpose are TCP and UDP. Both client and server use
the same protocol. TCP is a connection-oriented protocol, while UDP is a connectionless
protocol. Connection-oriented protocols ensured guaranteed delivery, sequence of data, and
acknowledgement for the data sent. On the other hand, connectionless protocols neither guarantee
delivery nor sequencing and acknowledgement. All standard applications run on standard port
numbers also known as well-known port numbers (from 0–1023), e.g., HTTP (80), FTP (20/21),
DAYTIME (13), ECHO (7), TELNET (23), SMTP (25), etc. Mostly server applications use
well-known port numbers. The client applications use ephemeral port numbers (i.e., short-lived)
starting from 1024 onwards.
 The network layer creates packets by encapsulating the segments into its own header format,
attaches the source and the destination IP address to it and passes it to the link layer. IP protocol
is a connectionless routed protocol. The java.net package supports both versions of IP protocol
(IPv4 and IPv6). IPv4 addresses are of 32 bits in size and IPv6 addresses are of 128 bits in size.
 The link layer frames the data received from the network layer according to its own format,
converts the data to bits and subsequently, signals are sent over the wire to the other side. The
other side repeats the same steps, but in reverse order, decapsulating the data at each layer.
Network programming is supported in the java.net package of Java.

11.2 SOCKETS

Network programming revolves around the concept of sockets. A socket is an end-point of
communication. Sockets are created at both ends of communication, i.e., at the client as well as
the server. A socket is defined by three things: IP Address, port, and the protocol to be used for
communication. IP address is the unique address assigned to every machine on the network and
port is a unique logical number on that IP address used for identifying the applications running
on that particular machine. IP address exists on network layer and port numbers on the transport
layer of the TCP/IP protocol suite.

338 Programming in Java

Note Do not confuse the concept socket with the class Socket in java.net. Till now, we have covered
the concept socket and now, we will discuss the class Socket.

There are separate classes in java.net package for creating TCP sockets and UDP sockets.
Client TCP socket is created with the help of Socket class and server TCP socket is created using
ServerSocket class. We will discuss UDP client and server later.

11.2.1 TCP Client and Server
 TCP clients are created with the help of Socket class. Using this class itself means the protocol
is specified. Normally, the client sockets need not be assigned a port number explicitly; they
are automatically assigned a port number by the operating system and connected to the local IP
address. The constructors of the Socket class are shown in Table 11.1. These are not the only
constructors in the class.

Table 11.1 Constructors of Socket Class

Constructor Description
Socket() An unconnected socket is created.
Socket (InetAddress addr, int port)
throws IOException

Creates a socket that connects to the specifi ed InetAddress
on the port number specifi ed.

Socket (String host, int port) throws
UnknownHostException, IOException

Creates a socket that connects to the specifi ed host on the
port number specifi ed.

Socket (String host, int
port,InetAdddress addr, int localPort)
throws IOException

In earlier constructors, we have not specified the local
addresses and local port number. If you wish to do so, use
this constructor.

Socket (InetAddress addr, int port,
InetAddress localaddr, int localport)
throws IOException

The only difference here is that the remote host address is
specifi ed as an InetAddress object, not as a String as in the
earlier constructor.

 In the following example, the server sends its current date and time to the client as soon as
a client sends a request to the server. The client receives it and prints it on to its own standard
output. Let us take a look at the client first.

Example 11.1(a) TCP Client
 L1 import java.net.*;
 L2 import java.io.*;
 L3 public class SocketDemo {
 L4 public static void main(String args[]) {
 L5 try{
 L6 Socket s = new Socket(InetAddress.getLocalHost(),7);
 L7 System.out.println("Socket created");
 L8 System.out.println("Local Address: " +s.getLocalAddress());
 L9 System.out.println("Local Host: " +InetAddress.getLocalHost());
 L10 System.out.println("Local Port : " +s.getLocalPort());
 L11 System.out.println("Inet Address: " +s.getInetAddress());
 L12 InputStream in = s.getInputStream();
 L13 System.out.println("Streams created");

Network Programming 339

 L14 BufferedReader br = new BufferedReader(new InputStreamReader(in));
 L15 String x = null;
 L16 while((x = br.readLine())!= null)
 L17 System.out.println(x);
 L18 in.close();
 L19 s.close(); }
 L20 catch(Exception e)
 L21 {System.out.println(e);}
 }}

Explanation
L1 and 2 Imports the necessary packages.
L3 and 4 Class defined with the main method
within it.
L5 All the statements have been placed in a try/
catch block to catch the necessary exceptions thrown
by statements in try block.
L6 Socket class used to create a socket at the client
side. As soon as the object of this created, a request
is automatically sent to the specified server at the
specified port. The first argument in the constructor
is the server name and the second argument is the
port on which the server application is running. If
some problem occurs while creating a socket, then
an IOException is thrown.
The local machine address is obtained using the static
method getLocalHost() of the InetAddress class.
The InetAddress represents an IP address. This
class has two subclasses Inet4Address (for IPv4
addresses) and Inet6Address (for IPv6 addresses).
This method throws an UnknownHostException if no
host could be found.
L8 Prints the local address of the machine
associated with the client socket (see output). The
loopback address (127.0.0.1) is printed. Packets
destined for loopback address are routed back to the
same machine from which they are sent. The method
getLocalAddress() returns an InetAddress object
which is then printed. The toString() method of
the InetAddress object is called before writing it
on the standard output which converts the IP address
to a string.
L9 Print the local host (see output). This method,

like the previous one, returns an InetAddress object.
L10 getlocalPort() method prints the local port
to which the socket is connected. In case you want
the remote port to which the socket is connected, use
getport() method.
L11 Prints the address with which the socket is
connected. If you see the output, this line prints the
same output as L9 because both the client and the
server are running on the same machine. If they
would have been running on different machines, this
line would have given the address of the server. The
method getInetAddress() returns an InetAddress
object.
Reading data from server through sockets
L12 Using the getInputStream() method of the
Socket class, we obtain an InputStream to read con-
tents from the socket and using getOutputStream()
method of the Socket class, we can obtain an Out-
putStream to write contents to the socket.
L14 BufferedReader object is created to read
strings from the socket. The byte stream is converted
to character stream using the InputStreamReader
object.
L15 to 17 String x is created. A while loop is used
to iterate and print string until the socket has no more
strings to be read. We have already discussed this in
Chapter 9. The only difference is that there, we were
reading data from files and here, we are reading data
from sockets.
L18–19 Closes the streams and the socket.
L20–21 catch clause.

Note We are running the client and the server on the same machine, so we have mentioned the
address of the local machine in the first argument. Also note that we have not mentioned
the port and IP address for the client socket. These will be attached to the client socket
automatically. If you wish to do it on your own, you can use the other constructors of the
Socket class.

340 Programming in Java

 The server program for the client in Example 11.1(a) is shown below. The server programs
are meant to be up and running all the time and serve many clients at a time. But this server
program (Example 11.1(b)) cannot serve multiple clients at one time. There are two types of
 servers: iterative and concurrent. Iterative servers process only one request at a time, so the
other client requests have to wait until the first one is processed. The other type is a concurrent
server which we will discuss in Section 11.4. ServerSocket class is used for creating a socket
at the server side. The constructors of this class are shown in Table 11.2.

Example 11.1(b) TCP Server
 L1 import java.net.*;
 L2 import java.io.*;
 L3 import java.util.*;
 L4 class ServerSocketDemo {
 L5 public static void main(String args[]) {
 L6 try{
 L7 ServerSocket ss = new ServerSocket(7);
 L8 while(true){
 L9 Socket client = ss.accept();
 L10 System.out.println("Socket created");
 L11 System.out.println("client inet address: " +client.getInetAddress());
 L12 System.out.println("client port: " +client.getPort());
 L13 OutputStream out = client.getOutputStream();
 L14 PrintWriter pw = new PrintWriter(out, true);
 L15 System.out.println("Streams created ");
 L16 String x = "Hello, How are you? ";
 L17 Calendar c = Calendar.getInstance();
 L18 pw.println(x);
 L19 pw.println("The server date and time is :" +c.getTime());
 L20 System.out.println("Contents written to" +client.getInetAddress().getHostName());
 L21 pw.close();
 }}
 catch(Exception e){
 System.out.println(e);
 }}}

Table 11.2 Constructor of ServerSocket Class

Constructors Description
ServerSocket() throws IOException Creates a socket that is not bound to any port.
ServerSocket(int port) throws IOException Creates a socket that is bound to the specifi ed port number

and size of listen queue set to 50 by default.
ServerSocket (int port, int backlog)
throws IOException

Creates a socket that is bound to the specifi ed port number
with the length of the listen queue (client request) specifi ed
as backlog.

ServerSocket(int port, int backlog,
InetAddress addr) throws IOException

Creates a socket that is bound to the specifi ed port number
and local address with the length of the listen queue
specifi ed as backlog.

Network Programming 341

How to Run the Client and Server?
The client and server programs will execute in two different DOS shell. Open two DOS shells
(using cmd/command at the run in XP/Vista/NT/2000 etc.), one for client and the other for server.
 First execute the server in one DOS window and then, execute the client from the other DOS
prompt.

Output
Server
 C:\javabook\programs\chap11>java ServerSocketDemo
 Socket created
 client inet address: /127.0.0.1
 client port: 49362
 Streams created
 Contents written to sachin-pc

Client
 C:\javabook\programs\chap11>java SocketDemo
 Socket created
 Local Address: /127.0.0.1
 Local Host: sachin-pc/127.0.0.1
 Local Port : 49362
 Inet Address: sachin-pc/127.0.0.1
 Streams created
 Hello, How are you?
 The server date and time is: Sun Mar 29 19:06:18 IST 2009

Explanation (Server)
L1 to 3 Imports the necessary packages.
L6 try block begins.
L7 ServerSocket object is created to create a
server socket. This application will run on Port
number 7.
L8 An infinite loop is created to process client’s
request one by one.
L9 accept method of ServerSocket object listens
for client’s requests and as soon as one is received,
accepts it and returns a Socket object connected to
the client. Now this socket is responsible for handling
client’s requests.
L11 Prints the client’s IP address using
getInetAddress() on the socket object (see output).
L12 Prints the client’s port number (remote port)
using getPort() method on the Socket object (see
output).
L13 InputStream and OutputStream objects can
be obtained from Socket object returned in L9 using
getInputStream() and getOutputStream(). These
streams can be obtained to read and write data to the

client socket. Anything written to socket at server
side is eventually sent to client as a connection exists
between them.

Connection between client
and server

Server Client

L14 PrintWriter object is created to write the
character to the OutputStream directly. The first
argument is used to connect the PrintWriter object
to the Socket output stream and second argument sets
the auto-flush property to true.
L16 String declared.
L17 Calendar instance created.
L18 String created in L17 is written to the output
stream connected to the socket.
L19 Current date and time of the server is written
to the client.
L20 Prints a string on the server standard output
console “contents written to” followed by the client’s
name.
 L21 PrintWriter object is closed.

342 Programming in Java

11.2.2 UDP Client and Server
UDP clients and servers are created with the help of DatagramSocket and DatagramPacket
classes. If UDP protocol is used at transport, then the unit of data at the transport layer is called
a datagram and not a segment. In UDP, no connection is established. It is the responsibility of
the applications to encapsulate data in a datagram (using DatagramPacket class) before sending it.
If TCP is used for sending data, data can be directly written to the socket (client or server) and it
reaches the other side as a connection exists between them. The datagram sent by the application
using UDP may or may not reach the UDP receiver. As the error ratio in LANs is less, UDP is a
good choice for creating LAN-based applications, as it saves the application from the overhead
of connection establishment and termination. Tables 11.3 and 11.4 show the constructors for
DatagramSocket and DatagramPacket, respectively.

Table 11.3 Constructors of DatagramSocket Class

Methods Description
DatagramSocket() throws SocketException Constructs a datagram socket that is bound to any available

port on the local machine.
DatagramSocket(int port) throws
SocketException

Constructs a datagram socket that is bound to the specifi ed
port on the local machine.

DatagramSocket(int port, InetAddress iadd)
throws SocketException

Creates a datagram socket, bound to the specifi ed local
address and port number.

DatagramSocket(SocketAddress baddr) throws
SocketException

Creates a datagram socket, bound to the specifi ed local
socket address.

Table 11.4 Constructors of DatagramPocket Class

Methods Description
DatagramPacket (byte[] buf, int len) Creates a datagram packet for receiving packets of length len.
DatagramPacket (byte[] buf, int len,
InetAddress addr, int p)

Creates a datagram packet for sending packets of length len to the
specifi ed port number (p) on the specifi ed host (addr).

DatagramPacket (byte[] buf, int off,
int len)

Creates a datagram packet for receiving packets of length len,
specifying an offset (off) into the buffer (buf).

DatagramPacket (byte[] buf, int off,
int len, InetAddress add, int port)

Creates a datagram packet for sending packets of length len with
offset (off) to the specifi ed destination port number on the specifi ed
destination host.

DatagramPacket (byte[] buf, int
off, int len, SocketAddress address)
throws SocketException

Creates a datagram packet for sending packets of length len with
offset off to the specifi ed destination socket address.

DatagramPacket (byte[] buf, int len,
SocketAddress address) throws
SocketException

Creates a datagram packet for sending packets of length len to the
specifi ed destination socket address.

 Let us take an example of how UDP can be used in network programming. In the following
example, the client sends a datagram to the server. The server receives the datagram and generates
another datagram in response to it. The server code is shown in Example 11.2(a).

Network Programming 343

Example 11.2(a) UDP Server
 L1 import java.net.*;
 L2 import java.io.*;
 L3 public class DatagramServer {
 L4 public static void main(String args[]){
 L5 try{
 L6 DatagramSocket ds = new DatagramSocket(8);
 L7 byte[] b = new byte[50];
 L8 DatagramPacket in = new DatagramPacket(b,b.length);
 L8 ds.receive(in);
 L10 System.out.println(new String(b));
 L11 String x = "Hello client";
 L12 byte buff[] = x.getBytes();
 L13 DatagramPacket out = new DatagramPacket (buff, buff.length, in.getAddress(), in.getPort());
 L14 ds.send(out);
 ds.close();
 } catch(Exception e) {System.out.println(e);}
 }}

Explanation
L6 DatagramSocket has been created with the UDP
server running on port number 8.
L7 and 8 DatagramPacket object (L8) is created to
hold the data received in the byte array (L7) through
the datagram socket.
L9 receive() method of datagram socket object is
used to receive data from UDP client and put it in the
byte array.
L10 Byte array converted to string and is printed
on the standard output.
L11 and 12 String to be sent to client is created
and converted to bytes using the getByte() method.

L13 A new DatagramPacket is created for sending
it to the client. The constructor arguments are
 (a) buff–byte array to be sent to client
 (b) buff.length–length of the array
 (c) in.getAddress()—to get the address of the

client. We have extracted it from the datagram
received by the client.

 (d) in.getPort()—to get the port address of the
client. We have extracted it from the datagram
received by the client.

L14 send method is used to send DatagramPacket
to the client.

Example 11.2(b) UDP Client
 L1 import java.net.*;
 L2 import java.io.*;
 L3 public class DatagramClient {
 L4 public static void main(String args[]){
 L5 try{
 L6 InetAddress ia = InetAddress.getLocalHost();
 L7 DatagramSocket ds = new DatagramSocket (1024,ia);
 L8 String x = "Hello Server";
 L9 byte[] b = x.getBytes();
 L10 DatagramPacket dp = new DatagramPacket(b, b. length, ia,8);
 L11 ds.send(dp);
 L12 System.out.println("sending to server: "+(new String(b)));
 L13 byte[] buff = new byte[50];
 L14 DatagramPacket in = new DatagramPacket(buff, buff.length);
 L15 ds.receive(in);

344 Programming in Java

 L16 System.out.println("received from server: "+(new String(buff)));
 L17 ds.close();
 } catch(SocketException se){System.out.println(se);}
 catch(IOException ie){ System.out.println(ie);}
 }}

Output
Server

C:\javabook\programs\chap11>java DatagramServer
Hello Server

Client
C:\javabook\programs\chap11>java DatagramClient
sending to server: Hello Server
received from server: Hello client

Explanation
L6 and 7 DatagramSocket object is created to
create a socket for the UDP client. As both client and
server are running on the same machine, we pass the
local machine address using getLocalHost() static
method of the InetAddress class. This method throws
an UnknownHostException if no host could be found.
It is a subclass of the IOException class, so if this

exception is thrown, it will be caught by the catch
having a reference of IOException class.
L8 to 16 A datagram packet (i.e., dp) is created
and sent to server. In response to this, the server
also sends a datagram which is received by client in
a DatagramPacket object (i.e., in).

11.3 URL CLASS

URL stands for uniform resource locator. It is a standard way of locating resources on the Internet,
e.g., www.yahoo.com. A URL has some basic parts

 (a) protocol name: http/fi le/mailto, etc.
 (b) host: www.yahoo.com
 (c) port: this is an optional attribute specifi ed after the host name, e.g., www.yahoo.com:80
 (d) fi le: name of the fi le to be accessed, e.g., www.yahoo.com/index.html
 (e) Reference: name of named reference within the page (i.e., cs), e.g., www.yahoo.com/

index.html#cs
 The constructor of the URL class used in the example is shown below:

 public URL(String res) throws MalformedURLException

In the following example, we have used the URL class to refer to a resource on the local machine.
The methods of the URL class are used to parse the URL and read the file. Let us take an example
to understand the concept.

Example 11.3 Reading from a URL
 L1 import java.net.*;
 L2 import java.io.*;
 L3 class URLExample{

Network Programming 345

 L4 public static void main(String args[]){
 L5 try {
 L6 URL u = new URL(args[0]);
 L7 System.out.println("The Protocol used is:" +u.getProtocol());
 L8 System.out.println("The Host used is:" +u.getHost());
 L9 System.out.println("The File used is:" +u.getFile());
 L10 System.out.println("The Port used is:" +u.getPort());
 L11 System.out.println("The Reference in page is:" +u.getRef());
 L12 URLConnection uc = u.openConnection();
 L13 InputStream in = uc.getInputStream();
 L14 BufferedReader br = new BufferedReader(new InputStreamReader(in));
 L15 String x = null;
 L16 while((x = br.readLine())!= null)
 L17 System.out.println(x);
 L18 br.close();
 L19 }catch(MalformedURLException e)
 {System.out.println(e);}
 catch(IOException e){System.out.println(e);}
 }}

Output
 C:\javabook\programs\chap11>java URLExample fi le:\\localhost\jdk-6-doc\docs\ api\index.html
 The Protocol used is: fi le
 The Host used is: localhost
 The File used is: /jdk-6-doc/docs/api/index.html
 The Port used is: -1
 The Reference in page is: null
 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN" "http://www.w3.org/TR /html4/
 frameset.dtd">
 <!--NewPage-->
 <HTML>
 <HEAD>
 <!-- Generated by javadoc on Wed Nov 29 02:28:47 PST 2006-->
 <TITLE>
 Java Platform SE 6
 </TITLE>
 <SCRIPT type = "text/javascript">
 targetPage = "" + window.location.search;
 if (targetPage != "" &&targetPage != "undefi ned")
 targetPage = targetPage.substring(1);
 functionloadFrames() {
 if (targetPage != "" &&targetPage != "undefi ned")
 top.classFrame.location = top.targetPage;
 }
 </SCRIPT>
 <NOSCRIPT>
 </NOSCRIPT>
 </HEAD>
 <FRAMESET cols = "20%,80%" title = "" onLoad = "top.loadFrames()">

346 Programming in Java

 <FRAMESET rows = "30%,70%" title = "" onLoad = "top.loadFrames()">
 <FRAME src = "overview-frame.html" name = "packageListFrame" title = "All Packages">
 <FRAME src = "allclasses-frame.html" name = "packageFrame" title = "All classes and in
 terfaces (except non-static nested types)">
 </FRAMESET>
 <FRAME src = "overview-summary.html" name ="classFrame" title ="Package, class and interface
 descriptions" scrolling = "yes">
 <NOFRAMES>
 <H2>
 Frame Alert</H2>

 <P> This document is designed to be viewed using the frames feature. If you see this
 message, you are using a non-frame-capable web client.

 Link to Non-frame version.
 </NOFRAMES>
 </FRAMESET>
 </HTML>

Explanation

L6 Object of class URL is created and the URL
is passed to the constructor. We have accessed the
resource on the local machine. That is the reason we
have used the file protocol followed by the name
of the machine (i.e., localhost) and the path of the
file, e.g.
 fi le:\\localhost\jdk-6-doc\docs\api\index.html

L7 Prints the protocol used in the URL using the
getProtocol() method.
L8 Prints the host used in the URL using the
getHost() method.
L9 Prints the file to be accessed on the host used
in the URL using the getFile() method.
L10 Prints the port used in the URL using the
getPort() method. The output shows –1 as no port
has been specified.
L11 Prints the protocol used in the URL using the
getProtocol() method.

L12 To access the resource, we have to open a
connection to the resource. The openConnection()
method of the URL object is used to return a
URLConnection object. This object represents a
connection to the resource (remote or local).
L13 We have to read the contents of that file
(index.html) so an InputStream is required for
reading the contents. The connection object provides
a method getInputStream() which returns an
InputStream object connected to the URLConnection.
L14 to 18 We have used these lines for reading
the file.
L19 The constructor of URL class may throw a
MalformedURLException if the protocol specified in
the URL is unknown, so it is necessary to catch it.
The IOException needs to be caught as discussed
in earlier chapters (MalformedURLException is a
subclass of IOException).

11.4 MULTITHREADED SOCKETS

Concurrent client and server application can be built in Java using the concept of multithreading.
Concurrent servers are those that can process many clients at a time. Clients need not wait for
other clients to finish their interaction with the server. In other words, parallel execution takes
place. A client’s request arrives at the server, it is accepted and a thread is created for handling
the client’s request. The server then continues to listen to requests from other clients. Figure 11.2
illustrates the concept better.

Network Programming 347

Client x ServerSocket

Socket created for each client

Accepts client s’ request

Request

Thread created for handling client x

Fig. 11.2 Concurrent Server

Let us take an example to see how multithreading is helpful in client/server programming. In
the following example, we will create a multithreaded server which will echo back the client’s
data to the appropriate client. The following code shows a concurrent server.

Example 11.4(a) Multithreaded Server
 import java.net.*;
 import java.io.*;

 L1 public class ThreadedEchoServer extends Thread {
 L2 Socket client;
 L3 public ThreadedEchoServer(Socket s) {
 L4 client = s;
 L5 start(); }
 L6 public void run() {
 try {
 L7 OutputStream os = client.getOutputStream();
 L8 InputStream in = client.getInputStream();
 L9 PrintWriter pw = new PrintWriter(os,true);
 L10 BufferedReader br = new BufferedReader(new InputStreamReader(in));
 L11 while (true) {
 L12 String n = br.readLine();
 L13 System.out.println("From client: "+n);
 L14 pw.println("echo from server: "+n);
 } }
 catch (IOException ex)
 {System.out.println(ex);}
 }
 L15 public static void main(String[] args) {
 try{
 L16 ServerSocket ss = new ServerSocket(7);
 L17 while (true) {
 L18 Socket s = ss.accept();
 L19 ThreadedEchoServer tes = new ThreadedEchoServer(s);
 } }
 catch (IOException ex) {
 System.err.println(ex);
 }}}

348 Programming in Java

Explanation
L1 A Server class is created that extends the
Thread class.
L2 An instance variable of type Socket has been
created in the Thread subclass.
L3 Constructor for the server has been defined and
it accepts an instance of Socket.
L4 Initializes the instance Socket variable.
L5 The thread is started using start method (refer
Chapter 8).
L6 to 14 run method has been overridden to
provide the details for the thread. We have already
discussed the code written in the run method many
times. It is actually to read and write data to the

socket. Whatever is read from the client is written
back to client.
L16 A server socket is created which run on Port
number 7.
L17 to 19 An infinite loop is defined to accept
incoming client’s request. As soon as a client’s
request is received, it is accepted (via the accept()
method in L18) and a Socket instance (s) i
returned (for handling client). A Thread is created
(L19) and socket instance (created L18) is passed
to the thread (as an argument in the constructor
of ThreadedEchoServer). This Socket instance is
assigned to the client instance variable (L4) in the
constructor of ThreadedEchoServer.

 Now we will create a client that establishes a connection with the server and writes contents
to it which is echoed back to the client by the server.

Example 11.4(b) Echo Client
 L1 import java.net.*;
 L2 import java.io.*;
 L3 public class EchoClient {
 L4 public static void main(String[] args) {
 try {
 L5 Socket s = new Socket(InetAddress.getLocalHost(),7);
 L6 OutputStream os = s.getOutputStream();
 L7 InputStream in = s.getInputStream();
 L8 PrintWriter pw = new PrintWriter(os,true);
 L9 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
 L10 BufferedReader brs = new BufferedReader(new InputStreamReader(in));
 L11 while (true) {
 L12 String n = br.readLine();
 L13 pw.println(n);
 L14 System.out.println(brs.readLine());
 }}
 catch (IOException ex) {
 System.err.println(ex);
 }}}

How to Run Multithreaded Server and Clients?
We will run multithreaded server in one DOS shell and start the clients in individual DOS shells.
First of all the server has to be executed at DOS prompt and then client1 needs be started on
another. The first client (client1) types the input “Hello” which is echoed back to client1.
Meanwhile client2 is executed from another DOS prompt and client2 types the input “Hi I
am new Client”; which is echoed back to client2.

Network Programming 349

Output
Server
 C:\javabook\programs\chap11>java ThreadedEchoServer
 From client: hello
 From client: Hi I am new Client
 From client: hi i am the First client
 From client: how are you

Client1
 C:\javabook\programs\chap11>java EchoClient
 hello
 echo from server: hello
 hi i am the fi rst client
 echo from server: hi i am the fi rst client

Client2
 C:\javabook\programs\chap11>java EchoClient
 Hi I am new Client
 echo from server: Hi I am new Client
 how are you
 echo from server: how are you

11.5 NETWORK INTERFACE

Java 1.4 introduced NetworkInterface class to get the details about the local network interface
such as the name of the interface, the MAC address of the interface, MTU (maximum transmission
unit) of the interface, list of IP addresses attached to the interface, whether the interface is up
or down and whether it supports multicasting. Let us take an example to see how we can get
these details.

Example 11.5 List of Network Interfaces and its Details
 import java.io.*;
 import java.net.*;
 import java.util.*;
 public class NetInterfaceDemo{
 public static void main(String args[]) throws SocketException
 {
 L1 Enumeration<NetworkInterface> nets=NetworkInterface.getNetworkInterfaces();
 L2 for (NetworkInterface netint :Collections.list(nets))
 {
 L3 System.out.println("Display name:" + netint.getDisplayName());
 L4 System.out.println("Name:" + netint.getName());
 L5 System.out.println("MTU:" + netint.getMTU());
 L6 System.out.println("Interface is up:" + netint.isUp());
 L7 Enumeration<InetAddress> inetAddresses = netint.getInetAddresses();
 L8 for (InetAddress inetAddress :Collections.list(inetAddresses))
 {

350 Programming in Java

 L9 System.out.println("InetAddress:" +inetAddress);
 }
 L10 System.out.println();
 } }}

Output
 C:\javabook\programs\chap11>java NetInterfaceDemo
 Display name: Software Loopback Interface 1
 Name: lo
 MTU: -1
 Interface is up: true
 InetAddress: /0:0:0:0:0:0:0:1 //IPv6 Address
 InetAddress: /127.0.0.1 //IPv4 Address

 Display name: Intel(R) PRO/Wireless 3945ABG Network Connection
 Name: net2
 MTU: 1500
 Interface is up: true
 InetAddress: /fe80:0:0:0:8c3d:30ab:4e1b:76a%8
 InetAddress: /172.16.1.98

 Display name: Marvell Yukon 88E8036 PCI-E Fast Ethernet Controller
 Name: eth2
 MTU: 1500
 Interface is up: false
 InetAddress: /fe80:0:0:0:54c4:d989:7f07:b780%9

 Display name: TeredoTunneling Pseudo-Interface
 Name: net3
 MTU: 1280
 Interface is up: false
 InetAddress: /fe80:0:0:0:0:100:7f:fffe%10

 Display name: isatap.{3712CAC6-7755-4525-8119-37BA0015FE46}
 Name: net4
 MTU: 1280
 Interface is up: false

 Display name: Microsoft ISATAP Adapter #2
 Name: net5
 MTU: 1280
 Interface is up: false

 Display name: Microsoft ISATAP Adapter #3
 Name: net6
 MTU: 1280
 Interface is up: true
 InetAddress: /fe80:0:0:0:0:5efe:ac10:162%17

Note This is a sample output and not complete. Besides, the value of parameters may vary from
machine to machine.

Network Programming 351

Explanation

L1 A machine having more than one network
interface is called a multi-homed machine. For
example, all routers are multi-homed as they will
have at least two interfaces on for the internal network
(LAN) and another for outer world (WAN). To obtain
all interfaces on the machine, we use the static method
getNetworkInterfaces() of the NetworkInterface
class. This method returns an enumeration of objects
and throws a SocketException if any problem
occurs. Enumeration is a collection of objects which
can be iterated successively one at a time. The
name mentioned in the angle brackets <> specifies
the class of objects that the enumeration can hold.
The getNetworkInterfaces() method returns an
enumeration which contains <NetworkInterface>
objects only.
L2 The Collections class (java.util package)
operates on the collections (like enumeration). This
class provides a static method list (Enumeration<T>
n) that takes an enumeration as an argument and
returns an ArrayList containing elements of
the enumeration. One by one the elements of the

ArrayList are assigned to NetworkInterface
variable ‘netint’in the for-each loop. L3–L10
execute as long as there are objects in the ArrayList.
L3 and 4 Prints the display name and the name
of the interfaces using simple methods (see output).
L5 MTU defines the size of the packet that can
be sent over the network. The getMTU() method is
used to return the MTU of the interface. This method
was added in Java 6. It returns –1 if no MTU is
associated with an interface like loopback interface.
The loopback does not need to send anything on the
network. All data sent to loopback is reverted back
to client.
L6 isUp() method prints whether the interface is
up or down.
L7 to 9 Prints the IP addresses associated with
an interface. The getInetAddresses() method of
the NetworkInterface class is used to return an
enumeration of IP addresses. We iterate through
the enumeration as we have done earlier in L2. It is
possible that an interface may have an IPv6 address
as well as an IPv4 address associated with it (as
shown in the output).

Note IPv4 addresses are represented in dotted decimal notation. 32 bits are divided into 4 parts of
8 bits each. These 8 bits are converted to their respective decimal equivalent and then written
with a dot in between them.
IPv6 addresses are represented in colon hexadecimal format. 128 bits are divided into 8 parts
of 16 bits each. Then these 16 bits are grouped (4 groups of 4 bits each). Each 4 bit binary
value is converted to its corresponding hexadecimal value. The hexadecimal value of all the
16 bits is written separated by a colon, for example, fe80:0:0:0:8c3d:30ab:4e1b:76a%8. The
number mentioned after the % determines the scope of this address.
For more details on IPv6 addressing architecture, refer IPv6 addressing draft and RFC 4007.

SUMMARY
Network programs in Java (compared to C language)
are short in size, easier to code, and debug. The
extensive support of multithreading in the language
makes it easier to implement concurrent client/server
applications in Java. Java network programming has

evolved since its inception and it has added a lot of
features like support for newer IPv6, knowledge of your
local network interfaces, URLs, multicasting, cookie
handling, and so on.

352 Programming in Java

EXERCISES

Objective Questions
 1. What is the value of backlog by default?
 (a) 10 (b) 20 (c) 30 (d) 50
 2. A socket is comprised of 3 identifi ers. What are

they?
 (a) MAC Address, Port and Protocol
 (b) IP address, Port, Protocol
 (c) MAC Address, IP Address and Port Number
 (d) MAC Address, IP Address and Protocol
 3. What is the size of an IPv6 address?
 (a) 32 (b) 64 (c) 128 (d) 16
 4. What is the size of an IPv4 address?
 (a) 32 (b) 64 (c) 128 (d) 16
 5. Which class is used for creating a TCP socket at

server?
 (a) Socket (b) ServerSocket
 (c) DatagramPacket (d) DatagramSocket
 6. Which method of the NetworkInterface class is

used to obtain the maximum transmission unit?
 (a) getMaximumTransmissionUnit()
 (b) getTU()
 (c) getMTU()
 (d) getMaxTU()

 7. What is the address of the loopback address?
 (a) 127.0.0.0 (b) 10.1.1.1
 (c) 192.168.10.1 (d) 126.255.255.255
 8. Which five parameters uniquely identify a

connection?
 (a) Local IP, Remote IP, Local MAC, Remote

MAC and Protocol
 (b) Local IP, Local port, Remote MAC, Remote

port and Protocol
 (c) Local MAC, Local port, Remote MAC,

Remote port and Protocol
 (d) Local IP, Local port, Remote IP, Remote port

and Protocol
 9. SocketException is a subclass of
 (a) IOException
 (b) ReadWriteException
 (c) FileNotFoundException
 (d) NullPointerException
 10. UnknownHostException is a subclass of
 (a) IOException
 (b) ReadWriteException
 (c) FileNotFoundException
 (d) NullPointerException

Review Questions
 1. Explain the TCP/IP protocol suite.
 2. Explain the difference between TCP and UDP.

Use real-life situations in your explanation to
describe the differences.

 3. Explain what is URL with all its parts. Which
methods of the URL class can be used to obtain
the individual parts of a URL?

 4. Explain the following terms:
 (a) MAC address (b) IPv4

 (c) IPv6 (d) MTU
 (e) Unicasting (f) Multicasting
 (g) Broadcasting (h) Port address
 5. Explain the role of the following classes:
 (a) Socket (b) ServerSocket
 (c) DatagramPacket (d) DatagramSocket
 6. What is URL connection class used for and how

an instance of it is obtained from the URL object?
Explain.

Programming Exercises
 1. Create a UDP echo client/server application,

wherein whatever is written to a UDP server is
written back to the client.

 2. Create a sample TCP chat application where
client and server can chat with each other.

 3. Use multithreading in the previous example to
make it a multithreaded chat application.

 4. Write a Java program that implements a simple
client/server application. The client sends data
to a server. The server receives the data, uses
it to produce a result, and then sends the result
back to the client. The client displays the result
on the console. For example, the data sent from
the client is the radius of a circle, and the result
produced by the server is the area of the circle.

Network Programming 353

 5. Write a program to return the hardware address
of your machine.

 [Hint: Use ge tHardwareAddress() method of
NetworkInterface class introduced in Java 6]

 6. Create a client/server application where the client
requests for a particular fi le on the server. If the
fi le exists on the server, then write the contents
of the fi le to the client.

Answers to Objective Questions
 1. (d) 2. (b) 3. (c) 4. (a)
 5. (b) 6. (c) 7. (a) 8. (d)
 9. (a) 10. (a)

 Ideologies, however appealing, cannot shape the whole structure of perceptions and
conduct unless they are embedded in daily experiences that confi rm them.

 Christopher Lasch

After reading this chapter, the readers will be able to
  understand the difference between applet and application
  understand the lifecycle of an applet
  learn how applets are created and executed
  create GUI within applets

12.1 INTRODUCTION

Many of you must have come across the word ‘Applet’. What is this applet? Applets are basically
small Java programs which can be easily transported over the network from one computer to
other. This is the reason why applets are used in Internet applications, where these applets (i.e.,
small Java programs), embedded in an html page, can be downloaded from the server and run
on the client, so as to do a specific kind of job. These applets have the capability of displaying
graphics, playing sound, creating animation, and performing other jobs that can be done by
simple application programs. To execute these applets on the client, the client must have either
a Java-enabled browser or a utility known as appletviewer (comes as part of JDK).
 If we could develop simple Java standalone application programs, what was the need to have
applets? Actually applets are not full-featured programs, as these are usually written to accomplish
small tasks or part of bigger tasks. Before getting further, you must understand the difference
between an applet and an application. Table 12.1 illustrates the differences between applets and
applications.
 In Java, applets can be dealt in two ways. One is the conventional applets, which are directly
evolved from ‘Applet’ class. Theses applets use Abstract Window Toolkit (AWT) to get the
GUI features. The other kinds of applets are those which are based on swing class, JApplet. We
will discuss AWT-based applets in this chapter, while swing-based applets will be discussed in
Chapter 15.

Applets
1212

Applets 355

Table 12.1 Difference between Applet and Application

Applet Application
The execution of the applet does not start from
main() method, as it does not have one.

The execution of an application program starts from
main().

Applets cannot run on their own. They have to be
embedded inside a web page to get executed.

These can run on their own. In order to get executed, they
need not be embedded inside any web page.

Applets can only be executed inside a browser or
appletviewer.

Applications are executed at command line.

Applets execute under strict security limitations that
disallow certain operations (sandbox model security).

Applications have no inherent security restrictions.

Applets have their own life cycle
init() start() paint() stop  destroy()

Applications have their own life cycle. Their execution
begins at main().

12.2 APPLETS

java.applet.Applet is the superclass of all the applets. Thus all the applets, directly or indirectly,
inherently use the methods of Applet belonging java.applet package. This class provides all the
necessary methods for starting, stopping, and manipulating applets. It also has methods providing
multimedia support to an applet. Applet class has a predefined hierarchy in Java, which shows
the classes extended by Applet class.
 Figure 12.1 simply makes it easy for you to understand that an applet, which is a subclass of
java.applet.Applet, also inherits the methods of the other classes like java.awt.Panel, java.
awt.Container, java.awt.Component, and java.lang.Object, indirectly.

Fig. 12.1 Hierarchy of Applet Class

You can see that these classes are the ones which provide support for Java’s window-based GUI,
thus making an applet capable of supporting window-based activities. The common methods
belonging to the Applet class are mentioned in Table 12.2.

356 Programming in Java

Table 12.2 Applet Class Methods

Method Description
void init() First method to be called when an applet begins execution.
boolean isActive() Returns true if the applet is running, otherwise false.
URL getDocumentBase() Gets the URL of the document in which this applet is embedded.
URL getCodeBase() Returns the URL of the directory where the class fi le of the

invoking applet exists.
String getParameter (String name) Returns the value of the parameter associated with parameter’s

name. Null is returned if the parameter is not specifi ed.
AppletContext getAppletContext() Determines this applet’s context, which allows the applet to query

and affect the environment in which it runs.
void resize (int width,int height) Resizes the applet according to the parameters, width and height.
void showStatus(String msg) Displays the string, msg, in the status window of the browser or

appletviewer (only if they support status window).
Image getImage(URL url) Returns an object of image, which binds the image found at the

URL, specifi ed as the argument of the method.
Image getImage(URL url, String
imgName)

Returns the image object which encapsulates the image found at
the specifi ed URL and having the name specifi ed by imgName.

static fi nal AudioClip
newAudioClip(URL url)

Returns an AudioClip object that encapsulates the audio found
at the URL specifi ed as the argument.

void start() Starts or resumes the execution of applet.
void stop() Stop or suspends the applet.
void destroy() Terminates the applet.
AccessibleContext
getAccessibleContext()

Returns the accessibility context for the invoking object.

AudioClip getAudioClip(URL url) Returns the AudioClip object, which encapsulates the audio clip
found at the URL, specifi ed as the argument to the method.

AudioClip getAudioClip(URL
url,String clipName)

Returns the AudioClip object, which encapsulates the audio clip
found at URL, specifi ed as the argument to the method and having
the name specifi ed by clipName.

String getAppletInfo() Returns the string describing the applet.
Locale getLocale() Returns the Locale object that is used by various locale sensitive

classes and methods.
String[][] getParameterInfo() Returns a string table that describes the parameter recognized

by the applet.

12.3 APPLET STRUCTURE

Apart from using the services of Applet class, an applet also uses the services of Graphics class
of the java.awt package. The Applet class has methods such as init(), start(), destroy(), and
stop(), which are responsible for the birth and behavior of an applet. We have already mentioned

Applets 357

in Section 12.1 that unlike an application program, Java runtime system does not call the main()
method to start the execution of an applet, rather it just loads the methods of applet class which
are responsible for starting, running, stopping, and manipulating an applet. The complete life
cycle of the applet will be taken up in the next section.
 There is a method, paint() in the Container class, which is inherited by Applet class (as you
can make out from Fig. 12.1), carrying the signature,
 public void paint(Graphics g)

This method, when called, displays the output of applet as per the code written on the applet’s
panel. You can see the argument of this method; it is nothing but an object of Graphics class.
The object makes it possible for an applet to output text, graphics, sound, etc. One thing you
must remember, you cannot take the services of Graphics class unless you import the package
it belongs to, i.e., java.awt. The output operations for an applet requires the methods contained
in the Graphics class, that is why its Graphics object is passed as argument to paint(). Now that
you know some details about the internals of an applet, we can discuss the program structure
of an applet.
 When an applet is first loaded, Java runtime system creates an instance of the main class,
which is FirstApplet in this case. Then the methods belonging to the Applet class are called
through this object.

12.4 AN EXAMPLE APPLET PROGRAM

Let us take an example applet, which displays the statement “This is my first applet program.”

Applet Program Structure
 import java.awt.*;
 //so as to make Graphics class available

 import java.applet.*;
 //so as to make Applet class available
 …………………………………
 …………………………………

 public class NewApplet extends Applet
 // new applet with the name, newApplet declared
 {
 ……………………………………
 ……………………………………

 public void paint(Graphics g)
 // paint() of Applet class overridden to contain output operations
 {
 …………………………………
 …………………………………
 }
 ………………………………………
 ………………………………………
 }

358 Programming in Java

Example 12.1(a) First Applet Example

 L1 import java.applet.*;
 L2 import java.awt.*;
 L3 public class FirstApplet extends Applet
 {
 L4 public void paint(Graphics g) {
 L5 g.drawString("This is my First Applet", 10, 10);
 L6 }
 L7 }

Explanation
L1 All applets are the subclasses of Applet class.
All applets must import the java.applet package.
L2 The applet uses the methods of java.awt
package; it must be imported.
L3 The FirstApplet class is declared public so
that the program that executes the applet (a Java-
enabled browser or applet viewer, which might not
be local to the program) can access it. This class
extends the Applet class of java.applet package,
thus inheriting the features of Applet class.

L4 The paint() method defined by AWT
Container class is overridden. Any output to be
shown by an applet has to be taken care by this
method only. Please note that an object of Graphics
class is passed as parameter to this method.
L5 The object of the Graphics class is used to
invoke drawString() method, which is responsible
for printing the string (“This is my First Applet”) at
x-coordinate 10 and y-coordinate 10.

12.4.1 How to Run an Applet?
There are two ways to run an applet. We will explain these in context to the above example.
These approaches are

 (a) Save the fi le as FirstApplet.java and compile it by using javac. Now, type in the
following HTML code in your editor and save the fi le as FirstApplet.html (here, the
fi le name is not necessarily the same as the class name, as it was for the java fi le.)

 <HTML><BODY>
 <APPLET code = "FirstApplet.class" WIDTH = 200 HEIGHT =
 150></APPLET>
 </BODY></HTML>

 You can execute the HTML file by giving
 appletviewer FirstApplet.html

Note If you wish to run the above html file in any web browser, instead of using applet viewer, you
must have Java-enabled web browser. Otherwise, you will have to install Java plug-in, which
lets you run your applets as web pages under 1.2 version of JVM instead of the web browser’s
default virtual machine.

 (b) Just as above, save the fi le as FirstApplet.java and compile it by using javac. In
order to run the applet, you have to give the below HTML coding as a comment in
FirstApplet.java.

 /* <APPLET code = "FirstApplet.class" WIDTH = 200 HEIGHT = 150></APPLET> */

Applets 359

Execute the applet as,
 appletviewer FirstApplet.java

In this chapter, we will be using the second approach throughout. So Example 12.1(a) should
have been actually written as shown in Example 12.1(b).

Example 12.1 (b) First Applet Example (Revised)

 /* <APPLET code = "FirstApplet.class" WIDTH = 200 HEIGHT = 150></APPLET>
 / import java.applet.;
 import java.awt.*;
 public class FirstApplet extends Applet {
 public void paint(Graphics g) {
 g.drawString("This is my First Applet",10,10);

 }}

Output

Fig. 12.2 Output Shown with the Help
of Applet Viewer

12.5 APPLET LIFE CYCLE

An applet may move from one state to another depending upon a set of default behaviors inherited
in the form of methods from Applet class. These states can be summed up as,

  Born
  Running

360 Programming in Java

  Idle
  Dead

 Figure 12.3 shows the flow an applet takes while moving from one state to another.
 As mentioned before, an applet may override some of the basic methods of class Applet. Note
that these methods are responsible for the lifecycle of an applet. These methods are

  init()
  start()
  stop()
  destroy()

init() Loading an
AppletBORN

start()

RUNNING

 stop()

 start()

 paint()

DEAD

IDLE

destroy()

Fig. 12.3 Applet’s State Diagram

 Let us discuss all these states of an applet in greater detail.

Born State
You can easily see from Fig. 12.3, that an applet enters this phase as soon as it is first loaded
by Java. This is made possible by calling init() of Applet class. Now, what are the things that
Java runtime system does, while loading the applet, i.e., when init() is called? It creates the
objects needed by the applet; it might set initial values, load font and images or set up colors.
The method init() is called only once during the lifetime of an applet.

Note In order to initialize an applet, we must override the init() method of Applet class.

Running State
Applet moves to the running state by calling start(). An applet moves to this phase automatically
after the initialization state. But if the applet is stopped or it goes to idle state, start() must be
called in order to force the applet again to the running state. Suppose you have opened a web

Applets 361

page (having an applet) and you move temporarily to another web page (by minimizing it) the
first one goes to the idle state; when you return back to the first page, start() is called to put
the applet in the running state again. Unlike init(), start() can be called more than once.

Note start() can be overridden to create a thread to control an applet.

 You can see the paint() method in Fig. 12.3. This method is responsible for forcing the applet
to an intermediary state (display state), which is actually a part of the running state itself. While
running, an applet may need to perform some output and display it on the panel of the applet.
The paint() method, which is a part of Container class (a superclass of Applet class), needs to
be overridden for the purpose. This method is called each time to draw and redraw the output
of an applet. We already know the drawing of output of an applet. Let us discuss redrawing the
output of an applet with an example. An applet window may be minimized and then restored.
This restoration is nothing but redrawing of applet’s output and could be achieved by calling
paint(). Actually when an applet in restored, start() and paint() are called in sequence. We
will revisit this method in Section 12.7.1.

Idle State
An applet goes to idle state, once it is stopped from running. If we leave a web page containing
an applet (i.e., minimize it), the applet automatically goes to idle state. An applet can also be
forced to stop or go to idle state by calling stop().

Note If a thread has been created to control an applet by overriding start(), then we must use
stop() to stop the thread, by overriding the stop() method of the Applet class.

Dead State
Terminating or stopping an applet should not be confused with destroying an applet. An applet
goes to dead state when it is destroyed by invoking the destroy() method of Applet class.
It results in complete removal of applet from the memory. Whenever we quit the browser,
destroy() is called automatically. You should free up the resources being used by applet (if any)
by overriding the destroy() method. Like init(), destroy() is also called only once. stop()
is always called before destroy().

12.6 COMMON METHODS USED IN DISPLAYING THE OUTPUT

There are certain methods which you should be acquainted with, as they might be used in applet
programming further down the chapter. These are the methods belonging to different classes,
which can handle the AWT windowed environment.

 drawString()
This method is a member of Graphics class, used to output a string to an applet. It is typically
called from within the paint() or update() method. Its form is
 void drawString(String msg, int a, int b)

362 Programming in Java

Here, the string msg is the string output to be displayed by the applet and a, b are the x, y
coordinates respectively of the window, where the output has to be displayed.

 setBackground()
This method belongs to component class. It is used to set the background color of the applet
window. Its form is
 void setBackground(Color anyColor)

The above method takes the color to be set as background, as argument. The Color class has
certain predefined constants for each color, such as Color.red, Color.blue, Color. green,
and Color.pink.

 setForeground()
This method is similar to setBackground method, except that these are used to set the color of
the text to be displayed on the foreground of the applet window. Its form is
 void setForeground(Color anyColor)

Component class has two more methods getBackground() and getForeground(), having the
following forms:
 Color getBackground();
 Color getForeground();

You can very well see that these methods return the current context of the Color, showing the
background and foreground colors, respectively.

 showStatus()
This method is a member of Applet class. It is used to display any string in the status window
of the browser or appletviewer. Its from is
 void showStatus(String text)

Here, the argument of the method is basically the string which you want to be displayed in the
status window.
 Before going any further, we should better take an example which uses these methods, discussed
until now.

Example 12.2 Applet Methods
 /* <APPLET code = “ExampleApplet.class” WIDTH = 200 HEIGHT = 150></APPLET> */
 L1 import java.applet.Applet;
 L2 import java.awt.Color;
 L3 import java.awt.Graphics;
 L4 public class ExampleApplet extends Applet{
 L5 String text;
 L6 public void init() {
 L7 setBackground(Color.white);
 L8 setForeground(Color.red);
 L9 text = “This is an example applet”;
 L10 System.out.println(“....Initialized the applet”); }

Applets 363

 L11 public void start() {
 L12 System.out.println(“....Starting of the applet”);
 L13 }
 L14 public void stop() {
 L15 System.out.println(“....Stopping the applet”);
 L16 }
 L17 public void destroy() {
 L18 System.out.println(“....Exiting the applet”);
 L19 }
 L20 public void paint(Graphics g) {
 L21 System.out.println(“....Painting the applet”);
 L22 g.drawString(text, 30, 30);
 L23 showStatus(“This is status bar”); }}

Output

Fig. 12.4(a) Applet Initialized Using Applet Viewer

Fig. 12.4(b) Strings Printed by Various Methods of the Applet

Explanation
L1–3 All the important classes (belonging to their
respective packages), whose members are to be used
in the applet are imported.
L6–10 This section shows the implementation of
init(), where the background and foreground of
the applet is set to white and red, respectively (see
L7–8). White and red are static fields of the Color

class (part of java.awt package). In L9, the text is
initialized by a string, This is an example applet.
L11–13 These lines account for the implementation
of start(), responsible for forcing the applet in
running state. L13 displays the message about
the start of the applet on the screen. Note that this
message will not be displayed on the applet window;

364 Programming in Java

it will be displayed as seen by you in earlier chapters
(by the use of System.out.println()).
L14–16 These lines take care of the implementation
of stop(). L16 just displays the message about
stopping an applet. As many a times you will stop the
applet, this message will be displayed on the screen.
You can visualize easily that even minimizing the
applet window stops or forces the applet into idle
state. If restored after getting minimized, it will
again invoke start() and paint().
L17–19 These lines take care of the implementation
of destroy(). Try closing the applet window and
you will see the message “……Exiting the applet”
(L19). Here, this message simply means that the
applet is destroyed or has moved to the dead state.

12.7 paint(), update(), and repaint()

All components and containers (since containers are actually components) in the JDK have
two methods that are called by the system to paint their surface. These methods are paint()
and update(), belonging to component class (see Fig. 12.1). The signature of these methods are
shown below,
 public void paint(Graphics g);
 public void update(Graphics g);

If you wish that a drawing should appear in a window, you shall override either or both of the
methods. Let us discuss these methods in detail.

12.7.1 paint() Method
When a component needs to draw/redraw itself, its paint() method is called. The component
draws itself when it first becomes visible. The component paint() method is also invoked when
the window containing it is uncovered, if it is covered by another window.
 The simplest paint() method looks like the following:
 public void paint(Graphics g) {... }

We have discussed the Graphics object passed to the method earlier. It will be discussed in more
detail in the next chapter.

Example 12.3 Set the Color of the Applet and Draws a Fill Oval
 /* <APPLET code = "FillOval.class" WIDTH = 200 HEIGHT = 200></APPLET> */
 L1 import java.applet.Applet;
 L2 import java.awt.Color;
 L3 import java.awt.Graphics;
 L4 public class FillOval extends Applet
 {
 L5 public void paint(Graphics g)
 {

L20–23 These lines are accountable for the
implementation of paint() method. In L22,
Graphics object g is used to invoke its drawString()
method, which is actually used for writing on an
applet window. See the arguments passed to this
method: text, which contains the string, “This is
an example applet” and the x, y coordinates from
where this text will start in the displayable part of
the applet. paint() is also called when the window
containing applet is covered by another window and
they later uncovered. (not minimized and restored)
L22 You can see the method, showStatus(),
having the text, which has to be shown in the status
window of the applet, as argument.

Applets 365

 L6 g.setColor(Color.red);
 L7 g.fi llOval(20, 20, 60, 60);
 L8 }
 L9 }

Output

Fig. 12.5 Fill Oval with Red Color

Explanation

L5–8 These lines are accountable for the
implementation of paint() method. The setColor()
method of Graphics class is used to set the
drawing color of the applet to red (L6). Another
method, fillOval(), belonging to the Graphics

class is invoked at L7. It fills an oval bounded
by the specified rectangle with the current color.
The parameters passed to the method are the
x-coordinate, y-coordinate, width, and height,
respectively.

12.7.2 update() Method
Another method which does the same job as paint() method, which is called by AWT components
to paint its surface is the update() method.
 Now let us discuss what this method does. It clears the surface of the calling component to
its background color and then calls paint() to paint the rest of the component. It makes the job
easier because one does not have to draw the whole component within a paint() method, as
the background is already filled. Then, when one overrides paint(), he/she only needs to draw
what should appear on the foreground.
 It simply does not mean that you will never override update(). Let us consider a case where
you would like to draw a large, red oval inside a window having yellow background. Now take
the case where you do not override update(), the window’s entire background will be drawn by

366 Programming in Java

the update() method, and then the red oval will be drawn by the paint() method. A large area
of one color is first drawn and then the large area of the oval in another color (red in this case)
is redrawn. You, as a user can see some slight flickering while displaying the result, especially
if you try to draw the oval a number of times in succession.
 The above problem can be overcome by overriding update(). You would override update()
to call paint(). Then this paint()will first draw only the background areas surrounding the red
oval and then draw the red oval. Obviously, the flickering problem found earlier is removed
because of elimination of the drawing of two overlapping objects of different colors.

12.7.3 repaint() Method
Sometimes you may want to force a component to be repainted manually. For example, if you
have changed certain properties of a component to reflect its new appearance, you can call the
repaint() method. Here is an example:
 text.setBackground(Color.blue);
 text.repaint();

Calling the repaint() method causes the whole component to be repainted.
 repaint()  update()  paint()

repaint() in its default implementation calls update() which in turn calls paint(). repaint()
method requests the AWT to call update and it returns. The AWT combines multiple rapid repaint
requests into one request (usually this happens when you repaint inside a loop). So the last
repaint in the sequence actually causes paint(). We will discuss these topics in Chapters 13 and
14, where we will illustrate the use of repaint() with proper examples.

12.8 MORE ABOUT APPLET TAG

We have used the APPLET tag while writing code for applets. An applet has to be specified in
an HTML file. This is done by using APPLET tag in an HTML file. Applets are executed by
a Java-enabled web browser as soon as it encounters the APPLET tag inside the HTML file.
If you want to view and test an applet using the utility, appletviewer, of JDK, you just have
to include a comment containing the APPLET tag, just above the actual applet code. We have
already discussed how that has to be done.
 Till now, we have been using the following form of APPLET tag:

 <APPLET CODE = fi lename WIDTH = pixels HEIGHT = pixels></APPLET>

This is the most simplified form of APPLET tag, having only the mandatory fields as attributes.
Actually this particular tag has many more attributes which are optional but worth discussing.
The full syntax of the APPLET tag is shown below.
 <APPLET [CODEBASE= codebasedURL]
 CODE = appletFile [ALT= alternateText] [NAME = appletInstanceName] WIDTH
 = pix els HEIGHT = pixels [ALIGN = alignment] [VSPACE = pixels]
 [HSPACE = pixels]>
 [<PARAM NAME = attributeName VALUE = attributeValue>]
 [<PARAM NAME = attributeName VALUE = attributeValue>]
 …………………………………
 </APPLET>

Applets 367

In the above syntax, the attributes which are put inside the big braces are optional ones. Let us
discuss about the use of these attributes in detail.
Codebase Here, we may specify the URL of the directory where the executable class file
(specified by CODE attribute) of the applet will be searched for.
Code It gives the name of the file containing the applet’s compiled class file. It is a mandatory
attribute, which should always be present in APPLET tag.
Alt It is an attribute, which is used to specify the alternate short text message that should be
displayed in case the browser recognizes the HTML tag but cannot actually run the applet
because of some reason.

Name It is possible to give a name to an applet’s instance using this optional attribute. If any
other applet on the same web page wants to communicate with this applet, it is referenced
through its NAME only.
Width It gives the width of the applet display area in terms of pixels.
Height It gives the height of the applet display area in terms of pixels.
Align This optional attribute is used to set the alignment of an applet. The alignment can be
set as LEFT, RIGHT, TOP, BOTTOM, MIDDLE, BASELINE, TEXTTOP, ABSMIDDLE, and
ABSBOTTOM.
Vspace These are used to specify the space, in pixels, above and below the applet.
Hspace These are used to specify the space, in pixels, on each side of the applet.

 You can use PARAM tags between the <APPLET> and </APPLET> tags to provide information
about parameters, or arguments, to be used by the Java applet. The <PARAM> tag is simple—it
NAMES a parameter the JAVA applet needs to run, and provides a VALUE for that parameter.

Note User-defined parameters can be supplied to an applet using <PARAM…….> tags.

This tag has two parameters: NAME and VALUE.
Name Attribute name.
Value Value of the attribute named by corresponding PARAM NAME.
The applets access their attributes using the getParameter() method. Its signature is as follows:
 String getParameter(String name);

Let us take an example applet which uses the concept of passing parameters.

Example 12.4 Param Tag
 /*<APPLET CODE = ParamPassing.class WIDTH = 300 HEIGHT = 250>
 <param NAME = yourName VALUE = John>
 <param NAME = yourProfession VALUE = consultant>
 <param NAME = yourAge VALUE = 35>
 </applet>*/

 L1 import java.awt.*;
 L2 import java.applet.*;

368 Programming in Java

 L3 public class ParamPassing extends Applet {
 L4 String name;
 L5 String profession;
 L6 int age;
 L7 public void start() {
 L8 String str;
 L9 name = getParameter("yourName");
 L10 if (name == null) name = "not found";
 L11 str = getParameter("yourProfession");
 L12 if (str != null) profession = str;
 L13 else profession = "No job";
 L14 str = getParameter("yourAge");
 L15 try {
 L16 if (str != null) age = Integer.parseInt(str);
 L17 else age = 0;
 L18 } catch (NumberFormatException e) {}
 L19 }
 L20 public void paint(Graphics g) {
 L21 g.drawString("your name: "+name, 10, 10);
 L22 g.drawString("your profession: "+profession, 10, 30);
 L23 g.drawString("your age: " +age, 10, 50);
 L24 }}

Output

Fig. 12.6 Parameter Passing through Applets

Explanation
Let us start with the APPLET tag placed as comment
before the actual code for the program starts. Three
PARAM tags are between the start and close of the
APPLET tag. All the three PARAM tags have NAME
and its corresponding VALUE, such as yourName has
the value John, yourProfession has the value consultant
and yourAge has the value 35.
L1–2 For importing necessary classes from their
respective packages.
L3 A class named as ParamPassing is declared to
extend the Applet class of the java.applet package.

L4–6 References to the String class is declared as
name and profession in L4 and L5, respectively.
A variable, age, of integer type is declared in L6.
L7–19 Implementation of start() method is
shown. At L9, getParameter() method returns the
value of the parameter name, yourName, passed
as argument. The returned value is stored in name,
declared at L4 as string reference. Similarly, two
more getParameter() methods are used at L11
and L14, returning the values for the respective
parameters names passed as arguments. The use of

Applets 369

these values returned by getParameter() methods
is too simple to be explained here. Only point worth
mentioning here is the use of wrapper class, Integer,
at L16. The value returned by getParameter() at
L14 is of Stringtype, and it needs to be converted
to integer, which is done by the use of parseInt()

method of Integer class. This method throws
an exception, named as NumberFormatException,
which is caught at L18.
L20–24 Implementation of paint() method is
shown, where values for name, profession, and age
are displayed on the applet window.

Note The APPLET parameters stored in the PARAM tag actually have little directly to do with HTML.
As you have already seen in the previous example, that it is the responsibility of the applet to
check the parameter values and respond accordingly. One more interesting thing worth noting
here is that you can increase the flexibility of the applet by making the applet work in multiple
situations without recoding and recompiling it, by defining and redefining the parameters (as
these are placed as comments, so they are not checked during compilation).

 We can sum up the use of PARAM tag for passing parameters to applets in two steps:
  Place the PARAM tag with names and corresponding values between the start and end

of the APPLET tag.
  Write the needed code for the applet to retrieve these parameter values, as shown in

Example 12.4.

12.9 getDocumentBase AND getCodeBase METHODS

Suppose a directory holds the HTML file, responsible for starting the applet and you need
the applet to load data (i.e., media and text) from this directory, which is known as document
base. We can get the URL of this directory in the form of URL object by using the method
getDocumentBase(). Similarly, there is another method, getCodeBase(), which returns the URL
object of the directory from where the class file of the applet is loaded. The following example
illustrates the use of these methods:

Example 12.5 getCodeBase() and getDocumentBase() Methods

 /*<APPLET CODE = BaseMethods.class WIDTH = 300 HEIGHT = 250></applet>*/
 L1 import java.awt.*;
 L2 import java.applet.*;
 L3 import java.net.*;
 L4 public class BaseMethods extends Applet {
 L5 public void paint(Graphics g) {
 L6 String str;
 L7 URL url;
 L8 url = getCodeBase();
 L9 str = "Code Base: "+url.toString();
 L10 g.drawString(str, 20, 40);
 L11 url = getDocumentBase();
 L12 str = "Document Base: " +url.toString();

370 Programming in Java

 L13 g.drawString(str, 20, 60);
 L14 }}

Output

Fig. 12.7 Applet’s Code Base and Document Base are Displayed

Explanation
L1–3 All the classes belonging to different
packages are imported, so that they can be made a
vailable to the program. We require the URL class
of java.net package in the program, so we are
importing all the package java.net (L3).
L4 Public class ‘BaseMethods’ extending the
Applet class is declared.
L5–14 paint() method is overridden. A reference
to String class with the name of str is created at
L6. Another reference of URL class of java.net

package is created with the name of url. At L8,
getCodeBase() is called, which returns the URL
object of the directory where the class file of the
applet is loaded. This returned object is stored in url.
At L9, the URL object stored in url is converted
to string by using toString() and stored in str.
Similarly, you can see the use of getDocumentBase(),
which returns the URL object of the directory that
holds the HTML file, responsible for starting the
applet at L11.

12.10 AppletContext INTERFACE

This interface corresponds to an applet’s environment: the document containing the applet and
other applets in the same document. In other words, this interface determines this applet’s context,
which allows the applet to query and affect the environment in which it runs. This environment
of an applet represents the document that contains the applet.
 The methods in this interface can be used by an applet to obtain information about its
environment. The frequently used methods have been provided within the Applet class. These
methods are mentioned in Table 12.3.

Applets 371

Table 12.3 AppletContext Methods in the Applet class

Name Description
Enumeration getApplets() Finds all the applets in the document represented by this

applet context.
Applet getApplet (String name) Finds and returns the applet in the document represented by

this applet context with the given name.
Image getImage(URL url) Returns an image object that can then be painted on the screen.
AudioClip getAudioClip (URL url) Creates an audio clip.

void showDocument(URL url); Replaces the Web page currently being viewed with the given
URL.

void showDocument (URL url, String target) Requests that the browser or applet viewer show the Web page
indicated by the URL argument.

void showStatus (String status) Requests that the argument string be displayed in the “status
window”.

12.10.1 Communication between Two Applets
There is a method defined in AppletContext interface, which enables your applet to transfer
control to any other URL. It is showDocument(). The signature of this method is as follows:
 public abstract void showDocument(URL url);

The url, where you want your applet to transfer control to, is specified as the argument of this
method. You can use this method only with the object of the currently executing applet, which
can be obtained by getAppletContext() defined in the Applet class.
 Once you have obtained the context of the currently executing applet, your browser or
appletviewer can show another document or web page by using showDocument(url).
 There is another form of showDocument() method, having the signature,
 public abstract void showDocument(URL url, String target)

The only new thing you see here is the second argument, target. This argument indicates in
which HTML frame the document is to be displayed. The target arguments can be used in
following forms as shown in Table 12.4.

Table 12.4 Values of the Argument of showDocument() Method

Target Argument Description
"_self" Show in the window and frame that contain the applet, i.e. the current frame.
"_parent" Show in the applet’s parent frame. If the applet’s frame has no parent frame,

it acts the same as “_self”.
"_blank" Show in a new, unnamed top-level window.
"_top" Show in the topmost frame of the applet’s window. If the applet’s frame is

the top-level frame, it acts the same as “_self”.
Name You can specify a name which causes the document to be shown in a

new browser window by that name.

372 Programming in Java

Note The file whose URL is passed as argument to the showDocument() method must be in same
directory on the server as the applet.

 The method can be evoked in the form:
 try {
 getAppletContext().showDocument(new URL(url));
 }
 catch (java.net.MalformedURLException e) {
 System.out.println("URL could not be reached");
 }

You can see the try…catch block around the showDocument() method. It has been put because this
method throws an exception named MalformedURLException which must be caught and handled.

12.11 HOW TO USE AN AUDIO CLIP?

You can load a clip using the method getAudioclip() of the Applet class, which returns an
AudioClip object. The signature of this method is
 AudioClip getAudioClip(URL url)

This object actually encapsulates the audio clip found at the specified URL, passed as the
argument to the method (refer to Table 12.1).
 We have already told that an applet can take care of audio also. There are various methods
defined in AppletContext interfaces that take care of manipulating the activities related to an
audio clip. A few of these methods are
 play(): plays a clip from the beginning
 stop(): stops playing the clip
 loop(): plays the clip in loop continuously
The above methods can be used by the audio clip object (returned by getAudioClip()), to either
play, stop, or loop an audio clip. An example applet for loading and playing a sound file is given
below.

Example 12.6 Playing Audio Clips
 L1 import java.applet.*;
 L2 import java.lang.*;
 L3 import java.net.URL;
 L4 public class AudioDemo extends Applet {
 L5 AudioClip aud_clip;
 L6 public void init() {
 L7 aud_clip = getAudioClip(getDocumentBase(), "magic.au");
 L8 }
 L9 public void start() {
 L10 aud_clip.play();
 L11 }}

Applets 373

Explanation
L7 The clip is loaded during init() using
the getAudioClip() method, which takes the
url (from getDocumentBase() method) of the
audio clip and the name of the audio file. The

object of the audio clip returned by the method
is stored in aud_clip.
L8 The object aud_clip is used to invoke the
pay() method of AppletContext interfaces.

Limitations of Audio Methods
Following are the limitations of the audio methods:

  Currently these methods only support .au format sound fi les.
  The methods are not very robust. You can only play a sound fi le, but you cannot pause

a sound clip.
  Audio features, which can be used by applets, are very limited because of the lack of

audio context methods.

Note You can use the Java media framework API for playing sound files of different formats with
enhanced functionality.

12.12 IMAGES IN APPLET

The drawImage() method of the Graphics object is used to draw an image on the applet. This
method requires an Image object which can be obtained using the getImage method of the Applet
class. This method returns an Image object which can be painted on the applet.

Example 12.7 Displaying Images in Applets

 L1 import java.awt.*;
 L2 import java.applet.*;
 L3 /*<applet code=ImageDemo.class width=700 height=700></applet>*/
 L4 public class ImageDemo extends Applet
 {
 L5 Image image;
 L6 public void init() {
 // Obtain Image object to be pained or Loads the image
 L7 image = getImage(getDocumentBase(),"bulbon.gif");
 }
 L8 public void paint(Graphics g) {
 // Draw image
 //drawImage(Image img,int x,int y,int width, int height, ImageObserver observer)

 L9 g.drawImage(image, 0, 0, image.getWidth(this),image.getHeight(this), this);
 L10 g.drawImage(image, 0, 200, 70,90, this);
 }
 }

374 Programming in Java

Output

Fig. 12.8

Explanation

L1–2 Import the required packages; awt and
applet.
L3 The applet html tag (commented) is inserted.
This html statement is commented so that it is
ignored by the complier as this code does not belong
to Java. This html tag is inserted for running the
applet through the appletviewer utility. In case you
run the applet through html file, this tag should be
written within the body tag of the html file.
L4 All applets have to be publicly defined and
they must be subclasses of the Applet class. So
ImageDemo is a public class and it inherits the Applet
class.
L5 An instance variable of type Image is defined
outside (any of) the methods and within the Applet
class so that it can be used within all the methods
of the class.
L6–7 The image is instantiated inside the init
method, which is called only once during the
lifetime of the applet. The image object is obtained
using the getImage() method and the path of the
image file is passed as an URL argument to this

method. We have used getDocumentBase() as the
first argument to the getImage method for retrieving
the path (upto the base directory) where the applet
is stored and the second argument is the Image
file name. getDocumentBase() will fetch the base
directory of the applet as a URL object. We have
fetched the base directory of the applet because
the applet and the image are placed in the same
directory. (Moreover you do not have to change
the path every time you copy your applets to other
directories or to a directory on different machines.)
L8–10 paint method defined to display the image
on the applet. The drawImage method is used to draw
an image on the applet. L9 shows how to draw an im-
age with its default height and width at a particular
x–y position (second and third arguments) and L10
shows how to change the height and width of the
Image. The difference is evident in the output. The
current applet needs to be notified about the images
that is why this keyword is used as an argument in
the drawImage method.

Applets 375

12.12.1 MediaTracker Class
The MediaTracker class is used to track the status of a number of images. If you want to be sure
of the fact that images are fully loaded beforehand, you can add all the images to an instance of
the MediaTracker class and then check whether the images are loaded before proceeding. You
need to create an instance of MediaTracker class and call its addImage method for each image to
be tracked. Let us take an example to display two images of a MediaTracker object back to back.

Example 12.8 MediaTracker class
 L1 import java.applet.Applet;
 L2 import java.awt.*;

 L3 /*<applet code="MediaTrackerDemo" width=400 height=400></applet>*/

 L4 public class MediaTrackerDemo extends Applet implements Runnable
 {
 // image array to hold images
 L5 Image[] imageArray = null;

 // to track the images
 L6 MediaTracker m = null;
 L7 int current = 0;
 L8 Thread t=null;

 L9 public void init()
 {
 // Create a new media tracker, to track loading images
 L10 m = new MediaTracker(this);

 // Create an array of three images
 L11 imageArray = new Image[2];

 // Start downloading the fi rst images into the image array
 L12 imageArray[0] = getImage(getDocumentBase(), "bulboff.gif");

 // Register it with media tracker
 L13 m.addImage(imageArray[0], 0);

 // second image
 L14 imageArray[1] = getImage(getDocumentBase(), "bulbon.gif");
 L15 m.addImage(imageArray[1], 1);

 // Start thread to begin blinking of images
 L16 t = new Thread(this);
 L17 t.start();
 }

 L18 public void paint (Graphics g)
 {
 L19 g.setColor(Color.white);

376 Programming in Java

 // Sets the background with White Color
 L20 g.fi llRect(0,0, 400, 400);
 // Sets the Color as black, so that any text written will be black
 L21 g.setColor(Color.black);

 // Check to see if images have loaded
 L22 if (m.checkAll())
 {
 L23 g.drawImage(imageArray[current++], 0, 0, this);
 L24 if (current >= imageArray.length)
 L25 current = 0;
 }
 L26 else // Still loading
 {
 L27 g.drawString ("Images are still loading...", 20,20);
 }
 }

 L28 public void run()
 {
 L29 try
 {
 // waits until all the images have fi nished loading
 L30 m.waitForAll();
 L31 for (;;)
 {
 // Repaint the images
 L32 repaint();
 L33 Thread.sleep(2000);
 }
 }
 L34 catch (InterruptedException ie){}
 }
 }

Output

The applet starts with the bulb ‘off’ image and then switches to bulb ‘on’ image and it keeps
on repeating.

 (OFF) (ON)
Fig. 12.9

Applets 377

Explanation
 L1–2 Imports the awt and the applet packages.
L3 Commented html APPLET tag meant to run
the applet through the applet viewer utility.
L4 Public class MediaTrackerDemo is declared to
inherit the Applet class.
L5–8 Instance variables are created of type Image
array, MediaTracker, Thread and an int variable
meant to change the images. Image array is defined
to store images. MediaTracker instance will be
tracking the status of images stored in the image
array. A Thread instance is required for changing the
images and it acts as a counter for deciding which
image to be shown.
L9–15 init method is defined for the applet.
So all one-time initializations will be done in this
method. L10 creates a MediaTracker object and
this is passed as an argument within the constructor
to signify the component on which the images will
be drawn. L11 creates an image array of two images.
The image array is populated with two images in
L12 and L14 using the getImage method. We have
already discussed this method in the above example.
These images are added to the MediaTracker
instance using the addImage method in L13 and L15.
The first argument is the image and the second is an
integer id which is used to track the image.
L16–17 Instantiates the thread and starts it.
Remember this (current object) is passed in the
constructor of Thread class to signify the object
(i.e., the applet in our case) whose run method will

be invoked when this thread is started.
L18–21 paint method is declared. L19 set the
color as white. L20 fills the rectangle (i.e., entire
applet) with white color so it erases whatever
is there on the applet in every paint attempt and
then restores the black color in L21. (It is better to
whitewash the applet so that there is no overlapping
of images).
L22 Checks whether all images have loaded and
if yes, draws the images on the applet using the
drawImage method in L23 else displays a string
mentioned in L27. We have already discussed the
drawImage method above.
L24–25 Shows statements to change the images.
We are using the current variable as an index into
the image array which is incremented to change
the image. The value of the current variable is
checked against the length of the image array (so
that all images in the image array are shown) and
then reset to 0.
L28 run method is defined to tell what the thread
is supposed to do.
L29 try block defined to catch the exceptions
that arise in the code.
L30–33 waitForAll() method has been used on
the tracker object to wait for all images to finish
loading and then an infinite loop is executed (L31)
to repaint (L32) the applet. Thread is made to sleep
in L33 to introduce a delay effect.
L34 Catches the exception raised by sleep method,
if any.

12.13 Graphics CLASS

You know about applets in Java now. But these applets are incomplete without their ability
to draw graphics. You can write Java applets that can draw lines, figures of different shapes,
images, and text in different fonts, styles, and colors. Every applet has its own area on the screen
known as canvas, which is actually the display area. To create this display area, you must have
the knowledge of Java coordinate system. This coordinate system has the origin (0, 0) in the
upper-left corner. Positive x values are to the right and positive y values to the bottom. The
values of (x, y) are in pixels.
 Now let us discuss the class which makes the use of graphics possible in Java. It is the Graphics
class belonging to the java.awt package, defined as
 public abstract class Graphics extends Object

378 Programming in Java

Note The Graphics class is the abstract base class for all graphics contexts that allows an application
to draw onto components that are realized on various devices, as well as onto off-screen
images.

This class has a number of methods defined in it, some of which are mentioned below in Table 12.5.

Table 12.5 Few Methods of the Graphics Class

Name Description
drawArc(int x, int y, int width, int
height, int startAngle, int arcAngle)

Draws the outline of a circular or elliptical arc covering the
specifi ed rectangle.

drawLine(int x1, int y1, int x2, int y2) Draws a line.
fi nalize() Disposes of this graphics context once it is not referenced.

translate(int x, int y)
Translates the origin of the graphics context to the point (x, y)
in the current coordinate system.

drawOval(int x, int y, int width, int
height)

Draws the oval.

drawPolygon(int[] xPoints, int[]
yPoints, int nPoints)

Draws a polygon defi ned by arrays of x and y coordinates.

drawRect(int x, int y, int width, int
height)

Draws the specifi ed rectangle.

getClip() Returns the bounding rectangle of the current clipping area.
fi llArc(int x, int y, int width, int
height, int startAngle, int arcAngle)

Fills a circular or elliptical arc covering the specifi ed rectangle.

fi llOval(int x, int y, int width, int
height)

Fills an oval bounded by the specifi ed rectangle with the
current color.

fi llPolygon(int[] xPoints, int[]
yPoints, int nPoints)

Fills a closed polygon defi ned by arrays of x and y coordinates.

fi llRect(int x, int y, int width, int
height)

Fills the rectangle.

getColor() Returns this graphic context’s current color.
getFont() Returns the current font.
setColor(Color c) Sets the drawing color.
setFont(Font font) Sets this graphic context’s font to the specifi ed font.
fi llRoundRect(int x, int y, int
width, int height, int arcWidth, int
arcHeight)

Fills the specifi ed rounded corner rectangle with the current
color.

drawRoundRect(int x, int y, int
width, int height, int arcWidth, int
arcHeight)

Draws an outlined round-cornered rectangle using this graphic
context’s current color.

drawString(String str, int x, int y) Draws the string on the specifi ed coordinates.

clearRect(int x, int y, int width, int
height)

Clears the specifi ed rectangle by fi lling it with the background
color of the current drawing surface.

(Contd)

Applets 379

Name Description
clipRect(int x, int y, int width, int
height)

Intersects the current clip with the specifi ed rectangle.

copyArea(int x, int y, int width, int
height, int dx, int dy)

Copies an area of the component by a distance specifi ed by
dx and dy.

create() A graphics object is created.
create(int x, int y, int width, int
height)

Creates a new Graphics object based on this Graphics object,
but with a new translation and clip area.

dispose()
Disposes of the current graphics context and releases any
system resources used by it.

draw3DRect(int x, int y, int width,
int height, boolean raised)

Draws a 3-D highlighted outline of the specifi ed rectangle.

drawArc(int x, int y, int width, int
height, int startAngle, int arcAngle)

Draws the outline of a circular or elliptical arc covering the
specifi ed rectangle.

drawBytes(byte[] data, int offset, int
length, int x, int y)

Draws the text given by the specifi ed byte array, using this
graphic context’s current font and color.

drawChars(char[] data, int offset, int
length, int x, int y)

Draws the text given by the specifi ed character array, using this
graphic context’s current font and color.

fi ll3DRect(int x, int y, int width, int
height, boolean raised)

Paints a 3-D highlighted rectangle fi lled with the current color.

fi llArc(int x, int y, int width, int
height, int startAngle, int arcAngle)

 Fills a circular or elliptical arc covering the specifi ed rectangle.

12.13.1 An Example Applet Using Graphics Class
Herein we give an example applet, which uses graphics. The methods of the Graphics class
has been called in the paint() method. Note that the object of the Graphics class is passed as
argument to the paint()method and this object only helps in invoking all the member methods
of the Graphics class.
 The following example takes care of different shapes which can be drawn using Graphics
class.

Example 12.9 Graphics Class Methods
 /* Applet code=DrawLineRect width = 600 height = 40></Applet>*/
 import java.awt.* ;
 import java.applet.* ;
 public class DrawLineRect extends Applet {
 L1 public void paint(Graphics g){
 L2 g.drawRect(10,60,40,30);
 L3 g.fi llRect(60,10,30,80);
 L4 g.fi llOval(140,160,170,170);
 L5 g.drawRoundRect(10,100,80,50,10,10);
 L6 g.fi llRoundRect(20,110,60,30,5,5);
 L7 g.drawArc(280,210,250,220,30,90);

(Table 12.5 Contd)

380 Programming in Java

 L8 g.drawLine(100,10,230,140);
 L9 g.drawLine(100,140,230,10);
 }}

Output

Fig. 12.10 Applet Showing Demonstration of Methods of Graphics Class

Here, we will stick to the paint() method only as all the methods of the Graphics class are used
inside this method only. The description of these methods is available in Table 12.5.

Explanation
L2 The drawRect method is used to draw a rect-
angle. The first two arguments specify the x and
y coordinates and later two specify the width and
height of the rectangle.
L3 The fillRect method is used to draw a
rectangle that is filled with a color. The default color
is black. You can always change the color using the
setColor method.
L4 The fillOval method is used to draw an oval
that is filled with the default color. The first two
arguments specify the x and y coordinates and the
latter two specify the width and height of the oval.
L5 and 6 The drawRoundRect method is used
to draw a rectangle with rounded corners. The
additional arguments (last two) are the width of
the arc (i.e., 10) and height of the arc (i.e., 10).

fillRoundRect is same as drawRoundRect. The only
difference is that in this case the rounded rectangle
is filled with a color.
L7 drawArc method is used to draw an arc
(as shown in the output). The first argument is x
coordinate of the upper left corner of the arc to be
drawn. The second argument is the y coordinate of
the upper left corner of the arc to be drawn. The
third and fourth argument specifies the width of
the arc and height of the arc. The fifth argument
is the starting angle of the arc. The arcs begin at
starting angle and extend to arc angle which is the
last argument.
L8 and 9 drawLine is used to draw lines between
points x1, y1 and x2, y2 (which are specified as four
arguments to this method.)

12.14 Color CLASS
Color is a class which is inherited from Object class and implements Paint and Serializable
interfaces. We have RGB colors as default color for monitors and TV screens. In Java, color is
portable and machine independent. Using Color class, you can specify any color in Java. Apart

Applets 381

from specifying a particular color, you can also create your own color in Java. It is an astonishing
fact; you can create up to 24 million different colors in Java. Color class has various constants
specifying a number of common colors. These constants are as shown below:

Color.Black Color.DARK_GRAY Color.GRAY

Color.LIGHT_GRAY Color.WHITE Color.MAGENTA
Color.RED Color.PINK Color.ORANGE
Color.YELLOW Color.GREEN Color.BLUE

 Some of the constructors and methods of Color class are shown in Table 12.6

Table 12.6 Color Class

Constructor of Color Class
Constructor Description

Color(Color space cspace, fl oat[]
components, fl oat alpha)

Creates color in a specifi c ColorSpace with specifi ed color
components.

Color(fl oat r, fl oat g, fl oat b) Creates a mix color of red (r), green (g), and blue (b) and the
values are in the range of (0.0–1.0).

Color(fl oat r, fl oat g, fl oat b, fl oat a) Creates a mix color of red, green, and blue and alpha () values
in the range of (0.0–1.0).

Color(int rgbValue) Creates a mix color of red, green, and blue and the
bits for red component is 16–23, bits for green component is
8–15, and bits for blue component is 0–7.

Color(int r, int g, int b) Specify a color of mix red, green, and blue values in the range
of (0–255).

Color(int r, int g, int b, int a) Creates a color of mix colors red, green, blue, and alpha values
in the range of 0–255.

Methods of Color Class
Methods Description

brighter() Creates a brighter version of a color.
createContext(ColorModel cm, Rectangle
r, Rectangle2D r2d, Affi neTransform
xform, RenderingHints hints)

This method is used to create a solid color pattern.

darker() Creates a darker, brighter version of a color.
decode(String nm) It translates a String to an integer that returns the specifi c

Color.
equals(Object obj) Checks that another object is equal or not to this Color.
getAlpha() Returns an alpha component whose range is 0–255.
getBlue() A blue component is returned by this method in the range

0–255 in the default red, green, blue space.
getColor(String nm) Finds a color in the system properties.

(Contd)

382 Programming in Java

Methods Description
getColorComponents(ColorSpace cspace,
fl oat[] compArray)

A fl oat array is returned. It contains color components
specifi ed by the escape parameter.

getColorSpace() ColorSpace of the Color is returned by it.
getComponents(fl oat[] compArray) An array of fl oat type is returned which contains the color

and alpha components of the Color.
getGreen() A green component is returned by it in the range

0–255 in the default red, green, blue space.
getRGBComponents(fl oat[] compArray) An array of fl oat type is returned which contains color and

alpha components of the Color which represents red, green,
blue color space.

HSBtoRGB(fl oat hue, fl oat saturation, fl oat
brightness)

Using HSB model, it returns a packed RGB value with the
help of Color(int) constructor.

RGBtoHSB(int r, int g, int b, fl oat[]
hsbvals)

The color of component is converted to HSB model specifi ed
by RGB model.

toString() A color is represented as a string.

 How to create your own color? Let us take an example constructor for creating a light ‘red’
color object.
 We can use the fifth constructor from Table 12.6 for the purpose,
 Color c= new Color (255, 100, 100)

 Once a color object is created by using any of the above constructors, it can be used to set the
foreground and background colors by using the setForeground() and setBackground() methods,
respectively.
 The constructors of color class and some of its methods are listed in Table 12.6 along with
their description.

12.15 Font CLASS

Font class extends Object class and implements Serializable interface. Various fonts are
represented by Font class to write text. If you have used MS office application, you must be
aware of the importance of font manipulation. AWT provides this flexibility of manipulating
fonts during the execution of the program itself.
 Three important attributes of font are

  Family name It is the name of the font generally given, such as ‘Times New Roman’.
  Logical font name It specifi es the font category, such as monospaced.
  Face name It specifi es a specifi c font, such as ‘Courier italic’.

 Various fields, constructor, and methods of Font class are shown in Table 12.7.
 How would you determine the available fonts on your machine? There is a method,
getAvailableFontFamilyNames(), belonging to the GraphicsEnvironment class for the purpose.
This method returns an array of strings, containing the names of the available font family. One

(Table 12.6 Contd)

Applets 383

more method belonging to the same class is getAllFonts(), which returns an array of font objects
of all the available fonts.
 As mentioned above, these methods belong to GraphicsEnvironment class, so we would need a
reference to this class for calling these methods. There is a static method in GraphicsEnvironment
class, named getLocalGraphicsEnvironment(), which returns this reference. The signature of this
method is follows:
 static GraphicsEnvironment getLocalGraphicsEnvironment()

Example 12.10 clarifies the use of this method. The next question is, how to create and select
a new font? For this, you need to construct a Font object, describing that font. Obviously, one
of the constructors mentioned in Table 12.7 will help in constructing a Font object. Let us talk
about the second constructor of the table, i.e.,

 Font(String name, int style, int size)

Table 12.7 Font Class

Fields of Font class

Field Name Description

BOLD A constant style bold.

CENTER_BASELINE For various similar scripts like Chinese, Japanese, and Korean,
baseline is used.

DIALOG Verifi ed the name of font at compile time in Font construction.

ITALIC Italic style constant.

pointSize The point size of a Font in fl oat type value.

Style Font’s style is passed to a constructor.

TRUETYPE_FONT Checks weather the font resource is of TRUETYPE or not.

ROMAN_BASELINE In Roman scripts, it is used for writing text.

Constructors of Font class

Constructor Name Description

Font(Font font) New Font is created from a specifi ed font.

Font(String name, int style, int size) New Font is created from the specifi c name, style, and point
size.

Methods of Font class

Method Name Description
canDisplay(char c) Checks weather this Font has a glyph for the specifi c character

or not.
canDisplayUpTo(String str) Mentions that this Font can display a specifi ed String or not.
createFont(intfontFormat, File
fontFile)

Using a particular font type and font fi le, it returns a new font.

(Contd)

384 Programming in Java

Method Name Description
createGlyphVector(FontRenderContextf
rc, char[] chars)

Creates a GlyphVector.

decode(String str) A font is retuned.

deriveFont(Affi neTransform trans)
A new font object is created and replaced the current font
object.

equals(Object obj) Comparison between a Font object to the specifi c Object.
Finalize() Disposal of native Font object.
getAttributes() A map of font attributes is returned.
getAvailableAttributes() Keys of attributes supported by font are returned.
getBaselineFor(char c) Baseline is retuned to display character.
getFamily() Family name of this Font is returned.
getFont(String nm) Font object is returned from the system properties list.
getFontName() Font face name is returned of this Font.
getItalicAngle() Italic angle is returned.
getMaxCharBounds
FontRenderContextfrc)

Bounds for a character are returned.

getMissingGlyphCode() glyphCode is returned.
getName() Logical name of Font is returned.
getNumGlyphs() Returns the number of glyphs.
getPSName() Postscript name of this Font is returned.
getSize() Returns the point size of this Font, rounded off to an integer.
getStringBounds(char[] chars,
intbeginIndex, int limit,
FontRenderContextfrc)

Returns the logical bounds of a particular array of characters.

getStyle() Style of a font is returned.
isBold() Indicates style is Bold for this Font object.
isPlain() Indicates style is PLAIN or not of Font object.
isTransformed() The affect of transformation 8 in its size is indicated.
toString() Font object is converted to a String representation.

 Three arguments to this constructor are
  name It specifi es the name of the desired font.
  style It specifi es the style of the desired font, which can be one or more of the three constants,

Font.PLAIN, Font.BOLD, and Font.ITALIC. If you want to combine two styles, you can do it as,
Font.ITALIC !Font.BOLD. It simply means ITALIC and BOLD styles for font.

  size It specifi es the size of the font in points.

(Table 12.7 Contd)

Applets 385

 Once the font is created, setFont() method of component class is used to select it. The signature
of this method is as follows:

 void setFont(Font fontObject)

Here the argument fontObject is the object that contains the desired font.
 If you have a font and you want to get information about that font, getFont() method of
Graphics class will be helpful. It returns the current font. It has the following signature:

 Font getFont()

Once you have obtained the current font, you can easily get the other related information about
the font using the various methods of Font class, like getName(), getStyle(), getSize(),
getFamily(), etc. (for more details, refer to Table 12.7). The following example shows the use
of Color and Font classes.

Example 12.10 Usage of Font and Color Class
 /*<applet code = ColorFont.class width = 600 height = 270></applet>*/
 L1 import java.awt.*;
 L2 public class ColorFont extends java.applet.Applet
 {
 L3 public void init() {
 L4 Color color1 = new Color(230, 220, 0);
 L5 setBackground(color1);
 L6 }
 L7 public void paint(Graphics g) {
 L8 String str = " ";
 L9 String FontList[];
 L10 GraphicsEnvironment ge = GraphicsEnvironment.getLocalGraphicsEnvironment();
 L11 FontList = ge.getAvailableFontFamilyNames();
 L12 for (int i = 0; i<FontList.length; i++) {
 L13 g.drawString("FONTS AVAILABLE ARE:", 5, 30);
 L14 str += FontList[i] + ", ";
 L15 g.drawString(str,5, 50);
 L16 }
 L17 Color color2 = new Color(235, 50, 50);
 L18 g.setColor(color2);
 L19 g.drawString("Hey Look!!!", 5, 180);
 L20 Font currentFont = new Font("TimesRoman", Font.PLAIN, 20);
 L21 g.setFont(currentFont);
 L22 g.drawString("This is an example", 5, 220);
 L23 currentFont=new Font("TimesRoman", Font.ITALIC, 40);
 L24 g.setFont(currentFont);
 L25 g.drawString("You must have understood.....", 5, 260);
 L26 }
 L27 }

Output

The output of the above program shows the available fonts on the machine as well as some
sentences painted, using the Font class, on the applet window:

386 Programming in Java

Fig. 12.11 Output Showing Available Fonts and How to Use Color Class

Explanation
L1 All the required classes of AWT package are
imported.
L2 A class named as ColorFont extending the
Applet class is declared.
L3–6 init() is declared and implemented,
where a reference to the Color class with the name
of color1 is created in L4. The arguments passed
to the constructor, Color(), are responsible for the
output color, which you are seeing in the output
window. These arguments are integer values
signifying red, green, and blue, respectively (in
the range of 0–255). Once the Color object is
created in L5, it is passed to setBackground(),
responsible for setting the background of the applet
window as per the color mix.
L7 The paint() method, with graphics reference
as argument, is declared. This method ends at L26.
L9 An array of String is declared as FontList.
L10 The getLocalGraphicsEnvironment()
method of GraphicsEnvironment class returns the
reference to GraphicsEnvironment, which is stored
in ge.
L11 The getAvailableFontFamilyNames() method,
which returns the array of fonts available on machine,
is called using the reference ge. The resultant array is
stored in array, FontList, declared at L9.

L12–16 In L12, for loop is used to increment the
integer, i, by 1, till it reaches the maximum size of
the array, i.e., the length of the array. Each element
of the array FontList is drawn on the applet surface
using drawstring() (L15).
L17 Another object of the Color class, color2 is
constructed.
L18 Graphics class reference is used to set the
Color to color2, using setColor(). This color is
set for the text to be displayed on the applet.
L19 drawString() is used to display the string,
“Hey Look!!!” on the x and y coordinates specified
as the second and third argument respectively of the
drawString().
L20 Constructor belonging to Font class is
used to construct a Font object, currentFont,
encapsulating font name as ‘Times New Roman’,
Font style as ‘Font.PLAIN’ and font size as 20 (see
the constructor’s arguments).
L21 Reference of Graphics class is used to call
setFont() of component class to set the font to
‘currentFont’.
L22 drawString() is used to display the string
Thisisanexample at the location specified as
arguments of the method.

12.16 FontMetrics CLASS

The font metrics objects are defined by FontMetrics class which extends Object class and
implements Serializable interface. You must be aware with the term ‘metrics’. Its literal

Applets 387

meaning is ‘ a system or standard of measurements’. The java.awt.FontMetrics class is helpful
in determining the measurements associated with characters and strings (group of characters).
The texts can be positioned precisely using these measurements. The following table shows a
few font terminologies.
 The various attributes which contribute to font metrics can be visualized in Fig. 12.12.

Italic angle

I

Ascent

Line
height

Origin

Descent

Advancement Line gap (leading)

Baseline

X-height

Fig. 12.12 Terminologies Used in the FontMetrics Class

 FontMetrics Object
Font metrics are determined by the font and the graphics context. To create a FontMetrics object,
where g is a Graphics object and f is a font object, the following constructor can be used:
 FontMetrics fm = g.getFontMetrics(f);

The object fm is created to find out the height and width information about a specified Font and
specific character glyphs in that Font.

FontMetrics Methods
Table 12.8 provides a brief description of the methods in FontMetrics class.

Table 12.8 Methods of FontMetrics Class

Method Description
bytesWidth(byte[] data, int off, int len) Width to show a specifi c array of bytes in this font is returned.
charsWidth(char[] data, int off, int len) Width to show a specifi c array of character in this font is

returned.
getAscent() Font ascent is determined by it.
getDescent() Font descent is determined by it.

(Contd)

388 Programming in Java

Method Description
getFont() Gets the Font.
getFontRenderContext() Gets the FontRenderContext.
getHeight() Gets the standard height of line of text.
getLeading() Standard leading of the Font described by this FontMetrics

object is determined.
getLineMetrics(char[] chars, int
beginIndex, int limit, Graphics context)

LineMetrics object of a specifi c character array in graphics
context is returned.

getMaxAdvance() To get maximum advance width of a character in this Font.
getMaxAscent() Gets the maximum ascent of font explained by this

FontMetrics object.
getMaxDescent() To get maximum descent of the Font described by this

FontMetrics object.
getStringBounds(char[] chars, int
beginIndex, int limit, Graphics context)

Bounds of the specifi ed array of characters are returned.

getWidths() To get advance widths of the fi rst 256 characters in the Font.
hasUniformLineMetrics() Checks to see if the Font has uniform line metrics.
stringWidth(String str) Total advance width for showing the specifi ed String in this

Font is returned.
toString() Returns a representation of this FontMetrics object’s values

as a String.

Example 12.11 Class Demonstrating FontMetrics Class
 /*<applet code = DemoFontMetrics.class width = 300 height = 300></applet>*/
 L1 import java.awt.*;
 L2 import java.applet.*;
 L3 public class DemoFontMetrics extends Applet {
 L4 public void init() {
 L5 Color color1 = new Color(255, 255, 250);
 L6 setBackground(color1);
 L7 }
 L8 public void paint(Graphics g) {
 L9 int fontSize = 20;
 L10 g.setFont(new Font("TimesRoman", Font.PLAIN,fontSize));
 L11 FontMetrics fm = g.getFontMetrics();
 L12 String s = "Its my Applet";
 L13 int sw = fm.stringWidth(s);
 L14 int w =300;
 L15 int h = 300;
 L16 int x = (w - sw) / 2;
 L17 int baseline = fm.getMaxAscent() + (h - (fm.getAscent() + fm.getMaxDescent()))/2;
 L18 int ascent = fm.getMaxAscent();
 L19 int descent = fm.getMaxDescent();

(Table 12.8 Contd)

Applets 389

 L20 int fontHeight = fm.getMaxAscent() + fm.getMaxDescent();
 L21 g.setColor(Color.pink);
 L22 g.fi llRect(x, baseline-ascent , sw, fontHeight);
 L23 g.setColor(Color.red);
 L24 g.drawLine(x, baseline+descent, x+sw, baseline+descent);
 L25 g.setColor(Color.blue);
 L26 g.drawLine(x, baseline-ascent, x+sw, baseline- ascent);
 L27 g.setColor(Color.black);
 L28 g.drawString(s, x, baseline);
 L29 }
 L30 }

Output

Fig. 12.13 Output Produced Using FontMetrics Class

Explanation
L1–2 The required packages are imported.
L3 A class named DemoFontMetrics extending
the Applet class is declared.
L4 init() method is overridden.
L5 The arguments passed to the constructor,
Color(), are responsible for the output color, which
you are seeing in the output window, in Fig. 12.13.
These arguments are integer values signifying red,
green, and blue colors respectively (in the range of
0–255). Once the Color object is created, in L6, it
is passed to setBackground() method, responsible
for setting the background of the applet window

as per the mixture of colors specified as numbers.
L8 paint() method is defined.
L9 An integer variable named fontSize is
declared.
L10 A method named setFont() is used to set
font and its size.
L11 A FontMetrics object fm is created.
L12 A string is declared.
L13 An integer variables w has been created to
denote the width of string.
L14–15 Two integer variables (w and h) are
declared for positioning of string. w and h actually
denote the width and height of the applet.

390 Programming in Java

L16 x coordinate is calculated by subtracting the
string width from the width of the applet and then
dividing it by 2. This will form the x coordinate of
the string to be printed on the applet.
L17–20 In these lines, we have calculated
baseline, ascent, fontHeight, descent, values
for positioning of string using getMaxAscent(),
getAscent(), and getMaxDescent() methods.

L21–22 It will fill pink color into the specified area.
L23–24 We have drawn a red line below the string
using drawLine() method.
L25–26 We have drawn a blue line above the
String using drawLine() method.
L27–28 drawString() method is called to draw
the string and setColor() is used for setting black
color.

12.17 PRACTICAL PROBLEM: DIGITAL CLOCK

We have already discussed an example of digital clock in Chapter 8. But that was not graphically
impressive, so let us create an applet which displays the current date and time digitally and in
a presentable manner. This applet will use threads, so you will get to know how threads can be
used in applets.

Example 12.12 Digital Clock
 L1 import java.util.*;
 L2 import java.applet.*;
 L3 import java.awt.*;
 L4 import java.text.*;

 L5 /*<applet code=DigitalClock.class width=450 height=100></applet>*/

 L6 public class DigitalClock extends Applet implements Runnable
 {
 L7 Thread t;
 L8 Calendar c;
 L9 Date d;
 L10 DateFormat df;
 L11 public void init()
 {
 L12 t=new Thread(this,"Time Thread");
 L13 t.start();
 L14 df=DateFormat.getInstance();
 }
 L15 public void run()
 {
 L16 for(;;)
 L17 {
 L18 try{
 L19 c=Calendar.getInstance();
 L20 d=c.getTime();
 L21 Thread.sleep(1000);
 }
 L22 catch(Exception e){}
 L23 repaint();
 L24 }
 }
 L25 public void paint(Graphics g)

Applets 391

 {
 L26 g.setFont(new Font("Courier New", Font.ITALIC, 20));
 L27 g.drawString(d.toString(),30,20);
 L28 g.drawString("Different Format " +df.format(d),30,40);
 }
 }

Output

Fig. 12.14

Explanation
L1–4 Imports the required packages: java.
util, java.applet, java.awt, and java.text.
Date and Calendar classes belong to java.util
package; Applet class belongs to java.applet
package, Graphics class is of java.awt package
and DateFormat belongs to java.text package.
L5 The applet html tag (commented) is inserted.
This html statement is commented so that it is
ignored by the complier, as this code does not belong
to Java. This html tag is inserted for running the
applet through the appletviewer utility.
L6 Public class DigitalClock is declared to
inherit the Applet class and Runnable interface.
 All applets have to be publicly defined and they
must be subclasses of the Applet class. In case you
wish to create threads in an applet, it must inherit
the Runnable interface.
L7–10 Instance variables of type Thread, Date,
Calendar, and DateFormat are defined within the
applet. The objects of these types will be used
throughout the DigitalClock applet.
L11–14 init method is defined for the applet.
All one time activities for the Digital clock can
be done here. So we have initialized the Thread
and started it. We have also used the DateFormat
class in our example to specifically show how to
represent the date and time in a different format.

DateFormat is an abstract class so it cannot be
instantiated directly. It is instantiated in L14 using
the getInstance() static method of the DateFormat
class which returns an instance of the DateFormat
class.
L15–24 The run method for the thread is defined
which specifies what the thread is supposed to do.
The method is supposed to extract the current date
and time and set it in the Date object. The current
date and time is extracted using the abstract class
Calendar whose instance is created in L19 using
the static method getInstance() of the Calendar
class. The getTime() method is used on the Calendar
instance to obtain Date object. L21 uses the sleep
method to delay the thread by one second. Even in
case of an exception, the paint() method is invoked
by invoking the repaint() method.
L25–28 All display functionality in an applet lies
within the paint() method, so it is the responsibility
of the paint() method to display date and time
stored in the Date object. L26 uses setFont method
on the Graphics object to set the font and its size.
drawString() is used in L27 to write strings on
the applet at a particular x,y location. The first
argument to this method is the Date object which
displays the string in its standard format (see first
line of the output). L28 shows how to format the date

392 Programming in Java

using the DateFormat object created in L14. The
format() method of the DateFormat class is used to
format the Date object passed to it as an argument.
This method returns a formatted time string which
is passed to the drawString method and hence it
is displayed on the applet (see second line of the

output). The first line of the output display time in a
24 hr format with day of the week and month name.
The second line of the output display Date and Time
in a 12 hr format with AM and PM along with date,
month, and year in numeric format.

Note DigitalClock applet cannot inherit the Thread class because it has already inherited the
Applet class. Therefore Runnable interface is used. (Remember: Java does not support
multiple inheritances among classes)

SUMMARY

EXERCISES

Objective Questions
 1. Which of the following is not a method of an

applet’s lifecycle?
 (a) init (b) start
 (c) sleep (d) stop
 2. Which tool is used to compile an applet?
 (a) java (b) javac
 (c) appletviewer (d) appletc
 3. Which tool is used to execute an applet?
 (a) java (b) javac
 (c) appletviewer (d) appletrunner
 4. Which method implicitly calls paint on an applet?
 (a) paint (b) repaint
 (c) start (d) callPaint

 5. Which class provides the functionality to draw
different shapes?

 (a) Line (b) Graphics
 (c) Shapes (d) Graph
 6. Which method is used to know the directory name

from where the Applet class is loaded?
 (a) getCodeBase()
 (b) getDocumentBase()
 (c) getClassName()
 (d) getAppletLoadClass()
 7. setFont method belongs to which of the following

classes?
 (a) Component (b) Object
 (c) Thread (d) Font

We have explained the meaning and the use of applets
in this chapter. Applets are small programs which can
be downloaded from a remote server in its bytecode
form and executed on the client, to do a specific job.
The differences between applets and applications have
already been listed out.
In Java, applets are discussed in two different

packages. One is the conventional applet, which has
directly evolved from Applet class. These applets use
Abstract Window Toolkit (AWT) to get the GUI features.
Other one uses swings, which we have not taken up
in this chapter. These applets can be executed on the
clients, with the help of either a Java-enabled browser
or a utility known as appletviewer (comes as a part
of JDK). We have discussed many methods belonging
to the Applet class. Applets have a proper life cycle in
which an applet moves from one state to other. These

states of applet life cycle are: Born, Running, Idle, and
Dead. Different methods such as init(), start(),
stop(), and destroy() are respectively called to
force an applet to different state. We have given you
an insight of how to handle images and audio files and
have a basic understanding of graphics.
We have not discussed all the methods of the Applet

class. But of course, we have dealt with many of them
in great detail. By now, you must have got an insight
of the applet programming and the way the methods
are used in applet programming. Now that the building
blocks for applets have been covered in this chapter,
the very essence of applet programming will seem
to be more meaningful when we talk about the GUI
environment presented by ‘Event Handling and AWT’,
in Chapter 13.

Applets 393

 8. Which of the following does the same job as the
paint method?

 (a) init (b) update
 (c) stop (d) destroy
 9. What methods are called as soon as an applet

is loaded?
 (a) init, start, paint (b) init, start
 (c) init (d) start, paint, stop

 10. Which method of the AppletContext interface
enables your applet to transfer the control to any
other URL?

 (a) showPage() (b) showDocument()

 (c) displayDocument() (d) show()

Review Questions
 1. What are applets? Differentiate them from

application.
 2. State the different ways of executing an applet.
 3. What is the signifi cance of Applet class in

creating an applet? Also explain the hierarchy
of Applet class.

 4. Describe the complete life cycle of an applet.
 5. Explain the use of overriding the following

methods for an applet
  init()  start()
  stop()  destroy()
  paint()

 6. Differentiate update() and repaint() methods.
 7. How can a message from a HTML page be

passed to an applet?
 8. Explain the different parameters of APPLET tag.
 9. State the names of the respective classes which

the following methods belong to. Also explain the
use of these methods:

  showStatus()  drawstring ()
  getCodeBase()  getDocumentBase()
  getBackground()  getForeground()
  setBackground()  setForeground()
  getParameter()

Programming Exercises

 1. Write a program that shows a screen shot with
an applet running inside the applet viewer. The
applet should display your name.

 2. Write an applet that places a rectangle, a rounded
rectangle, a 3D rectangle, and a fi ll rectangle
of random sizes and colors inside the applet’s
visible area.

 3. Create an applet having the background color
as black and the foreground color as white.

 4. Write an applet to get the foreground and
background colors of the above applet.

 5. Write a program to display the URL of the
directory containing your .class fi le and .html fi le.

 6. Write an applet that reads an indefi nite number
of strings from PARAM tags and draws them.

 7. Write an applet that draws a circle, a line, an arc,
and a polygon inside the applet’s visible area.

Answers to Objective Questions
 1. (c) 2. (b) 3. (c) 4. (b)
 5. (b) 6. (a) 7. (a) 8. (b)
 9. (a) 10. (b)

 Failure is not a single, cataclysmic event. You don’t fail overnight. Instead, failure is
a few errors in judgment, repeated every day.

 Jim Rohn

After reading this chapter, the readers will be able to
  understand the event delegation model
  understand what are events, sources, and listeners
  know about their event classes and associated listeners
  understand how basic events are handled (in applets)
  learn three ways of event handling: listeners, adapters, and inner classes

13.1 INTRODUCTION

We have learnt about objects and classes in the previous chapters. An object resides in a particular
state until it is made to transit to the other state. This transition occurs due to an event.
 For example, we want an object to invoke a function when an action is generated, e.g.,
pressing a key on the keyboard, moving the mouse, clicking on a button, etc. The object which
generates the event, i.e., the source of the event is known as the event generator. If a button
is pressed for an operation, the button is the event generator. The object that is responsible for
performing the task when the event occurs is called the event handler. There may be more than
one event handlers for one single event generated; each event handler responsible for doing a
unique activity on account of that particular event. Now the question is, how do these handlers
know that a particular event has occurred so that they can perform their activity? For this,
there is a registration process, undertaken by the event object, for each of its event handlers.
This registration involves the event handler simply asking the event generator to inform about
the occurrence of an event. By registering, the event generator is able to keep track of all the
registered event handlers.
 This chapter deals with the event handling mechanism of Java. Without these concepts, it is
impossible to enter into the world of GUI programming.

Event Handling in
Java

1313

Event Handling in Java 395

13.2 EVENT DELEGATION MODEL

Event delegation model is an approach that has been followed since Java 1.0. We will stick to
this model and won’t discuss much about the earlier conventional model. In the event delegation
model, a source generates events which are sent to one or more listeners. The listeners are
responsible for receiving the event, which once received are processed or handled in the way
required. Here the processing logic applied for handling an event is totally segregated by the
logic that generates the event, i.e., the event-generating component can be designed differently
than the event-processing component. Actually the event generating component delegates the
responsibility of performing an event-based action to a separate event-performing component.
The model has three dimensions, namely events, event sources, and event listeners.
 An event is an object that describes a state change in the source. It may be generated directly
because of interaction with the components of GUI environment or any other reason such as
expiry of timer, completion of an operation, etc.
 An eventsource is an object which generates the event. Generation of event must cause a
change in the state of the source. A source can generate more than one event. Event Listeners
are the objects that get notified when an event occurs on an event source.

13.3 java.awt.event PACKAGE

The java.awt.event package provides interfaces and classes for dealing with different types of
events fired by AWT components. The java.awt.AWTEvent class is the root class for all AWT
events. This package includes the definition of events classes, listeners interfaces, and adapters
classes, which form the basics of event handling.

13.3.1 Event Classes
It is very difficult to give the details about all the event classes, which are actually responsible
for defining the various events in Java. In Java, events are associated with AWT and swings. The
events defined by swings are dealt in Chapter 15, while those defined by AWT are described
in this chapter.
 Java has a predefined hierarchy of event-related classes, at the root of which is EventObject.
It is a member of java.util package. This class has constructors and methods defined as its
members. One such constructor is

EventObject(Object src_obj)

where src_obj is the object, which generates the event.

EventObject has methods like getSource() and toString().

  getSource() – returns the source of the event
 toString() – returns the string equivalent of the event

One of the subclass of EventObject class is AWTEvent, which is actually a part of java.awt
package. All the event-based classes in AWT, supporting the event delegation model, is directly
or indirectly subclass of AWTEvent class.

396 Programming in Java

Herein, we will discuss the events defined by AWT. Various possible events in Java are predefined
as classes. Some of the main event classes defined in java.awt.event package are shown in
Table 13.1.

Table 13.1 Event Classes

Event classes Description
ActionEvent Generated when a component-defined action occurred (on button, List, Menu).
AdjustmentEvent When scrollbar is adjusted.
ContainerEvent When an element is added or removed from a container.
FocusEvent When a component gains or loses focus.
KeyEvent When input is received from keyboard.
ComponentEvent When a component is moved, changed size, or changed visibility (also, the

root class for the other component level events).
MouseEvent An event which indicates that a mouse action occurred in a component.
InputEvent The root class for all component-level input events.
TextEvent When an object’s text is changed.
WindowEvent When a window has changed its status.
MouseWheelEvent When a wheel was rotated in a component.

ActionEvent Class
An actionEvent class is defined in Java as
 public class ActionEvent extends AWTEvent

ActionEvent is an event which indicates that a component-defined action has occurred. This event
is generated by a component (such as a Button) when the component-specific action occurs (such
as a click). The event is passed to an ActionListener object which is registered to receive the
event notification using the component’s addActionListener method. The object that inherits
the ActionListener interface is passed to the ActionEvent when an event occurs. Some of the
fields, constructors, and methods associated with the ActionEvent class are given in Table 13.2.

Table 13.2 ActionEvent Class

Field Summary
Field Name Description

ACTION_FIRST The first number in the range of IDs used for action events.
ACTION_LAST The last number in the range of IDs used for action events.
ACTION_PERFORMED This event ID indicates that a meaningful action occurred.
ALT_MASK The alt modifier, an indicator that the alt key was held down during the

event.
CTRL_MASK The control modifier, an indicator that the control key was held down

during the event.

(Contd)

Event Handling in Java 397

Field Name Description
META_MASK The meta modifier, an indicator that the meta key was held down during

the event.
SHIFT_MASK The shift modifier, an indicator that the shift key was held down during

the event.
Constructor Summary

Constructor Name Description
ActionEvent (Object source,
int id, String command)

Generates an ActionEvent object, where source is the object that originated
the event, id is an integer that identifies the event, and command is a string
that may specify a command (possibly one of several) associated with
the event.

ActionEvent (Object source,
int id, String command, int
modifiers)

Generates an ActionEvent object. Here modifiers are the modifier keys
held down during this action.

ActionEvent (Object source,
int id, String command, long
when, int modifiers)

Generates an ActionEvent object with the specified modifier keys and
timestamp. Here when is the time the event occurred and modifiers are
the modifier keys held down during this action.

Method Summary
Method Name Description

String getActionCommand() Returns the command string associated with this action.
long getWhen() Returns the timestamp of the event that occurred.
int getModifiers() Returns the modifier keys held down during this action event.
String paramString() Returns a parameter string identifying this action event.

 AdjustmentEvent Class
AdjustmentEvent class is defined in Java as,
 public class AdjustmentEvent extends AWTEvent

The adjustment events are generated by adjustable objects like scroll bar. There are some
adjustment events defined by AdjustmentEvent class, identified by corresponding integer
constants. These constants and their meanings are shown in Table 13.3. It also enlists the
constructor and methods of AdjustmentEvent class.

Table 13.3 AdjustmentEvent Class

Field Summary
Field Name Description

ADJUSTMENT_FIRST Marks the first integer id for the range of adjustment event ids.
ADJUSTMENT_LAST Marks the last integer id for the range of adjustment event ids.
ADJUSTMENT_VALUE_CHANGED The adjustment value changed event.

(Table 13.2 Contd)

(Contd)

398 Programming in Java

Field Name Description
BLOCK_DECREMENT The block decrement adjustment type.
BLOCK_INCREMENT The block increment adjustment type.
TRACK The absolute tracking adjustment type.
UNIT_DECREMENT The unit decrement adjustment type.
UNIT_INCREMENT The unit increment adjustment type.

Method Summary
Method Name Description

Adjustable getAdjustable() Returns the adjustable object where this event originated.
int getAdjustmentType() Returns the type of adjustment which caused the value changed event. It

will have one of the following values:
UNIT_INCREMENT, UNIT_DECREMENT, BLOCK_INCREMENT,
BLOCK_DECREMENT, TRACK

int getValue() Returns the current value in the adjustment event.
boolean getValueIsAdjusting() Returns true if this is one of multiple adjustment events.
String paramString() Returns a string representing the state of the event.

Constructor Summary
Constructor Name Description

AdjustmentEvent(Adjustable
source, int id, int type,
int value)

Constructs an AdjustmentEvent object with the specified adjustable
source, event type, adjustment type, and value.

AdjustmentEvent(Adjustable
source, int id, int type, int
value, boolean isAdjusting)

Constructs an AdjustmentEvent object with the specified adjustable
source, event type, adjustment type, and value.

 KeyEvent Class
This class is defined in Java as,
 public class KeyEvent extends InputEvent

This low-level event is generated by a component object (such as a text field, Applet, frame)
when a key is pressed, released, or typed. The event is passed to a KeyListener object which
is registered to receive the event notification using the component’s addKeyListener method.
 KeyEvent is an event which indicates that a keystroke occurred in a component. There can be
three types of key events, which are identified by integer constants. These are

  KEY_PRESSED (it is generated when any key is pressed)
  KEY_TYPED (it is generated if a valid unicode character could be generated)
  KEY_RELEASED (it is generated when any key is released)

There are some more integer constants that are defined in KeyEvent. Table 13.4 shows a few of
them. All fields of this class are public static and final. It also lists the constructors and methods
of the keyEvent class.

(Table 13.3 Contd)

Event Handling in Java 399

The list is very long and we are unable to incorporate the complete exhaustive list here. Apart
from the constants shown in Table 13.4, we have integer constants such as, VK_0 through VK_9,
VK_A through VK_Z, VK_ALT, VK_Cancel, VK_SHIFT, VK_PAGE_DOWN, VK_ENTER,
VK_ESCAPE, VK_CONTROL, etc., as members of the KeyEvent class.

Table 13.4 KeyEvent Class

Field Summary
Field Name Description

char CHAR_UNDEFINED KEY_PRESSED and KEY_RELEASED events which do not map to a valid Unicode
character use this for the keyChar value.

int KEY_FIRST Denotes the first number in the range of ids used for key events.
int KEY_LAST Denotes the last number in the range of ids used for key events.
int KEY_LOCATION_LEFT A constant indicating that the key pressed or released is in the left key location

(there is more than one possible location for this key).
int KEY_LOCATION_NUMPAD A constant indicating that the key event originated on the numeric keypad or

with a virtual key corresponding to the numeric keypad.
int KEY_LOCATION_RIGHT A constant indicating that the key pressed or released is in the right key

location (there is more than one possible location for this key).
int KEY_LOCATION_
STANDARD

A constant indicating that the key pressed or released is not distinguished as
the left or right version of a key, and did not originate on the numeric keypad
(or did not originate with a virtual key corresponding to the numeric keypad).

int KEY_LOCATION_UNKNOWN A constant indicating that the keyLocation is indeterminate or not relevant.
int VK_ACCEPT Constant for the Accept or Commit function key.
int VK_ALL_CANDIDATES Constant for the All Candidates function key.
int VK_ALPHANUMERIC Constant for the Alphanumeric function key.
int VK_COMMA Constant for the comma key, “,”
int VK_COMPOSE Constant for the Compose function key.
int VK_CONTEXT_MENU Constant for the Microsoft Windows Context Menu key.
int VK_WINDOWS Constant for the Microsoft Windows “Windows” key.

Constructor Summary
Constructor Name Description

KeyEvent (Component
source, int id, long
when, int modifiers, int
keyCode, char keyChar)

Constructs a KeyEvent object, where
 Source—the component that originated the event.
 Id—an integer identifying the type of event.

 When—a long integer that specifies the time the event occurred.
 Modifiers—the modifier keys down during event (shift, ctrl, alt, meta) Either

extended _DOWN_MASK or old _MASK modifiers should be used, but
both models should not be mixed in one event.

(Contd)

400 Programming in Java

Constructor Name Description
 KeyCode—the integer code for an actual key, or VK_UNDEFINED (for a

key-typed event).
 KeyChar—the Unicode character generated by this event, or CHAR_

UNDEFINED (for key-pressed and key-released events which do not map to
a valid unicode character).

Method Summary
Method Name Description

char getKeyChar() Returns the character associated with the key in this event. If no valid character
is available, then it returns CHAR_UNDEFINED.

int getKeyCode() Gets the integer code associated with the key.
int getKeyLocation() Returns the location of the key that originated this key event.
static String
getKeyModifiersText(int
modifiers)

Returns a string describing the modifier key(s), such as “Shift”, or
“Ctrl+Shift”.

static String
getKeyText(int keyCode)

Returns a string describing the keyCode, such as “HOME”, “F1” or “A”.

boolean isActionKey() Returns whether the key in this event is an “action” key.
String paramString() Returns a string identifying this event.
void setKeyChar(char
keyChar)

Sets the keyChar value to indicate a logical character where keyChar is a char
corresponding to the combination of keystrokes that make up this event.

void setKeyCode(int
keyCode)

Sets the keyCode value to indicate a physical key, where keyCode is an integer
corresponding to an actual key on the keyboard.

 MouseEvent Class
MouseEvent class is defined in Java as,
 public class MouseEvent extends InputEvent

It is an event which indicates that a mouse action occurred in a component. A mouse action
occurs in a particular component if and only if the mouse cursor is over the defined part of the
component’s bounds when the action happens.
 There are eight types of mouse events defined in the MouseEvent class. The MouseEvent class
defines them as public static integer constants to identify each of these events. These are shown
in Table 13.5. It also shows the constructor and methods of MouseEvent class.

Table 13.5 MouseEvent Class

Field Summary
Field Summary Description

MOUSE_MOVED Event occurs when mouse wheel is moved.

(Table 13.4 Contd)

(Contd)

Event Handling in Java 401

Field Summary Description
MOUSE_PRESSED Event occurs when a mouse button is pushed down.
MOUSE_RELEASED Event occurs when a mouse button is released.
MOUSE_CLICKED Event occurs when a mouse button is pressed and released.
MOUSE_DRAGGED Event occurs when the mouse is dragged.
MOUSE_ENTERED Event when the mouse enters a component.
MOUSE_EXITED Event occurs when the mouse exits a component.
MOUSE_WHEEL Event occurs when the mouse wheel is moved.

Constructor Summary
Constructor Name Description

MouseEvent(Component
source, int id, long when,
int modifiers, int x, int
y, int clickCount,boolean
popupTrigger)

Constructs a MouseEvent object with the specified source component,
type, modifiers, coordinates, and click count.

MouseEvent(Component
source, int id, long
when, int modifiers, int
x, int y, int xAbs, int
yAbs, int clickCount,
boolean popupTrigger, int
button)

Constructs a MouseEvent object with the specified source component, type,
modifiers, coordinates, absolute coordinates, and click count.

Method Summary
Method Name Description

int getButton() Returns which, if any, of the mouse buttons has caused the event.
int getClickCount() Gets the number of mouse clicks.
Point
getLocationOnScreen()

Returns the absolute x, y position of the event.

static String
getMouseModifiersText
(int modifiers)

Returns a string describing the modifier keys and mouse buttons that were
down during the event, such as “Shift”, or “Ctrl+Shift”.

Point getPoint() Gets the x and y position of the event relative to the source component.
int getX() Gets the horizontal position of the event relative to the source component.
int getXOnScreen() Returns the absolute horizontal x position of the event.
int getY() Gets the vertical position of the event relative to the source component.
int getYOnScreen() Returns the absolute vertical y position of the event.
boolean isPopupTrigger() Returns whether this mouse event is the popup menu trigger event or not.
String paramString() Returns a string identifying this event.
void translatePoint (int
x, int y)

Translates the event’s coordinates to a new position by adding specified x
(horizontal) and y (vertical) offsets.

(Table 13.5 Contd)

402 Programming in Java

 FocusEvent Class
FocusEvent class is defi ned as,
 public class FocusEvent extends ComponentEvent

This event is generated when a component gains or loses focus. There are two types of focus
events: permanent and temporary. Permanent focus event occurs when the user explicitly changes
focus from one component to other, e.g., by pressing the tab key. Temporary focus event occurs
when the focus is lost due to operations like window being deactivated. In this case, when the
window will again be activated, the focus will be on the same component. The fields, constructors,
and methods of FocusEvent class are shown in Table 13.6. All the fields of FocusEvent class are
public static integer constants.

Table 13.6 FocusEvent Class

Field Summary
 Fields Name Description
FOCUS_FIRST First to gain focus.
FOCUS_LAST Last to gain focus.
FOCUS_GAINED Component focus gained.
FOCUS_LOST Component focus lost.

Constructor Summary
Constructor Name Description

FocusEvent(Component src, int id) Creates a FocusEvent object with src specifying the source of
event and id is like FOCUS_GAINED or FOCUS_LOST.

FocusEvent(Component src, int id,
boolean temp)

In addition to the above constructor, temp identifies change is
temporary or not.

FocusEvent(Component src, int id,
boolean temp, Component opp)

In addition to the above, opp identifies the other component
involved in change.

Method Summary
Methods Name Description

Component getOppositeComponent() Return the component that either got focus or lost focus.
boolean isTemporary() Tells whether event is temporary or permanent.
String paramString() Returns a string identifying the event.

 ItemEvent Class
ItemEvent class is defined as,
 public class ItemEvent extends AWTEvent

It is an event which shows whether an item was selected or de-selected. This event is generated
by an ItemSelectable object (such as a list), where the event is generated when an item of
the list is either selected or de-selected. The event generated is passed to every ItemListener
object which is registered to receive such events. The method addItemListener() is used for
this registration process. The fields, constructors, and methods of ItemEvent class are shown
in Table 13.7. All fields of this class are public static integer constants.

Event Handling in Java 403

Table 13.7 ItemEvent Class

Field Summary
 Field Name Particulars
DESELECTED This state-change-value indicates that a selected item was

de-selected.
ITEM_FIRST The first number in the range of ids used for item events.
ITEM_LAST The last number in the range of ids used for item events.
ITEM_STATE_CHANGED This event id indicates that an item’s state changed.
SELECTED This state-change value indicates that an item was selected.

Constructor Summary
ItemEvent(ItemSelectable source,
int id,Object item, int stateChange)

Constructs an ItemEvent object.

Method Summary
 Method Name Particulars
Object getItem() This state-change-value indicates that a selected item was

de-selected.
ItemSelectable getItemSelectable() This first number in the range of ids used for item events.
int getStateChange() The last number in the range of ids used for item events.
String paramString() This event id indicates that an item’s state changed.

 TextEvent Class
TextEvent class is defined as,
 public class TextEvent extends AWTEvent

This event indicates the change in the object’s text. This event is generated by an object (such as a
TextComponent) whenever its text changes. The event is passed to every TextListener object which
is registered to receive such events. The method addTextListener() is used for this registration
process. The fields, constructor, and methods of TextEvent class are shown in Table 13.8.

Table 13.8 TextEvent Class

Field Summary
 Field Name Particulars
TEXT_FIRST The first number in the range of ids used for text events.
TEXT_LAST The last number in the range of ids used for text events.
TEXT_VALUE_CHANGED This event id indicates that object’s text changed.

Constructor Summary
Constructor Name Particulars

TextEvent(Object source, int id) Constructs a TextEvent object.
Methods Summary

Method Name Particulars
String paramString () Returns a parameter string identifying this text event.

404 Programming in Java

13.4 SOURCES OF EVENTS

Sources of events can be either components of GUI or any other class derived from a component
(such as an applet), which can generate event like events from keyboard and mouse. Some of
the components of GUI are given in Table 13.9.

Table 13.9 Components of GUI that Can Generate Events

 Button Choice Menu item

Check box List Window
Scroll bar Text components

The classes pertaining to these GUI components will be discussed in detail in Chapter 14 (AWT).

13.5 EVENT LISTENERS

 Event listeners are created by implementing one or more interfaces defined by the java.awt.
event package. Whenever a source generates an event, it basically invokes the appropriate
method defined in the listener interface. The method has an event object passed as an argument
to it. Some of the frequently used listeners are given in Table 13.10.

Table 13.10 List of Event Listeners

KeyListener ItemListener WindowListener

MouseListener ActionListener ComponentListener

MouseMotionListener TextListener ContainerListener

MouseWheelListener FocusListener AdjustmentListener

Each of these listener interfaces have certain number of methods, which are given in brief below.

 KeyListener Interface
This interface has three methods defined within it:

  void keyPressed(KeyEvent e)
  void keyReleased(KeyEvent e)
  void keyTyped(KeyEvent e)
keyPressed() is invoked when a key is pressed, keyReleased() is invoked when a key is released,
and keyTyped() is invoked when a character is typed.

 MouseListener Interface
This interface has five methods, having the signatures as follows:

  void mouseClicked(MouseEvent e)
  void mouseEntered(MouseEvent e)
  void mousePressed(MouseEvent e)
  void mouseReleased(MouseEvent e)
  void mouseExited(MouseEvent e)

Event Handling in Java 405

mouseClicked() is invoked when a mouse is clicked, mouseEntered() is invoked when mouse
enters a component, mousePresssed() is invoked when a mouse is pressed but not released,
mouseReleased() is invoked when a pressed mouse is released, and mouseExited() is invoked
when the mouse leaves a component.

 MouseMotionListener Interface
This interface has two methods having the signatures,

  void mouseMoved(MouseEvent e)
  void mouseDragged(MouseEvent e)
mouseMoved() is invoked when the mouse is moved from one place to another and mouseDragged()
is used when the mouse is dragged.

 MouseWheelListener Interface
This interface has only one method, having the signature,

  void mouseWheelmoved(MouseEvent e)
mouseWheelMoved() is invoked when the mouse wheel is moved.

 ItemListener Interface
This interface has only one method defined as,

  void itemStateChanged(ItemEvent e)
itemStateChanged() is invoked when the state of the item changes.

 ActionListener Interface
This interface has only one method having the signature,

  void actionPerformed(ActionEvent e)
The method, actionPerformed() is invoked when any action event is performed.

 TextListener Interface
This interface has only one method having the signature,

  void textChanged(TextEvent e)
This method is invoked whenever there is a change in text field or text area.

 FocusListener Interface
This interface has two methods,

  void focusGained(FocusEvent e)
  void focusLost(FocusEvent e)
focusGained() is invoked when the component obtains keyboard focus and focusLost() is
invoked when the component loses the keyboard focus.

 WindowListener Interface
This interface has seven methods defined in it, with the following signatures:

  void windowActivated(WindowEvent e)
  void windowClosed(WindowEvent e)

406 Programming in Java

  void windowClosing(WindowEvent e)
  void windowOpened(WindowEvent e)
  void windowDeactivated(WindowEvent e)
  void windowIconified(WindowEvent e)
  void windowDeiconified(WindowEvent e)
windowActivated() is invoked when window is activated, windowDeactivated() is invoked when
the window is deactivated, windowClosed() is invoked when the window is closed, windowOpened()
is invoked when the window is opened, windowClosing() is invoked when the window is
being closed, windowIconified() is invoked when the window is iconified (minimized), and
windowDeiconified() is invoked when the state of the window changes from minimized to normal state.

 ComponentListener Interface
This interface has four methods, having the signatures as follows:

 void componentResized(ComponentEvent e)

 void componentMoved(ComponentEvent e)

 void componentHidden(ComponentEvent e)

 void componentShown(ComponentEvent e)

componetResized()is invoked when the size of the component is altered, componentMoved() is
invoked when the component is moved, componentHidden() is invoked when the component is
hidden, and componentShown() is invoked when the component is shown.

 ContainerListener Interface
This interface has two methods defined in it. They are

 void componentAdded(ContainerEvent e)

 void componentRemoved(ContainerEvent e)

Both of the above methods, componentAdded() is invoked when a component is added to the
container and componentRemoved() is invoked when a component is removed from the container.

 AdjustmentListener Interface
The interface has only one method, defined as

  void adjustmentValueChanged(AdjustmentEvent e)
The method is invoked when an adjustment event occurs.

13.6 HOW DOES THE MODEL WORK?

Each source, generating the events must register event listeners to itself, so that listeners get
the license for receiving the events from the respective source. Now how does this registration
process take place? In Java, all the possible events have been given a name. Each type of event
has its own registration method, having the form,
 public void addTypeListeners(TypeListenertl)

In the above method, Type is the type of the event and tl is the reference to the event listener for
that particular event. Different types of event listeners available in Java can be seen in Table 13.10.

Event Handling in Java 407

 Some sources allow more than one listener to get registered to receive the event, while some
allow only one listener to get registered to receive the event. Former is the case of multicasting
an event while the latter is unicasting an event.
 These listeners, once registered for events from a particular source, can get unregistered also.
The form of method used for this unregistration process is as follows:
 public void removeTypeListener(TypeListernertl)

Once the listener objects are registered, they must implement the methods to receive and process
the event notifications sent by source. These methods are defined in various interfaces of
java.awt.event package.
 Steps involved in using the event delegation model:

 1. Implement the appropriate event listener interface so as to receive and process the type
of event desired.

 2. Register event listener with event source, as the recipient for event notification using
the registration methods which have the following form:

 addTypeListner(TypeListener)

Note If the component generates more than one event, then each event needs to be registered
separately. An object may be registered to receive several types of events, but it must also
implement all the interfaces that are required to receive these events.

Let us take an example to show how listener interfaces are used for handling events. The following
example shows how MouseMotionListener can be used to track mouse movements.

Example 13.1(a) Use of MouseMotionListener
 /*<applet code = "MouseMotionEx.class" width = 300 height = 300></applet>*/
 L1 import java.awt.*;
 L2 import java.applet.*;
 L3 import java.awt.event.*;
 L4 public class MouseMotionEx extends Applet implements MouseMotionListener {
 L5 int xcord;
 L6 int ycord;
 L7 public void init(){
 L8 addMouseMotionListener(this);
 L9 }
 L10 public void paint(Graphics g){
 L11 g.drawString("("+xcord+","+ycord+")",xcord,ycord);
 L12 }
 L13 public void mouseMoved(MouseEvent me){
 L14 xcord = me.getX();
 L15 ycord = me.getY();
 L16 repaint();
 L17 }
 L18 public void mouseDragged(MouseEvent me){}
 L19 }

408 Programming in Java

Output

Fig. 13.1 x and y Coordinates Using MouseMotionListener

Explanation

L1–3 All the required packages are imported, so
that their members can be used inside the program.
L4 Handler class with the name MouseMotionEx
declared. This class extends Applet class and
implements the MouseMotionListener so that it can
receive the type of event desired.
L5–6 Instance variables, xcord and ycord, to
store the value of x-coordinate and y-coordinate are
declared to be of integer type.
L7–9 Inside init() method of applet, the
MouseMotionListener is registered as the recipient
of the event notification.
L8 The MouseMotionListener have been
registered on the Applet itself (event source).
The question arises: Why is ‘this’ passed as
an argument to add MouseListener method?
Because the MouseMotionEx has implemented
MouseMotionListener interface and overrides the
methods of the interface, the current object will tell
how to handle the event once the mouse is moved
or dragged. So ‘this’ (current object) is passed as
an argument to addMouseMotionListener method.
[We can also create another class (e.g., Demo)
which would implement MousemotionListener

interface. This class would override the methods
of MouseMotionListener interface and now
this classes object will be passed in registration
method: addMouseMotionListener (new Demo()).
Note now MouseMotionEx will not inherit the
MouseMotionListener interface. Example 13.1(a)
shows this concept.]
L10–12 paint() is defined and implemented,
where the drawstring() method of the graphics
class is used to display the string at x and y
coordinates. The string here is the value of x and y
coordinates inside parenthesis.
L13–17 mouseMoved() defined in MouseMotion-
Listener interface is implemented. This method
actually takes care of the action to be performed on
a mouse event (see the MouseEvent object being
passed as argument to the method in L13). Instance
variables, xcord and ycord, declared earlier as in-
tegers are used to store the values of x-coordinate
and y-coordinate returned by the getX() and getY()
methods of MouseEvent, respectively (L14 and L15).
In L16, repaint()is called, which ultimately calls
the paint method.

We can rewrite Example 13.1(a) as follows to show how another class object can be used to
process the events.

Event Handling in Java 409

Example 13.1(b) MouseMotionListener

 /* <applet code = "MouseMotionEx.class" width = 700 height = 700>
 </applet> */
 import java.awt.*;
 import java.applet.*;
 import java.awt.event.*;
 public class MouseMotionEx extends Applet
 {
 int xcord;
 int ycord;
 public void init()
 {
 addMouseMotionListener (new Demo(this));
 }
 public void paint (Graphics g)
 {
 g.drawString ("("+xcord +", "+ycord+")", xcord,ycord);
 }
 }
 class Demo implements MouseMotionListener {
 MouseMotionEx m;

 Demo(MouseMotionEx m)
 {
 this.m=m;
 }
 public void mouseMoved(MouseEvent me) {
 m.xcord = me.getX();
 m.ycord = me.getY();
 m.repaint();
 }
 public void mouseDragged(MouseEvent me){}
 }

Explanation

One important thing to note is that while Demo’s
objects have been registered for event notification,
the current object (i.e., MouseMotionEx object) has
been passed to the Demo object. The reason is we
need to paint the applet (i.e., MouseMotionEx object)
based on mouse movement which are being tracked
by demo’s object now. The coordinates of MouseMo-

tionEx need to be set based on mouse movements
and later MouseMotionEx needs to be repainted. So
we need a reference to MouseMotionEx to perform
this task and that’s why the object of MouseMotionEx
(represented by this keyword) has been passed in
Demo’s constructor.

410 Programming in Java

13.7 ADAPTER CLASSES

An interface holds only abstract methods and its implementation requires all its methods to be
implemented, i.e., overridden with real methods in the implementing class. This is true for listener
interfaces also; if you are implementing a particular listener interface, you have to implement
all the methods defined in that interface. This can really be annoying at times, where you must
also implement all those methods of the listener interface, which might not actually be used. In
order to simplify things, Java came up with the concept of adapter classes.
 For listener interfaces containing more than one event handling methods, JDK defines
corresponding adapter classes. For example, for MouseMotionListener interface, there is an adapter
class, MouseMotionAdapter. Adapter classes provide empty definitions for all the methods of their
corresponding listener interface. It means that MouseMotionAdapter class inherently implements
MouseMotionListener interface.
 So how would the MouseMotionListener interface be defined by Java? As we know, this
interface has two methods defined as follows:

 public interface MouseMotionListener {
 public void mouseDragged (MouseEvent e);
 public void mouseMoved (MouseEvent e);
 }

The corresponding adapter class, i.e., MouseMotionAdapter is predefined in Java as follows:

 public class MouseMotionAdapter implements MouseMotionListener {
 public void mouseDragged (MouseEvent e) { }
 public void mouseMoved (MouseEvent e) { }
 }

See the empty curly braces for the above two methods, which simply show the body of the
methods to be empty.

13.7.1 How to Use Adapter Classes?
If you are not using adapter classes, your event handler class needs to implement listener
interface as,
 public class HandlerClass implements MouseMotionListener
 {
 ………………………………………………
 ………………………………………………
 ……………………………………………
 }

And as mentioned earlier, the handler class, which is here named as HandlerClass has to implement
all the methods inside that MouseMotionListener (as shown in Example 13.1 (a)).
 Now if you use the adapter class, the handler class will inherit from adapter class by extending it.

Event Handling in Java 411

 public class HandlerClass extends MouseMotionAdapter
 {
 …………………………………………
 …………………………………………
 …………………………………………
 }

 Due to inheritance, all the methods of the MouseMotionAdapter class will be available inside
our HandlerClass. As the adapter classes have already provided definitions with empty bodies,
you do not have to provide implementations for all the methods again. It simply means we only
need to override our methods of interest. Let us take Example 13.1(a) where we had to override
all the methods of MouseMotionListener within the handler class. But in order to achieve the
same objective as in Example 13.1(a), we now show the use of adapter classes and how its use
makes things simpler in writing the code. Note that in the following adapter class example, it
is not mandatory to override all the methods of MouseMotionlistener; only the method (here,
mouseMoved()) is overridden.

Example 13.2 Use of MouseMotionAdapter

 /*<applet code = "AdapterDemo.class" width = 300 height = 300></applet>*/

 L1 import java.awt.*;

 L2 import java.awt.event.*;

 L3 import java.applet.*;

 L4 public class AdapterDemo extends Applet{

 L5 int xcord, ycord;

 L6 public void init(){

 L7 addMouseMotionListener(new MouseDemo(this));

 L8 }

 L9 public void paint(Graphics g){

 L10 g.drawString("("+xcord+","+ycord+")",xcord,ycord);

 L11 }

 L12 }

 L13 class MouseDemo extends MouseMotionAdapter{

 L14 AdapterDemo d;

 L15 MouseDemo(AdapterDemo d){

 L16 this.d = d;

 L17 }

 L18 public void mouseMoved(MouseEvent me){

 L19 d.xcord = me.getX();

 L20 d.ycord = me.getY();

 L21 d.repaint();

 L22 }}

412 Programming in Java

Output

Fig. 13.2 Applet Showing Mouse Coordinates

Explanation
L6–8 Applet’s init() method is implemented,
where in MouseMotionListener is registered. An
interesting thing which is to be noted here is the
method of registration. See the argument passed
through the method of registration in L7. Till the
last example we passed the current class’s object
to this method. But here, we pass the object of
the current class (AdapterDemo) to the constructor
of the class extending the adapter class (i.e.,
MouseDemo) and ultimately the object of the class
extending the adapter class is passed as an argument
to the addMouseMotionListener() (L7), used
for registering the MouseMotionListener as the
recipient of mouse event notifications. All this is
done, so that the methods of different classes can
communicate with each other through their objects.
L9–11 Graphics object is used to call the draw-
String() method inside paint method to display the
values of x-coordinate and y-coordinate.

L12 The end of the class AdapterDemo specified
by closing parenthesis.
L13 Class MouseDemo, extending MouseMotion-
Adapter is declared.
L14 A reference to AdapterDemoclass is created.
L15–17 A constructor of MouseDemo is declared and
object of AdapterDemo class is passed as an argument
to this constructor (L15). The member of the object
constructed by the constructor is initialized with the
object of class AdapterDemo (L16).
L18–22 The mouseMoved() method with Mou-
seEvent object as argument is defined and imple-
mented. MouseEvent object is used to call the getX()
and getY() methods in L19 and 20, respectively.
getX() returns the value of x-coordinate and getY()
returns the value of y-coordinate. In L16, repaint()
of the Applet class is called using the reference of
class AdapterDemo, which extends the Applet class.
Calling repaint() will call the paint()method
elaborated in L9 and L10.

13.7.2 Adapter Classes in Java
These adapter classes are members of java.awt.event package. There is an adapter class for
eight listener interfaces. These are as listed in Table 13.11.

Event Handling in Java 413

Table 13.11 Adapter Classes Belonging to java.awt.event

Listener Adapter Classes Registration Methods
ComponentListener ComponentAdapter addComponentListener
ContainerListener ContainerAdapter addContainerListener
FocusListener FocusAdapter addFocusListener
HierarchyBoundsListener HierarchyBoundsAdapter addHierarchyBoundsListener
KeyListener KeyAdapter addKeyListener
MouseListener MouseAdapter addMouseListener
MouseMotionListener MouseMotionAdapter addMouseMotionListener
WindowListener WindowAdapter addWindowListener

13.8 INNER CLASSES IN EVENT HANDLING

An inner class can be defined and instantiated all inside a class, or even within an expression.
 Why are we discussing inner classes in the chapter related to event handling? Actually the
event delegation model allows you to make any class into a listener for your events. We can use
the concept of inner class in the event handling model by putting the listener class definition
adjacent to the code for the component that uses the listener.
 There can be three categories of inner classes: member classes, local classes, and anonymous
classes.

Member Classes
These classes are included in the class definition just like fields and methods. A member class
can either be static or instance.
 Static Member Class A member class can be static with access only to the static members of
the class to which it belongs.
 Instance Member Class A member class can be instance with access to both the static and
instance members of the class that contains it. Example 13.3 shows how to define an inner class
inside a class.

Local Classes
A local class is defined within a code block, typically in a method. An instance of a local class
exists only during the execution of the method.
 We have already discussed inner classes is detail in Chapter 4.

Example 13.3 Use of Member Inner Class
 /*<applet code = OuterClass.class width = 600 height = 600></applet>*/
 L1 import java.awt.*;
 L2 import java.applet.*;
 L3 import java.awt.event.*;
 L4 public class OuterClass extends Applet {
 L5 public void init(){

414 Programming in Java

 L6 addKeyListener(new InnerClass());
 L7 }
 L8 class InnerClass extends KeyAdapter {
 L9 public void keyPressed(KeyEvent ke){
 L10 showStatus("key Pressed");
 L11 }
 L12 public void keyReleased(KeyEvent ke){
 L13 showStatus("key Released");
 L14 }
 L15 }
 L16 }

Explanation
L4 A class named as OuterClass, inherits the
Applet class.
L5–7 Applet’s init() method is implemented,
where the addKeyListener() method is used for
registering the KeyListener to get the key events.
Object of the inner class InnerClass is passed as
argument to the registration method (L6).
L8–15 Inner class with the name InnerClass is
defined to extend the adapter class KeyAdapter (L8).
Note that this inner class is part of the outer class
itself. Inside this inner class two of the three methods,
keyPressed() and keyReleased() belonging to

KeyListener interface is implemented (L9 and L12,
respectively). Using adapter classes, KeyAdapter
eliminates the compulsion of implementing all
the methods belonging to KeyListener interface.
The showStatus() is used at L10 and L13 in two
different methods; whatever has been passed as an
argument to the showStatus() will be displayed
in the status window of the applet. Closing
parenthesis at L15 signifies the end of the inner
class, ‘InnerClass’.
L16 It signifies the end of the outer class,
‘OuterClass’.

Note What is magical here is that the compiler will just separate out these inner classes and create
separate class files for them. The names of these inner class files will be preceded with the
outer class name. You can check it simply by finding the following class file in the directory,
once you compile the above code.

OuterClass$1InnerClass.class

 Anonymous Inner Classes
An anonymous inner class is one that is not assigned a name. In the example below we have
declared an anonymous inner class as an argument to a method. Such classes are created on the
fly i.e., they are created, instantiated, used, and garbage collected when they are done. They are
automatically assigned a name as Outerclassname$1.
 This anonymity helps in eliminating the unnecessary named objects. Besides, it makes the
program more readable.
 In the code below, an anonymous inner class is created as an argument to addKeyListener
method for capturing key events. On press of any key, the status bar displays “Key Pressed”

Event Handling in Java 415

and on the release of that key, the status bar displays “Key Released”. Example 13.4 has been
rewritten to show how anonymous inner classes can be used.

Example 13.4 Use of Anonymous Inner Class
 /*<applet code ="AnonyKeyListDemo.class" width = 300 height = 300></applet>*/
 L1 import java.awt.*;
 L2 import java.awt.event.*;
 L3 import java.applet.*;
 L4 public class AnonyKeyListDemo extends Applet {
 L5 public void init(){
 L6 addKeyListener(new KeyAdapter(){
 L7 public void keyPressed(KeyEvent ke){
 L8 showStatus("Key Pressed");
 L9 }
 L10 public void keyReleased(KeyEvent me){
 L11 showStatus("Key Released");
 L12 }
 L13 });
 L14 }}

Output

 Fig. 13.3 Key Pressed Event Fig. 13.4 Key Released Event

Explanation
The most surprising code in the program is from
L6 to L13
addKeyListener(new KeyAdapter (){
public void keyPressed(KeyEvent ke){
 showStatus("Key Pressed");
}
public void keyReleased(KeyEvent me){
 showStatus("Key Released");
}
});

L6 The anonymous class is defined as an
argument to the addKeyListener method. This
anonymous class will inherit from KeyAdapter
class and will have two methods keyPressed and
keyReleased defined inside the enclosing braces.
keyPressed method is executed when any key is
pressed as shown in Fig. 13.3 and keyReleased
method is called as shown in Fig. 13.4.

416 Programming in Java

13.9 PRACTICAL PROBLEM: CARTOON APPLET

We will be creating a series of examples with revisions in all of them to enhance the functionality
and then eliminate the problems in them. We will begin by creating a cartoon, one having eyes,
ears, and a red nose with a black cap on his head.

13.9.1 Smiling Cartoon with Blinking Eyes (Part 1)
In the first version, if a user places the mouse pointer on the nose of the cartoon and presses the
mouse button, the eyes of the cartoon turns green and the cartoon laughs with its mouth wide
open. If the user presses the mouse button anywhere else, the cartoon’s default smiling face
(black eyes, ear, and a red nose) is shown.
 The drawArc method of the Graphics class is used to create the smile on the cartoons face.
This method accepts six arguments: x coordinate, y coordinate, width of the arc, height of the
arc, beginning angle, and the extent of the arc relative to the beginning angle. The first four are
simple to understand. Let us focus on the beginning angle and the angular extent. If a positive
value for the angular extent is specified, then the arc is drawn in counter-clockwise direction
from the beginning angle. If a negative value is specified, then the arc is drawn in clockwise
direction from the beginning angle. If the beginning angle is specified as 180, then the arc starts
from 180° as shown in Fig. 13.5. In addition to that, if you specify the angular extent as 180,
then the arc is drawn in counter-clockwise direction starting from the beginning angle and goes
up to additional 180° in the counter-clockwise direction.

Fig. 13.5 Smiling Arc

 We want to portray the cartoon as smiling, so we have specified the last arguments in the
drawArc method as positive. If you specify the last argument as negative (–180), the arc is drawn
in clockwise direction and you would get a sad cartoon as shown in Fig. 13.6.

Fig. 13.6 Smiling Arc

Event Handling in Java 417

Example 13.5 Smiling Cartoon 1
 L1 import java.applet.*;
 L2 import java.awt.*;
 // To Use classes like MouseEvent and MouseAdapter
 L3 import java.awt.event.*;

 L4 /*<applet code="Cartoon.class" width=400 height=400></applet>*/
 /* A Carton Image when clicked on Nose changed the color of its eyes and smiles
 with mouth wide open */
 L5 public class Cartoon extends Applet
 {
 L6 boolean move;
 L7 MyMouseAdapter mma;
 L8 public void init()
 {
 // for capturing mouse clicks
 /* this – current object is passed so that applet context is passed to the
 Mouse Adapter class and based on the clicks the applets repaint method can be
 invoked */

 L9 mma = new MyMouseAdapter(this);

 /* registers the object with the applet to handle mouse events */
 L10 addMouseListener(mma);
 }

 // Draw the cartoon’s Face, eyes, ears, nose and cap
 L11 public void paint(Graphics g)
 {
 // creating face
 L12 g.drawOval(50,40,120,150);

 // for creating hat on the head
 // Three x coordinates for the polygon
 L13 int x[] = {73,115,147};
 // Three y coordinates for the polygon
 L14 int y[] = {55,7,55};
 L15 int n = x.length;

 /* creates a Filled Polygon with 3 points where last (x,y) and the fi rst
 (x,y) coordinates are connected*/
 L16 g.fi llPolygon(x,y,n);

 // creating left eye
 L17 g.drawOval(67,75,30,20);

 // creating right eye
 L18 g.drawOval(120,75,30,20);

418 Programming in Java

 /* fi lls the eye ball with green color when clicked on nose else black
 and mouth open else closed */
 /* if user presses the mouse button while mouse pointer is on nose of
 the cartoon*/

 L19 if(mma.move)
 {
 L20 g.setColor(Color.green);
 L21 g.fi llOval(78,81,10,10); // green left pupil
 L22 g.fi llOval(131,81,10,10); // green right pupil
 // open mouth with green color
 L23 g.fi llArc(70,125,80,40,180,180);
 L24 mma.move=false;
 }
 L25 else
 {
 L26 g.fi llOval(78,81,10,10); // black left pupil
 L27 g.fi llOval(131,81,10,10); // black right pupil

 // smiling with mouth closed
 L28 g.drawArc(70,125,80,40,180,180);
 }

 // creating a red nose
 L29 g.setColor(Color.red);
 L30 g.fi llOval(95,100,30,30);
 L31 g.setColor(Color.black);

 // creating left ear
 L32 g.drawOval(35,92,15,30);

 // creating right ear
 L33 g.drawOval(170,92,15,30);

 }
 }
 // Adapter class defi ned for handling Mouse Events
 L34 class MyMouseAdapter extends MouseAdapter
 {
 /* Applets reference is created so that its paint method can be invoked from
 this class based on mouse events*/

 L35 Cartoon g;
 L36 boolean move;
 /* The current object passed in L9 is stored within the constructors argument
 and assigned to the instance variable of type cartoon */

 L37 MyMouseAdapter(Cartoon g)
 {
 L38 this.g = g;
 L39 move = false;

Event Handling in Java 419

 }

 /* whenever mouse is pressed its coordinates are extracted and based on that
 the fl ag is set and applet is painted again*/

 L40 public void mousePressed(MouseEvent me)
 {
 // extract X coordinates
 L41 int x = me.getX();

 // extract y coordinates
 L42 int y = me.getY();
 /* check for mouse click on nose*/
 L43 if(x>85 && x<115 && y>100 && y<130)
 {
 L44 move = true; /* set the Boolean variable*/
 L45 g.repaint(); /* call paint() of cartoon applet*/
 }
 L46 else /*if mouse clicked anywhere else*/
 {
 L47 move = false; /* reset the Boolean variable*/
 L48 g.repaint(); /* call paint() of cartoon applet*/
 }
 }
 }

Output

Fig. 13.7 (a) Cartoon displayed normally or when mouse is not pointed on nose and clicked.
(b) Cartoon is laughing with mouth wide open and green eyes when mouse is pointed on nose
and clicked.

420 Programming in Java

13.9.2 Smiling Cartoon with Blinking Eyes (Part 2)
In smiling cartoon (part 2), if a user places the mouse pointer on the nose of the cartoon, the eyes
of the cartoon turns green and the cartoon laughs with its mouth wide open. If the user moves
the mouse pointer out of the nose, the cartoon’s default smiling face (black eyes, ear, and a red
nose) is displayed. There is no need to click on the nose as in the previous case. So, we have used
MouseMotionAdapter instead of MouseAdapter class because we need to track mouse movements,
not clicks. But using MouseMotionAdapter and overriding the mouseMoved method results in some
complications. Whenever the mouse is moved, the mouseMoved method is invoked and the applet
is painted. The problem is that the paint method is invoked a number of times which results in
flicker, prominently seen by the user. The update method is overridden to overcome the flicker.
But that adds a new problem. Let us see what the problem is and what the possible solutions are.

Example 13.6 Smiling Cartoon (Part 2)
 L1 import java.applet.*;
 L2 import java.awt.*;
 L3 import java.awt.event.*;

 L4 /*<applet code = "CartoonVr2.class" width = 400 height = 400></applet>*/

 /* if you move the mouse pointer over nose of the cartoon, the color of its eyes
 should change and it should laughs with mouth wide open. If you move your mouse out
 of the nose the default cartoon with black eyes and smile should appear. */

 L5 public class CartoonVr2 extends Applet
 {

 /* To track Mouse Movements we need MouseMotionListener or MouseMotionAdapter */
 /* We use adapter approach for the reasons explained in the previous program */

 L6 MyMouseMotionAdapter mma;
 L7 public void init()
 {
 // Instantiates the MouseMotionAdapter
 L8 mma = new MyMouseMotionAdapter(this);

 // Registers the MouseMotionListener with the Applet
 L9 addMouseMotionListener(mma);
 }

 L10 public void paint(Graphics g)
 {

 // for creating face
 L11 g.drawOval(50,40,120,150);

 // hat on the head
 L12 int x[] = {73,115,147};
 L13 int y[] = {55,7,55};

Event Handling in Java 421

 L14 int n = x.length;
 L15 g.fi llPolygon(x,y,n);

 L16 g.drawOval(67,75,30,20); // left eye

 L17 g.drawOval(120,75,30,20); // right eye

 /* fi lls the eye ball with green color when mouse is over its nose else black
 and mouth open else eyes are black and mouth closed */

 L18 if(mma.move)
 {
 L19 g.setColor(Color.green);
 L20 g.fi llOval(78,81,10,10); // green left pupil
 L21 g.fi llOval(131,81,10,10); // green right pupil
 L22 g.fi llArc(70,125,80,40,180,180); // mouth

 }
 L23 else
 {
 L24 g.fi llOval(78,81,10,10); // black left pupil
 L25 g.fi llOval(131,81,10,10); // black right pupil

 /* drawArc method is used; arc is drawn with black color but it is fi lled with

green color always once the mouse pointer is removed from nose. It is because
green color is there since last paint method call, as we have used update to
remove the fl ickering effect. It fi lls the background with the colors used and
then only paints the changes. The background is not cleared. If we want to
display the arc back once the mouse is moved out of the nose, we can invoke
the paintAll method within update method or call super.update(g) from update
method. But both methods would add fl ickering effect back to the cartoon, thus
defeating the purpose of adding update method */

 L26 g.drawArc(70,125,80,40,180,180); // mouth
 }

 /* create a red nose*/
 L27 g.setColor(Color.red);
 L28 g.fi llOval(95,100,30,30);

 /*set the color as black for drawing ears */
 L29 g.setColor(Color.black);
 L30 g.drawOval(35,92,15,30); // left ear
 L31 g.drawOval(170,92,15,30); // right ear
 }

 /* to reduce the fl ickering effect when mouse is moved very quickly over the applet,
 update method is overridden and paint is called from within it*/

422 Programming in Java

 L32 public void update(Graphics g)
 {
 L33 paint(g);

 /* Using paintAll resolves the problem of green colored fi lled arc being displayed

when mouse is not over nose because it paints the entire applet but adds the fl icker-
ing effect to the applet */

 L34 //paintAll(g);

 /* calling update of the super class solves the problem but adds fl ickering effect.
So how do we solve the problem? */

 L35 // super.update(g);
 }
 }

 L36 class MyMouseMotionAdapter extends MouseMotionAdapter
 {
 L37 CartoonVr2 g;
 L38 boolean move;

 L39 MyMouseMotionAdapter(CartoonVr2 g)
 {
 L40 this.g = g;
 L41 move = false;
 }

 /* whenever mouse is moved its coordinates (x,y) are extracted and based on that the
 fl ag is set and applet is painted again*/

 L42 public void mouseMoved(MouseEvent me)
 {
 L43 int x = me.getX();
 L44 int y = me.getY();
 L45 if(x > 85 && x < 115 && y > 100 && y < 130)
 {
 L46 move = true;
 L47 g.repaint();
 }
 L48 else
 {
 L49 move = false;
 L50 g.repaint();
 }

}

}

Event Handling in Java 423

Output

 (a) (b) (c)

 Fig. 13.8 (a) The applet loads for the first time, (b) When mouse is pointed over the nose,
 (c) When mouse is moved out of nose

 The problems that are evident in the output are
 1. The black arc is visible in (b) i.e., when the mouse is over the nose. The wide open mouth

filled with green color should be shown but the black arc should not be displayed.
 2. The mouth is still wide open in (c) with green color when the mouse pointer is removed

from the nose. Actually it should be similar to (a).
We tried a few solutions like paintAll() and super.update(g) methods (as you can see they
are commented in L34 and L35.) but failed. How do we solve the problem?

13.9.3 Smiling Cartoon (Part 3)
Smiling cartoon (part 3) deals with the problems that arise in part 2. The code is almost entirely
similar with an exception that before repainting the applet on every mouse move event, we paint
the arc and the oval (for mouth) with white color, thus erasing what was there from the previous
paint. Let us see the code for the applet.

Example 13.7 Smiling Cartoon (Part 3)
import java.applet.*;
import java.awt.*;
import java.awt.event.*;

/*<applet code = "CartoonVr3.class" width = 400 height = 400></applet>*/

/* if you move the mouse pointer over nose of the cartoon, the color of its eyes
should change and it should laugh with mouth wide open. If you move your mouse out
of the nose the default cartoon with black eyes and smile should appear. */

public class CartoonVr3 extends Applet
{

424 Programming in Java

 MyMouseMotionAdapter mma;
 public void init()
 {
 mma = new MyMouseMotionAdapter(this);
 addMouseMotionListener(mma);
 }

 public void paint(Graphics g)
 {
 // face
 g.drawOval(50,40,120,150);

 int x[] = {73,115,147};
 int y[] = {55,7,55};
 int n = x.length;
 g.fi llPolygon(x,y,n);

 g.drawOval(67,75,30,20); // left eye

 g.drawOval(120,75,30,20); // right eye

 if(mma.move)
 {
 /* wipes out the smile with white colored arc */
 g.setColor(Color.white);
 g.drawArc(70,125,80,40,180,180);

 /* set the color as green and draws green pupil instead of black*/
 g.setColor(Color.green);
 g.fi llOval(78,81,10,10); // green left pupil
 g.fi llOval(131,81,10,10); // green right pupil

 /* opens the mouth */
 g.fi llArc(70,125,80,40,180,180); // mouth

 }

 else
 {
 g.fi llOval(78,81,10,10); // black left pupil
 g.fi llOval(131,81,10,10); // black right pupil

/* To solve the problem we turn the color to white and then draw a fi lled arc with white
color. This white arc covers the green color and then we set the color as black and
draw the arc */

g.setColor(Color.white);
 g.fi llArc(70,125,80,40,180,180); // mouth
 g.setColor(Color.black);

Event Handling in Java 425

 g.drawArc(70,125,80,40,180,180); // mouth

 }

 // create a red nose
 g.setColor(Color.red);
 g.fi llOval(95,100,30,30);

 //set the color as black for drawing ears
 g.setColor(Color.black);
 g.drawOval(35,92,15,30); // left ear
 g.drawOval(170,92,15,30); // right ear

 }

 public void update(Graphics g)
 {
 paint(g);
 }
}

class MyMouseMotionAdapter extends MouseMotionAdapter
{
 CartoonVr3 g;
 boolean move;

 MyMouseMotionAdapter(CartoonVr3 g)
 {
 this.g = g;
 move = false;
 }

 public void mouseMoved(MouseEvent me)
 {

 int x = me.getX();
 int y = me.getY();
 if(x > 85 && x < 115 && y > 100 && y < 130)
 {
 move = true;
 g.repaint();

 }
 else
 {
 move = false;
 g.repaint();
 }
 }
}

426 Programming in Java

Output

 (a) (b) (c)

Fig. 13.9 (a) The applet is loaded first, (b) When mouse pointer is put over its nose, (c) When
mouse pointer is moved out of the nose.

SUMMARY
In this chapter, we have emphasized on the features
that enhance the GUI capabilities of Java by using
event handling. But before moving to the AWT
components in Java, it was imperative to discuss
about the event handling model of Java, as the
knowledge about the use of applets and other GUI-
based programs is incomplete without the study of

this model. Actually applets are event-driven programs
that use a GUI to interact with the users. The modern
approach to event handling uses event delegation
model where a source generates events, which are
sent to one or more listeners. These listeners receive
the event notifications, which are handled as required
by the different methods of event classes.

EXERCISES

Objective Questions
 1. Which of the following statements are true?
 (a) All events will be processed in the order, the

listeners were added
 (b) Using the adapter approach to event handling

means creating blank method bodies for all
event methods

 (c) A component may have multiple listeners
associated with it

 (d) Listeners may be removed once added

 2. Which of the following are correct event handling
methods?

 (a) mousePressed(MouseEvent e){}
 (b) MousePressed(MouseClick e){}
 (c) functionKey(KeyPress k){}

 (d) componentAdded(ContainerEvent e){}

 3. What will happen when you attempt to compile
and run the following code?

import java.awt.*;
import java.awt.event.*;
public class Demo extends Applet im-
plements MouseListener{
public static void main(String argv[])
{
 Demo s = new Demo();
}
Demo() {
 this.addMouseListener(this);
}

Event Handling in Java 427

public void mouseClicked(MouseEvent
e){
 System.out.println(e.getWhen());
 }
}

 (a) Compile time error
 (b) Run time error
 (c) Compile and at runtime the date and time of

each click will be output
 (d) Compile and at runtime a timestamp will be

output for each click
 4. Which of the following statements are true about

event handling?
 (a) The 1.1 Event model is fully backwardly

compatible with the 1.0 event model
 (b) Code written for the 1.0x Event handling will

run on 1.1 versions of the JVM
 (c) The 1.1 Event model is particularly suited for

GUI building tools
 (d) The Drag and Drop event handler was added

with the 1.1 version of event handling.
 5. Which of the following statements are true?
 (a) For a given component events will be

processed in the order that the listeners were
added

 (b) Using the Adapter approach to event
handling means creating blank method
bodies for all event methods

 (c) A component may have multiple listeners
associated with it

 (d) Listeners may be removed once added
 6. Which of the following are correct event handling

methods?
 (a) mousePressed(MouseEvent e){}
 (b) MousePressed(MouseClick e){}
 (c) functionKey(KeyPress k){}
 (d) componentAdded(ContainerEvent e){}
 7. What will happen when you attempt to compile

and run the following code?

import java.awt.*;
import java.awt.event.*;

public class Click extends Frame
implements MouseListener{
 public static void main(String
argv[]){
 Click s = new Click();
}

Click(){
 this.addMouseListener(this);
}

public void mouseClicked(MouseEvent
e){
 System.out.println(e);
 }
}

 (a) Compile time error
 (b) Run time error
 (c) Compile and at runtime prints the object
 (d) Compile and at runtime a timestamp will be

output for each click
 8. Which of the following is the correct sequence

of calling paint() method?
 (a) update()  repaint()  paint()
 (b) repaint() update()  paint()
 (c) repaint() paint()  update()
 (d) None of the above
 9. Which of the following methods is used to remove

the fl ickering effect?
 (a) update()
 (b) repaint()
 (c) paint()
 (d) None of the above
 10. Which of the following is advantage of adapter

class over Listener interfaces?
 (a) You need to override all the methods of

Listener interface within the adapter class
 (b) You need to override only the methods

required and not all the methods within the
adapter class

 (c) All the above
 (d) None of the above

Review Questions
 1. What do you mean by event delegation model in

Java?
 2. How do the event objects register the event

Listener in Java?

 3. Some of the constraints of using Listener
interfaces are removed by using adapter classes.
Comment.

428 Programming in Java

 4. How is the concept of inner classes used for
event handling?

 5. What is the advantage of having anonymous
classes while handling events in Java?

Programming Exercises

 1. Create an applet which when gains focus shows
“Focus gained” in the status bar.

 2. Create an applet to identify the key pressed in
the window and display the character associated
with the key in the status window.

 3. Create an applet that inherits MouseListener

interface and displays appropriate messages for
each of the methods in the interface.

 4. Use the concept of adapter class in the previous
exercise.

 5. Create an anonymous inner class for handling
mouse entered event into an applet.

Answers to Objective Questions
 1. (c) and (d) 2. (a) and (d) 3. (a) 4. (b) and (c)
 5. (c) and (d) 6. (a) and (d) 7. (a), each method of the Listener interface should be

 overridden in the Click class.
 8. (b) 9. (a) 10. (b)

 Different people get different things out of the images. It doesn’t matter what it’s about,
all that matters is how it makes you feel. Adam Jones

After reading this chapter, the readers will be able to
  know the set of GUI components
  understand the use of event-handling model for different components
  explain the layout managers for fl exible window layouts

14.1 INTRODUCTION

The Abstract Window Toolkit (AWT) provides many classes—which can even be used inside
applets—for programmers to use. It is the connection between your application and the native
GUI. The AWT hides the complexities of the GUI your application will be running on.
 The Java foundation classes (JFC) provide two frameworks for building GUI-based application
and interestingly both rely on the same event handling model:

  AWT
  Swing

 AWT relies on the underlying operating system on a specific platform to represent its GUI
components (i.e., components in AWT are called heavyweight), while swing implements a new
set of lightweight GUI components that are written in Java and has a pluggable look and feel.
These lightweight components are not dependent on the underlying window system.
 In this chapter, we will put emphasis on AWT, while swings will be covered in the next chapter.
AWT API can be used in any Java program by importing the java.awt.* package.

14.1.1 Why AWT?
Each application developed in a programming language must have a user interface, which is
actually that part of the application that is responsible for directly interacting with the user. These
user interfaces can either be command-line interfaces or graphical user interfaces.

Abstract Window
Toolkit 1414

430 Programming in Java

 At the lowest level, the operating system transmits information from the input devices to the
program as input, and provides the output. The AWT was designed so that programmers need
not worry about tracking the mouse movements or reading the keyboard characters or writing
to the screen. The AWT is a well-designed object-oriented interface between the application and
the low-level resources.
 The advantage of AWT is that it preserves the native look and feel of the platform on which the
AWT application is running because the components (user interfaces) in AWT are implemented
using the native GUI toolkit. On the other hand, the drawback is that the applications will have
different look and feel when executed on different platforms.

14.1.2 java.awt Package
The package java.awt contains all classes used for creating graphical user interfaces, paint-
ing graphics, images, colors, and fonts. A user interface element such as a button or a textbox
is called a component. The Component class is the superclass of all AWT components. These
components fi re events when users interact with these components, e.g., when a user clicks on
a button. These events are handled by event handling classes, i.e., AWTEvent and its subclasses.
 A container is one which contains components and other containers. A container has a layout
manager that determines the visual placement of components in the container. The java.awt
package contains several classes which are used for laying out components in a container.
 The package java.awt contains many interfaces and classes. It is very difficult to elaborate
all these members of this package here. Some of the commonly used classes in the package are
given in Table 14.1.

Table 14.1 Classes in AWT Class

 Classes Description
 AWTEvent The root event class for all AWT events.

 BorderLayout
Lays out components in a container according to fi ve regions: north, south, east, west,
and center.

 Button Creates a button.

 Canvas
Represents a blank rectangular area of the screen onto which drawing can be done or
from which input events from the user can be trapped.

 CardLayout Layout manager which can contain other layouts.
 Checkbox A component that can be in one state: either “on” (true) or “off” (false) state.
 CheckboxGroup Groups together a set of checkboxes so that they work as radio buttons.
 CheckboxMenu Item This class is used for creating a checked menu item.
 Choice Opens up a pop-up menu of choices.
 Color Represents colors in the RGB or arbitrary color spaces as identifi ed by a ColorSpace.

 Component
A component is an object having a graphical representation that can be displayed on the
user screen and the users can interact with it.

 Container Contains other AWT components.

(Contd)

Abstract Window Toolkit 431

Classes Description
 Dialog A top-level window with a title and a border.
 Dimension This object encapsulates the width and height of a component.
 FileDialog This class displays a dialog window from which the user can select a fi le.
 FlowLayout Displays components in a directional fl ow.
 Font This class represents fonts, which are used to render text in a visible way.

 FontMetrics
Encapsulates information about how a particular font will be rendered on a particular
screen.

 Frame
A top-level window (container) with a title and a border, used for containing other
components.

 Graphics
The Graphics class is the abstract base class that allows an application to draw onto
components like drawing lines, circles, etc.

 GridBag
Constraints

This class specifi es constraints for components that are laid out using the
GridBagLayout class.

 GridBagLayout
This layout is a fl exible layout manager that aligns components vertically, horizontally
or along their baseline without requiring that the components be of the same size.

 GridLayout Lays out components in a rectangular grid.
 Image This abstract class represents graphical images.
 Insets Specifi es how much space must be left at all edges of a container.
 Label Used for placing text in a container.
 List A scrollable list of string items.
 MediaTracker Used for tracking the status of a number of media objects.
 Menu A pull-down menu deployed from a menu bar.
 MenuBar Menus are added on a MenuBar attached on to a frame.
 MenuItem All items in a menu are MenuItems.
 MenuShortcut This class represents a keyboard shortcut for a MenuItem.
 MouseInfo Provides methods for getting information about the mouse location, etc.
 Panel It is a container class.
 Point Represents a location in (x, y) coordinate space.

PopupMenu
A menu which can be dynamically popped up at any specifi ed position within a
component.

 Scrollbar The Scrollbar class embodies a scroll bar either vertical or horizontal.

 ScrollPane
A container class which implements automatic horizontal and/or vertical scrolling for a
single child component.

 TextArea An object that allow user to enter/edit multi-line input.
 TextComponent Superclass of TextField and TextArea.
 TextField It is a text component that allows the user to enter/edit a single line of text.

 Window
It is the parent of Dialog and Frame and represents a top-level window with no borders
and no menubar.

(Table 14.1 Contd)

432 Programming in Java

14.2 COMPONENTS AND CONTAINERS

A graphical user interface is developed with the help of graphical elements such as buttons,
scrollbars, lists, and textfields. These elements are called components. These components are
generally the source of events that allow the user to interact with the program (remember, the
event handling mechanism). In AWT, these components are instances of the respective Component
classes.
 Components cannot exist alone; they are found within containers. The layout of the components
are contained and controlled within the containers. In fact, containers are themselves components,
thus they can be placed inside other containers. In AWT, all containers are objects of class
Container or one of its subtypes.
 Components must fit completely into the container that contains them. There exists an
inheritance relationship between the user interface components classes provided by the AWT.
Component class defines the interface to which all components must adhere. Figure 14.1 shows
the hierarchy of different AWT classes in Java.

Component

TextComponent

Button

Canvas

Checkbox

Choice

Label

List

Scrollbar

TextField

TextArea
Container

Panel Window

Dialog Frame

Fig. 14.1 Hierarchy of Classes in AWT

14.2.1 Component Class
Let us discuss the Component class, which is actually a subclass of the Object class and superclass
of various classes such as Button, Label, CheckBox, RadioButton, Choice, Canvas, TextComponent,
List, and ScrollBar.
 You must have an idea of creating the above-mentioned components. In order to have a
particular component in a window, you must add that particular component to the window.
Container class has a method, add(), for the purpose.

 Component add(Component ComObj)

The object of the Component, which is to be added, is passed as the argument to the above method.
This method returns the reference to the ComObj.If you wish to remove a Component from a
window, you can use remove() method for the same.

Abstract Window Toolkit 433

 void remove(Component ComObj)

In the above syntax, the object of the Component which is to be removed is passed as the argument
to the above method.

14.2.2 Components as Event Generator
All the controls, except label, can generate events. The notifications for the events generated
by these controls are received by the registered listeners. This notification helps the listeners in
identifying the type of control that generated event. Till the last chapter, we had been dealing
with applets as the event generator. Now we will deal with other event generators, say the
components. Before moving further, it is important to let you know which Listener interface is
appropriate for receiving notification from which control and what are the methods responsible
for handling a particular type of event (Table 14.2).

Table 14.2 Events Associated with Components

Components Event Events Type Event Listeners Method Name

Button
Click ActionEvent ActionListener actionPerformed()

Focus gained/
focus lost

FocusEvent FocusListener focusGained()and
focusLost()

Checkbox Selection/
Deselection

ItemEvent ItemListener itemStateChanged()

Choice Selection/
Deselection

ItemEvent ItemListener itemStateChanged()

List
Selection/
Deselection

ItemEvent ItemListener itemStateChanged()

Double
clicking on
an item

ActionEvent ActionListener actionPerformed()

MenuItem Click ActionEvent ActionListener actionPerformed()

Focus gained/
focus lost

FocusEvent FocusListener focusGained()and
focusLost()

TextField Presses
Enter key

ActionEvent ActionListener actionPerformed()

Text
changes

TextEvent TextListener textValueChanged()

TextArea

Focus gained/
focus lost

FocusEvent FocusListener focusGained()and
focusLost()

Text
changes

TextEvent TextListener textValueChanged()

Scrollbar Change the
value of
scrollbar by
mouse/Keyboard

Adjustment
Event

Adjustment
Listener

adjustment
ValueChanged()

(Contd)

434 Programming in Java

Components Event Events Type Event Listeners Method Name

Focus FocusEvent FocusListener focusGained() and focusLost()

Key events KeyEvent KeyListener keyPressed()

keyReleased()

keyTyped()

Mouse events MouseEvents MouseListener mouseClicked

mouseEntered()

mouseExited()

mousePressed()

mouseReleased()

Frame/

Applet

Mouse motion

events

MouseEvent MouseMotion

Listener

mouseMoved() and

mouseDragged()

Window

events

WindowEvent WindowListener windowActivated()

windowClosed()

windowClosing()

windowDeactivated()

windowIconifi ed()

windowDeiconifi ed()

windowOpened()

14.3 BUTTON

 Button() throws HeadlessException

 Button(String str)throws HeadLessException;

The first constructor, when called, creates a Button with no label displayed on it. The second
constructor creates a Button, displaying the string ‘str’ on it.
Now, how is a Button actually created? See the syntax below,

 Button buttonName = new Button(Str);

where buttonname is the name of the button object and str is the text which you want to set
as the caption of the button. Once the object for Button is created, it needs to be added to the
applet, frame or any other container. The syntax for it is as follows:
 add(buttonname);

The methods like setLabel() and getLabel() are used for changing the button’s label and getting
the label’s text respectively. The signatures of these methods are
 void setLabel(String str)

 String getLabel()

(Table 14.2 Contd)

Abstract Window Toolkit 435

Table 14.3 lists other methods that belong to the class Button.

Table 14.3 Methods of Button Class

Method Description

void addActionListener(ActionListener
al)

Adds the specifi ed action listener to receive action events
from this button.

void addNotify() Creates the peer of the button.

AccessibleContext getAccessibleContext() Gets the AccessibleContext associated with this button.

String getActionCommand() Returns the command name (caption of the button) of the
action event fi red by this button.

ActionListener[] getActionListeners() Returns an array of all the action listeners registered on
this button.

String paramString() Returns a string representing the state of this button.

void processActionEvent (ActionEvent ae) Processes action events occurring on this button by dis-
patching them to any registered ActionListener objects.

void processEvent(AWTEvent awte) Processes events on this button.

void removeActionListener
(ActionListener al)

Removes the specifi ed action listener so that it no longer
receives action events from this button.

void setActionCommand (String command) Sets the command name for the action event fi red by this
button.

Example 14.1 shows an example that demonstrates how to create buttons and handle their events
using the listener approach of handling events.

Example 14.1 Button Demonstration
 /*<applet code = ButtonClass.class width = 400 height = 150></applet>*/
 L1 import java.applet.*;
 L2 import java.awt.*;
 L3 import java.awt.event.*;
 L4 public class ButtonClass extends Applet implements ActionListener {
 L5 Button red, white, blue;
 L6 Label hit;
 L7 public void init(){
 L8 red = new Button("Red");
 L9 white = new Button("white");
 L10 blue = new Button("blue");
 L11 hit = new Label("Hit a Button to change the screen color");
 L12 add(red);
 L13 add(white);
 L14 add(blue);
 L15 add(hit);
 L16 red.addActionListener(this);

436 Programming in Java

 L17 white.addActionListener(this);
 L18 blue.addActionListener(this);
 L19 }
 L20 public void actionPerformed(ActionEvent ae){
 L21 String str = ae.getActionCommand();
 L22 if (str.equals("Red")) {
 L23 setBackground(Color.red);
 L24 }
 L25 else if (str.equals("white")) {
 L26 setBackground(Color.white);
 L27 }
 L28 else if (str.equals("blue")){
 L29 setBackground(Color.blue);
 L30 }
 L31 repaint();
 L32 }
 L33 }

Output

Fig. 14.2(a) Applet with White Background When it is Displayed for the
 First Time or When the White Button is Pressed

Fig. 14.2(b) Applet with Red Background When the Red Button is Pressed

Fig. 14.2(c) Applet with Blue Background When the Blue Button is Pressed

Abstract Window Toolkit 437

Explanation
L1–3 All the facilities of the applet and the AWT
that Java has to offer are imported by using the *
wildcard.
L4 An applet with the name of ButtonClass,
extending the Applet class and implementing the
ActionListener interface, is defined.
L7–19 The init()method of the applet is defined
and implemented, wherein three buttons having
labels, red, white, and blue, respectively, are created
(see L8–10). Then the three buttons and a label
(created in L11) are added to the current applet
window (see L12–15). These buttons with the

reference names red, white, and blue are registered
by the addActionListener() method (L16–18). Note
that all components (buttons) are registered with the
Listener interface because we want to capture events
from all buttons.
L20–31 When an action takes place, the default
handleEvent method calls the action method
of our component. If it is not a button event, we
simply return. Otherwise check the button’s label to
determine which button was pressed. Then set the
background to the appropriate color, and repaint and
update the screen.

14.4 LABEL

This component is the simplest one in Java’s AWT. Labels consist of a text string for display
only and they never call an action method. The constructors responsible for creating labels are
given in Table 14.4.

Table 14.4 Constructors of Label Class

Constructor Name Description
Label() Creates an empty label.
Label(String label) Creates a new label with the specifi ed string of text, left justifi ed.
Label(String label,
int alignment)

Constructs a new label that presents the specifi ed string of text with
the specifi ed alignment.

Example 14.2 uses the second type of constructor mentioned in Table 14.4.
 Label labelname = new Label("This label is for demonstration.");

Here, a label’s object is created with the name ‘labelname’, with the string ‘This label is for
demonstration’ displayed on it. A label can be justified LEFT, RIGHT, or CENTERED. The
following line will create a label that is right justified:

 Label labelname = new Label("This label is for demonstration.", Label.RIGHT);

We can change the text of a label by,
 labelname.setText("This is new text.");

Apart from setting the text on label, we can also get the label’s text using the method as shown
below,
 String labelText = labelname.getText();

438 Programming in Java

We can change the alignment or get the alignment of a label with the methods shown as follows:
 labelname.setAlignment(Label.CENTER);

or
 int labelAlignment = labelname.getAlignment();

Example 14.2 shows an applet demonstrating the properties of a label.

Example 14.2 An Applet Illustrating a Simple Label
 /*<applet code = "LabelClass.java" width = 350 height = 100></applet>*/
 L1 import java.applet.*;
 L2 import java.awt.*;
 L3 public class LabelClass extends Applet {
 L4 public void init(){
 L5 Label fi rstLabel = new Label("Labels exist simply ");
 L6 add(fi rstLabel);
 L7 Label secLabel = new Label("to place text on the screen");
 L8 add(secLabel);
 L9 Label thirdLabel = new Label("They can be aligned left, right or center.");
 L10 add(thirdLabel);
 L11 }}

Output

Fig. 14.3 Label Displayed in an Applet

Explanation
L1–2 We import all the facilities of the AWT and
applet that Java has to offer by using the * wildcard.
L3 An applet with the name LabelClass is defined,

extending the Applet class.
L5–11 Three labels are created and added to the
applet window inside the init() method of applet.

14.5 CHECKBOX

Checkboxes are used as on-off or yes-no switches since every time you click on one, you toggle
to the opposite selection, i.e., if you click on an unchecked checkbox, it will get checked and if

Abstract Window Toolkit 439

you click on the checked box, it will get unchecked. You can check as many checkboxes as you
wish to, as there is no constraint on selecting the number of checkboxes. Your program can be
made to respond as per the state of each checkbox. An element-like button might be needed to
trigger an event to check the state of the checkboxes. The checkboxes are the objects of Checkbox
class, which support the following constructors:
 Checkbox()
 Checkbox(String str)
 Checkbox(String str, boolean on)
 Checkbox(String str, CheckBoxGroup cbg, boolean on)

The first form of constructor creates a checkbox whose label is blank initially and the state of
the checkbox is unchecked. In the other forms of constructors, string argument accounts for the
label of the checkbox, boolean argument (true/false) accounts for whether the checkbox will be
created checked or unchecked, i.e., if the argument passed is true, the created checkbox will be
initially checked, otherwise if the argument is false, the checkbox will be initially unchecked
and the CheckBoxGroup argument is accountable for specifying the checkbox group (the group
argument is used for radio buttons which are a special kind of checkboxes).
 The following line will create a checkbox with Names as a label, null as a placeholder for a
group argument, and false to indicate that it is not selected:
 Checkbox names = new Checkbox("Names", null, false);

Once you create the Checkbox, just add it to the applet (or other container) by entering the
following command:
 add(names);

where names is the Checkbox name. A few of the methods belonging to the Checkbox class are
given in Table 14.5.

Table 14.5 Methods of Checkbox

Method Description
void addItemListener (ItemListener il) Adds the specifi ed item listener to receive item events from

this Checkbox.
CheckboxGroup getCheckboxGroup() Returns the associated checkbox’s group.
ItemListener[] getItemListeners() Returns an array of all the item listeners registered with this

checkbox.
String getLabel() Returns string in the form of Checkbox text.
Object[] getSelectedObjects() Returns an array (length 1) containing the Checkbox label or

null if the Checkbox is not selected.
boolean getState() Returns boolean in the form of true or false, depending on

whether the Checkbox is selected or unselected.
String paramString() Returns a string representing the state of the Checkbox.
void processEvent(AWTEvent awte) Processes events on this Checkbox.
void processItemEvent(ItemEvent ie) Processes item events occurring on this checkbox by

dispatching them to any registered ItemListener objects.
(Contd)

440 Programming in Java

Method Description
void removeItemListener
(ItemListener l)

Removes the association between item listener and Checkbox.

void setCheckboxGroup (CheckboxGroup
ckbg)

Sets this checkbox’s group to the specifi ed checkbox group.

void setLabel(String label) We can change the Checkbox label and set it to the argument,
‘label’.

void setState(boolean state) Changes the checkbox’s state to true (for selected) or false
(for unselected).

 Example 14.3 illustrates how checkboxes can be created and used. The button ‘SUBMIT’
created in the program triggers an event in order to check which boxes are selected. A list of
selected names is then painted on the applet window.

Example 14.3 Demonstration of Checkboxes
 /*<applet code = CheckboxClass.class width = 400 height = 100></applet>*/
 L1 import java.applet.*;
 L2 import java.awt.*;
 L3 import java.awt.event.*;
 L4 public class CheckboxClass extends Applet implements ActionListener {
 L5 Button submit;
 L6 Checkbox name1;
 L7 Checkbox name2;
 L8 Checkbox name3; Font f;
 L9 public void init(){
 L10 name1 = new Checkbox ("Ram",null,false);
 L11 name2 = new Checkbox ("Ramesh",null,false);
 L12 name3 = new Checkbox ("Naresh",null,false);
 L13 f = new Font ("Arial",Font.ITALIC,14);
 L14 submit = new Button("SUBMIT");
 L15 add(name1);
 L16 add(name2);
 L17 add(name3);
 L18 add(submit);
 L19 submit.addActionListener(this);
 L20 }
 L21 public void actionPerformed(ActionEvent ae){
 L22 String str = ae.getActionCommand();
 L23 if (str.equals("SUBMIT"))
 L24 repaint();
 L25 }
 L26 public void paint (Graphics g){
 L27 g.setFont(f);
 L28 g.setColor(Color.blue);
 L29 if (name1.getState())
 L30 g.drawString("Ram",50,60);

(Table 14.5 Contd)

Abstract Window Toolkit 441

 L31 if (name2.getState())
 L32 g.drawString("Ramesh",50,80);
 L33 if (name3.getState())
 L34 g.drawString("Naresh",50,100);
 L35 }
 L36 }

Output

Fig. 14.4 Checkboxes Inside Applet

Explanation
L4 An applet implementing ActionListener with
the name of CheckboxClass is created.
L5–8 Reference variables for Button checkboxes
and Font are created.
L9 The init() method for applet has been defined.
L10–14 Checkboxes and the button are instantiated.
L13 instantiates the font name as Arial, specifies the
style to be italicized, and the size of the font as 14
point.
L15–18 Checkboxes and the button are added to
the frame.

L19 ActionListener is registered with the button.
L21–24 actionPerformed()is overridden. If
submit button is pressed, repaint the applet.
L26–35 paint() is defined. The font defined in
L13 is set using setFont(). setColor() is used to set
the color of the text to be written as blue. Depending
upon which checkbox is selected, its name is written
on the applet. getState() returns true if the checkbox
is selected, else false.

14.6 RADIO BUTTONS

Radio buttons, which are also called checkbox groups, are a special kind of checkboxes, where
within a particular group, only one box can be selected at a time. The CheckboxGroup class is used
to group together a set of checkboxes and thereafter, only a single selection is allowed among
them, i.e., they behave as radio buttons. Checkbox groups are objects of type CheckboxGroup
class. There is only one constructor (the default constructor) which creates an empty group. The
following line will create a checkbox group, named fruits:

442 Programming in Java

 CheckboxGroup fruits = new CheckboxGroup();

Once you create the checkbox group, add the individual checkboxes to that group. There are
three arguments to be specified in the constructor. The first argument is the radio button label,
the second argument is the group of which it is a part of, and the third is the state, true or false,
depending on whether the button is selected or not.
 add(new Checkbox("mango", fruits, false));
 add(new Checkbox("papaya", fruits, false));
 add(new Checkbox("guava", fruits, false));
 add(new Checkbox("apple", fruits, true));

The same checkbox methods that were mentioned in the previous section can be used with radio
buttons in the group. Some of these methods are
 void setLabel(String str)
 String getLabel()
 boolean getState()
 void setState(boolean b)
The methods getCheckboxGroup() and setCheckboxGroup() can be used to access and
change the group of a given checkbox group. To get the currently selected checkbox, you
can use the getSelectedCheckbox() method and in order to set a checkbox, you can use
setSelectedCheckbox(chkbox) method. The argument ‘chkbox’ is the checkbox that you want
to be selected.
 The example below shows how radio buttons can be used to change the background color of
the applet window. Remember, only one radio button can be selected at a time.

Example 14.4 Demonstration of Radio Button
 /*<applet code = "RadioDemo.class" width = 300 height = 200></applet>*/
 L1 import java.applet.*;
 L2 import java.awt.*;
 L3 import java.awt.event.*;
 L4 public class RadioDemo extends Applet implements ItemListener{
 L5 Checkbox red, white, green;
 L6 CheckboxGroup cbg;
 L7 public void init(){
 L8 add(new Label("The 3 radio buttons will change the screen color."));
 L9 cbg = new CheckboxGroup();
 L10 red = new Checkbox("Red",cbg,false);
 L11 white = new Checkbox("White",cbg,false);
 L12 green = new Checkbox("Green",cbg,false);
 L13 add(new Label("Notice that you can only select one radio button."));
 L14 add(new Label("And selecting a radio button triggers an event"));
 L15 add(new Label("that we use to change the screen color."));
 L16 add(red);
 L17 add(white);
 L18 add(green);
 L19 red.addItemListener(this);

Abstract Window Toolkit 443

 L20 white.addItemListener(this);
 L21 green.addItemListener(this);
 L22 }
 L23 public void itemStateChanged(ItemEvent ie){
 L24 String str = (String) ie.getItem();
 L25 if (str.equals("Red")){
 L26 setBackground(Color.red);
 L27 }
 L28 else if (str.equals("White")) {
 L29 setBackground(Color.white);
 L30 }
 L31 else if (str.equals("Green")){
 L32 setBackground(Color.green);
 L33 }
 L34 repaint();
 L35 }}

Output

 (a) (b) (c)
Fig. 14.5 Color of the Applet Changes Based on the Selection

Explanation
L1–3 Necessary packages are imported.
L4 Applet class is defined and it inherits the
ItemListener interface for handling the events
related to the checkbox.
L5 Three checkbox references are created.
L6 CheckboxGroup reference is created.
L7 The init() method is defined.
L8 A label is added to the applet.
L9–12 The CheckboxGroup instantiated along with
three checkboxes is. The checkboxes are made part
of a group (L10–12) so that they behave as a radio
button and only one from the group can be selected at
a time. All radio buttons are not selected by default,

as the third argument passed in the constructor of
checkbox is false.
L13–15 Labels are instantiated and added to the
applet.
L16–21 All radio buttons are added to the applet
and they are registered with their associated listener
for capturing events.
L23–34 ItemListener interface has one method,
i.e., itemStateChanged(ItemEvent e) which is
overridden. This method checks which radio button
has been checked and then changes the color of
the background according to the name of the radio
button. The getItem() method of the ItemEvent

444 Programming in Java

class returns the caption of the checked radio button
as an object of type Object class which is then cast
to String. Based on this String, we change the color

14.7 LIST BOXES

The List class provides a multiple choice, scrolling list of values that may be selected alone or
together. A list can be created to show any number of choices in the visible window. List class
has the following constructors:
 List()
 List (int no_of_rows)
 List(int no_of_rows, boolean multi_select)

Note All the above constructors throw HeadlessException.

 In the default constructor case, only one item can be selected at a time. In the second constructor,
you can specify the number of rows in the list that you want to be always visible. In the third
one, if the boolean value is set to true, it simply means that the user can select more than one
item at a time from the list. If it is set to false, then only one item of the list can be selected at a
time.
 The simplest form of List that does not allow multiple selections can be created by the
following syntax:
 List anyList = new List();

If you want to create a list that does allow multiple selections, use the following command line
which creates a list with 10 visible entries and multiple selections turned on.
 List anyList = new List(10, true);

Once you have created the list, the add method enables you to add new entries. Table 14.6 shows
the methods of List class.
 anyList.add("apple"); anyList.add("mango");
 anyList.add("guava");

 To add an item at a particular location in the list, e.g., the first position, use the following line
of syntax:
 anylist.add("Coffee", 0);

 Adding an item to (position–1) or at a higher position than the number on the list, adds it to
the end of the list.
 Implementation of ActionListener interface is necessary for handling list events. A double
click on a particular list item generates an ActionEvent object. As used in the case of buttons,
getActionCommand() can be used to get the name of the double clicked item. If selection or de-
selection of an item takes place because of a single click, an ItemEvent is generated. Whether
this ItemEvent is generated because of selection or de-selection can be determined by the use
of getStateChange() method of ItemEvent class.

of the background using the setBackground(Color.
XXX) method and then repaint the applet.

Abstract Window Toolkit 445

 Let us take an example which creates two lists. One list is filled with items while the other
list is empty. As you select items from the first list and click on the button with the right arrows,
the selected item is deleted from the first list and added in the second list. The clear button will
clear the second list and reset the first list to its original values. The code for the applet is listed
in Table 14.6.

Table 14.6 Methods of List Class

Method Name Particulars
void add(String item) Adds the specifi ed item to the end of scrolling list.
void add(String item, int index) Adds the specifi ed item to the scrolling list at the position

indicated by the index.
void addActionListener (ActionListener l) Adds the specifi ed action listener to receive action events

from this list.
void addItemListener(ItemListener il) Adds the specifi ed item listener to receive item events

from this list.
void deselect(int index) De-selects the item at the specifi ed index.
AccessibleContext getAccessibleContext() Gets the AccessibleContext associated with this list.
ActionListener[] getActionListeners() Returns an array of all the action listeners registered on

this list.
String getItem(int index) Gets the item associated with the specifi ed index.
int getItemCount() Gets the number of items in the list.
ItemListener[] getItemListeners() Returns an array of all the item listeners registered on this

list.
String[] getItems() Gets the items in the list.
Dimension getMinimumSize() Determines the minimum size of this scrolling list.
Dimension getMinimumSize(int rows) Gets the minimum dimensions for a list with the specifi ed

number of rows.
Dimension getPreferredSize() Gets the preferred size of the scrolling list.
Dimension getPreferredSize(int rows) Gets the preferred dimensions for a list with the specifi ed

number of rows.
int getRows() Gets the number of visible lines in this list.
int getSelectedIndex() Gets the index of the selected item on the list.
int[] getSelectedIndexes() Gets the selected indexes on the list.
String getSelectedItem() Gets the selected item on this scrolling list.
String[] getSelectedItems() Gets the selected items on this scrolling list.
Object[] getSelectedObjects() Gets the selected items on this scrolling list in an array of

objects.
int getVisibleIndex() Gets the index of the item that was last made visible by

the method makeVisible.
(Contd)

446 Programming in Java

Method Name Particulars
boolean isIndexSelected
(int index)

Determines if the specifi ed item in this scrolling list is
selected.

boolean isMultipleMode() Determines whether this list allows multiple selections.
void makeVisible(int index) Makes the item at the specifi ed index visible.
protected void processEvent(AWTEvent e) Processes events on the list.
void remove(int position) Removes the item at the specifi ed position from this

scrolling list.
void remove(String item) Removes the fi rst occurrence of an item from the list.
void removeActionListener
(ActionListener l)

Removes the specifi ed action listener so that it no longer
receives action events from this list.

void removeAll() Removes all items from this list.
void removeItemListener(ItemListener l) Removes the specifi ed item listener so that it no longer

receives item events from this list.
void replaceItem(String newValue, int
index)

Replaces the item at the specifi ed index in the scrolling
list with the new string.

void select(int index) The item at the specifi ed index is selected in the list.
void setMultipleMode
(boolean b)

Sets the fl ag that determines whether this list allows
multiple selections.

Example 14.5 Demo of List

 /*<applet code = ShopList.class width = 600 height = 600></applet>*/
 L1 import java.applet.*;
 L2 import java.awt.*;
 L3 import java.awt.event.*;
 L4 public class ShopList extends Applet implements ActionListener {
 L5 List original; List copy;
 L6 public void init(){
 L7 original= new List(8,false);
 L8 copy = new List(10,false);
 L9 populateList();
 L10 add(original);
 L11 Button b1 = new Button(">>>>");
 L1 2 add(b1);
 L1 3 add(copy);
 L1 4 Button b2 = new Button("Clear");
 L1 5 add(b2);
 L1 6 add(new Label("Select an item from the list on the left and hit >>>> to place
 it in the other list"));
 L17 b1.addActionListener(this);

(Table 14.6 Contd)

Abstract Window Toolkit 447

 L1 8 b2.addActionListener(this);
 L1 9 }
 L20 public void populateList(){
 L21 original.add("Grocery");
 L22 original.add("Fruits");
 L23 original.add ("Ice-cream");
 L24 original.add("Shop");
 L25 original.add("Vegetables");
 L26 original.add("Books");
 L27 original.add("AC");
 L28 original.add("Garments");
 L29 original.add("Baby Food");
 L30 }

 L31 public void actionPerformed(ActionEvent ae){
 L32 String str = ae.getActionCommand();
 L33 if (str.equals(">>>>") && original.getSelectedIndex() >= 0) {
 L34 copy.add(original.getSelectedItem());
 L35 original.remove(original.getSelectedIndex());
 L36 }
 L37 else if(str.equals("Clear")){
 L38 original.removeAll();
 L39 copy.removeAll();
 L40 populateList();
 L41 }
 L42 repaint();
 L43 }
 L44 }

Output

Fig. 14.6 Output Showing Two Lists

448 Programming in Java

Explanation
L1–3 Packages are imported.
L4 Class declaration.
L5 Two list references have been created which
are instantiated in L7 and L8. The first argument in
the constructor specifies the number of items in the
list to be shown and the second argument specifies
whether multiple selections are allowed or not.
L9 The method populateList() is defined in
L20–L30 for adding items into the list: original.
L10 The list original is added to the applet.
L11–18 Two buttons are created, added to the
applet and registered with ActionListener for

handling events of the button. Apart from this, a
label is also added.
L31–43 The actionPerformed() method has been
overridden to handle the button event. If the user
has selected an item in the original list (original.
getSelectedIndex()) and pressed the button >>>>,
then the selected item is copied to list copy using
copy.add(original.getSelectedItem()) and
removed from the list original using the original.
remove(original.getSelectedIndex()). If the clear
button is pressed, then all items in the list copy and
original are removed using the removeAll() and the
original list is populated again using populateList()
method.

14.8 CHOICE BOXES

The Choice class is a lot like lists, but it allows you to conserve space since it provides a pop-
up menu of text string choices. The current choice is displayed on top. In order to work with a
choice box, an instance of the Choice class must be created.
 Choice c = new Choice();

Once you have created the choice, the add method enables you to add new entries.
 c.add("Red");
 c.add("Green");

The currently selected item can be changed by using select() method. The selection can be
made based on name or index. For example,
 c.select("Red");
or
 c.select(0);

The getSelectedIndex() method would return the position of the selected item and the
getSelectedItem() returns the name of the selected item, respectively.
 The listener for handling Choice change events is ItemListener. The following example shows
how a choice can be used to change the background color of an applet.

Example 14.6 Demonstration of Choice
 /*<applet code = "ChoiceDemo.class" width = 400 height = 400></applet>*/
 L1 import java.applet.*;
 L2 import java.awt.*;
 L3 import java.awt.event.*;
 L4 public class ChoiceDemo extends Applet implements ItemListener {
 L5 String currentColor = " ";

Abstract Window Toolkit 449

 L6 Choice theOptions;
 L7 Label l;
 L8 public void init(){
 L9 add(l = new Label("Make a choice from the choice box"));
 L10 theOptions = new Choice();
 L11 theOptions.add(" ");
 L12 theOptions.add("Red");
 L13 theOptions.add("Green");
 L14 theOptions.add("Blue");
 L15 theOptions.add("White");
 L16 theOptions.add("Cyan");
 L17 theOptions.add("Yellow");
 L18 theOptions.addItemListener(this);
 L19 add(theOptions);
 L20 }
 L21 public void itemStateChanged(ItemEvent evt){
 L22 currentColor = theOptions.getSelectedItem();
 L23 repaint();
 L24 }
 L25 public void paint(Graphics g){
 L26 if (currentColor.equals("Red")) {
 L27 setBackground(Color.red);
 L28 l.setBackground(Color.red);
 L29 }
 L30 else if (currentColor.equals("Blue")){
 L31 setBackground(Color.blue);
 L32 l.setBackground(Color.blue);
 L33 }
 L34 else if (currentColor.equals("Green")){
 L35 setBackground(Color.green);
 L36 l.setBackground(Color.green);
 L37 }
 L38 else if (currentColor.equals("Cyan")){
 L39 setBackground(Color.cyan);
 L40 l.setBackground(Color.cyan);
 L41 }
 L42 else if (currentColor.equals("Yellow")){
 L43 setBackground(Color.yellow);
 L44 l.setBackground(Color.yellow);
 L45 }
 L46 else {
 L47 setBackground(Color.white);
 L48 l.setBackground(Color.white);}}}

450 Programming in Java

Output

Fig. 14.7(a) Choice Demo

Fig. 14.7(b) Color of the Frame Changes Based on the Selection in the Choice

Explanation
L1–3 Packages are imported.
L4 Applet class defined to implement ItemListener
interface for handling events of the component
Choice.
L5–7 Label and choice reference variables are
created. A string is also defined that represents the
current color of the background.
L8 The init() method for the applet is defined.
L9 The label is instantiated and added to the applet.
L10–19 The Choice object is instantiated.
Individual items are added to the Choice object using
the add() method and later the choice object is added

to the applet. The Choice object is registered with
the ItemListener to receive change events when an
item in the Choice object is selected.
L21–23 itemStateChanged(ItemEvent e) method
of the ItemListener is overridden. When an item is
selected by the user, the current color is set based on
the selection of the items in the choice and then it is
repainted using the repaint() method.
L24–48 Within the paint method, the value of
currentColor is matched with various colors and if
true, the background of the applet is set according to
the color mentioned in the currentColor along with
the background of the label.

Abstract Window Toolkit 451

14.9 TEXTFIELD AND TEXTAREA

The TextField and TextArea classes are two different Java classes for entering text data. The
TextField class handles the single line of text and the TextArea is used for handling multiple
lines of text. Example 14.7 illustrates the use of Textfield.
The following line will create a TextField with 20 columns.
 TextField plaintext = new TextField(20);

The Textfield can also be initialized with some text when it is created.
 TextField plaintext = new TextField("First Name Last Name");

Tables 14.7 and 14.8 list the constructors and methods of TextField and TextArea, respectively.

Table 14.7 TextField Class

Constructors of TextField
Constructor Description

TextField() Constructs a new textfi eld.
TextField(int columns) Constructs a empty textbox with the number of columns specifi ed as

argument.
TextField(String text) Constructs a new textbox initialized with the specifi ed string.
TextField(String text,
 int columns)

Constructs a new textbox initialized with the specifi ed string, and specifi ed
number of columns.

Methods of TextField
Method Description

void addActionListener
(ActionListener l)

Adds the specifi ed action listener to receive action events from this
textfi eld.

boolean echoCharIsSet() Indicates whether or not this textfi eld has set a character for echoing.
AccessibleContext
getAccessibleContext()

Returns the AccessibleContext associated with this textField.

ActionListener[]
getActionListeners()

Returns an array of all the action listeners associated with the textfi eld.

int getColumns() Returns the number of columns in this textfi eld.
char getEchoChar() Returns the character that is to be used for echoing.
Dimension getMinimumSize() Returns the minumum dimensions for this textfi eld.
Dimension getMinimumSize
(int columns)

Returns the minumum dimensions for a textfi eld with the specifi ed number
of columns.

Dimension getPreferredSize() Returns the preferred size of this textfi eld.
Dimension getPreferredSize
(int columns)

Returns the preferred size of this textfi eld with the specifi ed number of
columns.

String paramString() Gets a string representing the state of this textField.
void process
ActionEvent(ActionEvent e)

Processes action events of the textfi eld by dispatching them to any
registered ActionListener objects.

(Contd)

452 Programming in Java

Methods of TextField
Method Description

void processEvent(AWTEvent
e)

Processes AWTEvent on this textfi eld.

void removeActionListener
(ActionListener l)

Removes the associated action listener from this textfi eld.

void setColumns(int
columns)

Sets the number of columns for the textfi eld.

void setEchoChar(char c) Sets the echo character.
void setText(String t) Sets the string within the textfi eld.

Table 14.8 TextArea Class

Constructors of TextArea
Constructor Description

TextArea() Constructs a new textarea with the empty string.
TextArea(int rows, int Columns) Constructs a textarea with the specifi ed number of rows and columns

and empty string.
TextArea(String text) Constructs a textarea with the specifi ed string.
TextArea(String text, int
Rows, int columns)

Constructs a textarea with the specifi ed string, and with the specifi ed
number of rows and columns.

TextArea(String text, int
rows, int columns,
int scrollbars)

Constructs a textarea with the specifi ed string, and with the rows,
columns, and scroll bar.

Methods of TextArea
Method Description

void append (String str) Appends the given text to the textarea’s current text.
int getColumns() Returns the number of columns.
Dimension getMinimumSize() Determines the minimum size of this textarea.
Dimension getMinimumSize (int
rows, int columns)

Determines the minimum size of a textarea with the specifi ed number
of rows and columns.

Dimension getPreferredSize() Returns the preferred size of this textarea.
Dimension getPreferredSize (int
rows, int columns)

Returns the preferred size of a textarea with the specifi ed number of
rows and columns.

int getRows() Returns the number of rows.
void insert(String str, int pos)

Inserts the specifi ed text at the specifi ed position in this textarea.

protected String paramString() Returns a string representing the state of this textarea.
void replaceRange(String str,
int start, int end)

Replaces string between the start and end positions with the specifi ed
replacement string.

void setColumns(int columns) Sets the number of columns.
void setRows(int rows) Sets the number of rows for this textarea.

(Table 14.7 Contd)

Abstract Window Toolkit 453

Example 14.7 Event Handling for a TextField
 /*<applet code = "TextFieldDemo.class" width = 200 height = 100></applet>*/
 import java.awt.*;
 import java.awt.event.*;
 import java.applet.Applet;
 L1 public class TextFieldDemo extends Applet implements TextListener,
 FocusListener, ActionListener {
 L2 Label l;
 L3 Button b;
 L4 TextField tf;
 L5 public void init(){
 L6 tf = new TextField("Textfi eld");
 L7 l = new Label("Make selection",Label.CENTER);
 L8 b = new Button("Submit");
 L9 b.addFocusListener(this);
 L10 tf.addTextListener(this);
 L11 tf.addFocusListener(this);
 L12 tf.addActionListener(this);
 L13 tf.selectAll();
 L14 setLayout(new BorderLayout());
 L15 add(l,BorderLayout.NORTH);
 L16 add(tf,BorderLayout.CENTER);
 L17 add(b,BorderLayout.SOUTH);
 }
 L18 public void focusGained(FocusEvent e)
 {
 L19 if(e.getSource() == tf)
 L20 l.setText("Focus Gained by Text box");
 L21 else if(e.getSource() == b)
 L22 l.setText("Focus Gained by Button");
 }
 L23 public void focusLost(FocusEvent e)
 {

 L24 l.setText("Focus not on Frame now");
 }
 L25 public void actionPerformed(ActionEvent e)
 {
 L26 l.setText("action event");
 }
 L27 public void textValueChanged(TextEvent e)
 {
 L28 l.setText("Trying to change text");
 }
 }

454 Programming in Java

Output

Fig. 14.8(a) Focus on TextField
and the Contents of TextField Selected

Fig. 14.8(b) Contents of the TextField
Altered

Fig. 14.8(c) Focus Gained by Button Fig. 14.8(d) Enter Pressed While Focus on
TextField Generates an ActionEvent

 Fig. 14.8(e) Focus on the DOS Prompt Besides appletviewer Window

Explanation

L1 An Applet is created which inherits three
interfaces: TextListener for tracking changes in
TextField, FocusListener for determining which
component has focus, and ActionListener for per-
forming an action when the user presses enter in a

TextField. The methods of the interfaces have been
implemented later in the program.
L2–4 Label, TextField, and Button reference
variables are created.
L5 init() methods defined for the applet.

Abstract Window Toolkit 455

L6–8 tf, l and b are instantiated. The text passed
as an argument to the TextField constructor will
be displayed in the TextField. The button when
displayed will have the caption ‘Submit’ which is
passed in the constructor of the Button object. The
label is assigned an orientation, i.e., Label.CENTER
which displays the caption of the label in the middle.
L9 FocusListener is registered on button to
capture focus lost and gained status.
L10–12 TextListener, FocusListener, and
ActionListener are registered on TextField to
capture various events.
L13 The Text in the TextField is already selected
when it is displayed to the user. selectAll() is used
for this purpose (see Fig. 14.8(d)).
L14 The layout of the applet is changed to
BorderLayout.
L15–17 The label is added to NORTH, TextField
in CENTER, and button in SOUTH.
L18–24 The methods of FocusListener interface

are overridden, i.e., focusGained(FocusEvent e)
and focusLost(FocusEvent e). L19 checks the
source of the event, i.e., which component has
focus. If it is TextField, the label is set with the
text FocusGainedbyTextbox, else if the focus is on
Button, the label is set with the text ‘Focus Gained
by Button. Focus lost by the TextField is actually
focus gained by the Button and when the focus is lost
by the Button, it is gained back by the TextField.
If the ALT+TAB key combination is pressed, the
window loses focus and the other window gains
focus. The focusLost method is called in that case
(see Fig. 14.8(e)).
L25–26 If ENTER is pressed in the TextField,
an ActionEventis generated and passed to the
actionPerformed method which sets the text of the
label to the ActionEvent.
L27–28 If the value in the TextField changes,
the TextEvent is generated and passed to
textValueChanged method which sets the text of the
label to Trying to change Text (see Fig. 14.8(b)).

14.10 CONTAINER CLASS

Containers allow us to organize components into manageable groups which are extremely
important in order to create a good user interface. A component in the AWT can only be used
if it is held within a container. A component without a container is like a door without a house.
This section covers panels (applets are a subclass of panels.), frames, and dialog boxes (which
are both subclasses of windows).
 The AWT provides four container classes: Panel, Window, Dialog, and Frame. Note that these
four classes can work as containers because of inheritance.
Window It is a top-level display surface. An object of Window class is not attached to nor embedded
within another container. An instance of the Window does not have border, title bar or menu.
Frame It is a top-level window with a border and title. An instance of the Frame class may have
a menu bar, title bar, and borders. It is otherwise like an object of the Window class.
Dialog It is a top-level display surface (a window) with a border and title. An object of the
Dialog class cannot exist without an associated object of the Frame class.
Panel It is a generic container for holding components. An instance of the Panel class provides
a container to which components can be added. It does not add any new method; it simply
implements the container.

14.10.1 Panels
The defi nition of the Panel class is as follows:
 public class Panel extends Container implements Accessible

456 Programming in Java

The Panel class is a direct subclass of the Container class. We have made so many applets by now.
The Panel class is a superclass of the applet that makes all the applets be drawn on the surface of
the panel. Panel is a window that does not contain a title bar or a menu bar. Components (such
as label and button) can be added to the panel object by using the add() method. This add()
method actually belongs to the Container class, the superclass of the panel class. The constructors
responsible for constructing panels are listed in Table 14.9.

Table 14.9 Constructors of Panel Class

 Constructor Description
Panel() Creates a new panel using the default layout manager.
Panel(LayoutManager layout) Creates a new panel with the specifi ed layout.

How to Use Panels?
The following steps are followed while creating a panel:

  Create the panel by writing the following piece of code:
 Panel panel = new Panel();

  Add components to panel by using add() method
 panel.add(someComponent);

 panel.add(someOtherComponent);

If you want to add to an external container, then you have to call the add() method in the
following ways:
 container.add(panel);

or if you want to add from within a container, then call the add() method directly,
 add(panel);

14.10.2 Window
This class creates a top-level window. Top-level window means that it is not contained within
any other object. It has the following signature:
 public class Window extends Container implements Accessible

A Window object is a window with no borders and no menubar. The default layout for a window
is BorderLayout, which we have covered later in the chapter. A window must have a frame,
dialog, or another window defined as its owner when it is constructed, out of which only Frame
is most often used.

14.10.3 Frame
If you are not creating an applet, then you will be most likely creating a Frame window. The
constructors responsible for creating a Frame are
 Frame()
 Frame(String title)

Abstract Window Toolkit 457

The first constructor simply creates a Frame window without any title, while the second one
creates a Frame with the title specified as string in the argument. Some of the methods that can
be used while working with the Frame object are given in Table 14.10.

Table 14.10 Methods of Frame Object

 Method Description
void setSize(int width, int height) It is used to set the dimensions of the window. The new

dimension in the form of width and height is passed as argument.
void setSize(Dimension size) Sets the size of the frame with dimension specifi ed.
Dimension getSize() It is used to return the current size of the window, contained

within the width and height fi elds of Dimension object.
void setVisible(boolean fl ag) It is used to make the window visible after its creation. The

component is visible only if the argument passed is true.
void setTitle(String title) The title in the frame window can be used to set to a new title,

passed as argument.

 Example 14.8 demonstrates how frames are created and used.

Example 14.8 Demonstration of Frame Class
 L1 import java.awt.*;
 L2 public class FrameDemo extends Frame {
 L3 public FrameDemo(String title) {
 L4 super(title);
 L5 }
 L6 public static void main(String[] args) {
 L7 FrameDemo frameDemo = new FrameDemo("Demo Frame");
 L8 frameDemo.setSize(200, 300);
 L9 frameDemo.setVisible(true);
 L10 }}

Output

Fig. 14.9 Frame

458 Programming in Java

Creating a framed application is easy. The typical procedure for frame development is as follows:
 1. Create an instance of the main frame.
 2. Set the frame width and height.
 3. Display the frame.

Explanation
L2 FrameDemo class extends the java.awt.Frame
class.
L3–5 The constructor belonging to the Frame class
sets the frame instance title. So, the FrameDemo class
accepts a string as parameter for title of the frame.
In L4, the super keyword is used to set the title by

calling the constructor of the superclass. L5 signifies
the end of the constructor method.
L6–10 In these lines, main()method is elaborated.
In L8, the setSize()method is used to set the width
and height of the frame to 200 and 300 pixels,
respectively.

14.11 LAYOUTS

Java has the mechanism to specify the type of layout schemes, where components can be added
to a Frame instance. This mechanism is specified by LayoutManager, which is used to specify how
the components can be arranged inside a container, say a Frame. The various LayoutManagers
available in AWT are children of this interface and explained in the sections to follows:
This LayoutManager is actually an interface in java.awt, defined as

 public interface LayoutManager

The above interface is defined for classes that know how to layout Containers. The various
methods defined in the interface are

 void addLayoutComponent(String name, Component comp)

If the layout manager uses a string per component, the above method adds the component, ‘comp’
to the layout, associating it with the string specified by ‘name’.

 void removeLayoutComponent(Component comp)

The method removes the specified component, ‘comp’ from the layout.

 Dimension preferredLayoutSize(Container parent)

The method returns the preferred size dimensions for the specified container, ‘parent’, given
the components it contains.

 Dimension minimumLayoutSize(Container parent)

Returns the minimum size dimensions for the specified container, ‘parent’, given the components
it contains.

 void layoutContainer(Container parent)

The method is responsible for laying out the specified container, ‘parent’. Some of the famous
layouts in Java are discussed below.

Abstract Window Toolkit 459

14.11.1 FlowLayout
There is class belonging to the package java.awt, named as FlowLayout, having the following
signature:

 public class FlowLayout extends Object implements LayoutManager, Serializable

java.awt.FlowLayout arranges components from left-to-right (items) and top-to-bottom (lines),
centering components horizontally. There is five pixel gap between the components arranged in
this layout. FlowLayout recomputes new positions for the components, subject to the constraints
provided, whenever the container size is changed. Example of changing a container size is
resizing a window. This is the default layout for the Applet.
 A flow layout arranges components in a directional flow similar to lines of text in a paragraph.
The direction of flow is determined by the container’s componentOrientation property. The value
of this property can be either of the two:
ComponentOrientation.LEFT_TO_RIGHT Items run left to right and lines flow top to bottom,
e.g., English, French, etc.
ComponentOrientation.RIGHT_TO_LEFT Items run right to left and lines flow top to bottom,
e.g., Arabic, Hebrew, etc.
 More often than not, flow layouts are used to place the buttons on a panel, in a horizontal
manner, until no more buttons fit in the same line. These lines of buttons can be aligned by using
the align property, which can have any one of the following values:

  RIGHT  CENTER
  LEFT  TRAILING
  LEADING

 Flow layouts are one of the simplest layouts available in Java. Here the components are arranged
in a row/line, within a container. When the row is filled completely, the components begin to
group in the next row. The fields, constructors, and methods belonging to the FlowLayout class
are given in Table 14.11.

Table 14.11 FlowLayout Class

Fields of FlowLayout
Field Name Particulars

static int CENTER This value shows that each row of components should be centered.
static int LEADING This value shows that each row of components should be justifi ed to the

leading edge of the container’s orientation, e.g., to the right in right-to-left
orientations.

static int LEFT This value shows that each row of components should be left-justifi ed.
static int RIGHT This value shows that each row of components should be right-justifi ed.
static int TRAILING This value shows that each row of components should be justifi ed to the

trailing edge of the container’s orientation, e.g. to the left in right-to-left
orientations.

(Contd)

460 Programming in Java

Constructors of FlowLayout
Constructor Name Particulars

FlowLayout() Constructs a new FlowLayout with a centered alignment and a default 5-unit
horizontal and vertical gap.

FlowLayout(int align) Constructs a new FlowLayout with the alignment specifi ed as argument and
a default 5-unit horizontal and vertical gap.

FlowLayout
(int align,int hzgap, int
vrgap)

Constructs a new FlowLayout with the indicated alignment and the indicated
horizontal and vertical gaps.

Methods of FlowLayout
Method Name Particulars

void addLayoutComponent
(String name, Component
comp)

Adds the component specifi ed as the argument to the layout.

int getAlignment() Returns the alignment for the layout.
boolean
getAlignOnBaseline()

Returns true in case of vertical alignment of components along their baseline.

int getHgap() Returns the horizontal gap between components and between the components
and the borders of the container.

int getVgap() Returns the vertical gap between components and between the components
and the borders of the container.

void layoutContainer
(Container target)

Lays out the container.

Dimension
minimumLayoutSize
(Container target)

Returns the minimum dimensions needed to layout the visible components in
the target container.

Dimension preferredLayout
Size(Container target)

Returns the preferred dimensions for this layout, given the visible components
in the target container.

void
removeLayoutComponent
(Component comp)

Removes the component, specifi ed as, ‘comp’ from the layout.

void setAlignment(int
align)

Sets the alignment for this layout, as per the argument.

void setAlignOnBaseline
(boolean alignOnBaseline)

Sets whether or not components should be vertically aligned along their
baseline.

void setHgap(int hgap) Sets the horizontal gap between components and also between the
components and the borders of the container.

void setVgap(int vgap) Sets the vertical gap between components and also between the components
and the borders of the container.

String toString() Returns a string representation of the FlowLayout object and its values.

(Table 14.11 Contd)

Abstract Window Toolkit 461

Example 14.9 FlowLayout

 /*<applet code = FlowLayoutDemo.class width = 200 height = 200></applet>*/
 L1 import java.applet.Applet;
 L2 import java.awt.*;
 L3 public class FlowLayoutDemo extends Applet{
 L4 LayoutManager fl owLayout;
 L5 Button [] Buttons;
 L6 public FlowLayoutDemo() {
 L7 int i;
 L8 fl owLayout = new FlowLayout ();
 L9 setLayout (fl owLayout);
 L10 Buttons = new Button [6];
 L11 for (i = 0; i < 6; i++) {
 L12 Buttons[i] = new Button ();
 L13 Buttons[i].setLabel ("Button " + (i + 1));
 L14 add (Buttons[i]);
 L15 }
 L16 }
 L17 }

Output

The output of the program shows the six buttons arranged or added to the applet window in the
FlowLayout fashion.

Fig. 14.10 FlowLayout

Explanation

L1–2 All the necessary classes belonging to the
packages like java.applet and java.awt are
imported.
L3 An applet with the name FlowLayoutDemo is
declared.

L4 A reference to the LayoutManager class is
declared as ‘flowLayout’.
L5 An array of buttons of button type with the name
‘Buttons’ is declared.
L6–16 A constructor, FlowLayoutDemo(), is
declared at L6. In L8, the reference declared at L4,

462 Programming in Java

as flowLayout, is created. In L9, the setLayout()
method is used to set the layout of the window by
passing the object of the FlowLayout class as its
argument. In L10, an array of six buttons is created.
In L11–15, the labels of the six buttons are set using

the setLabel() method of the Button class. After the
labels are set for each button, the buttons are added to
the applet window. In order to avoid setting the label
for each button and then adding it to the container, a
for loop is used for simplifying the purpose.

14.11.2 BorderLayout
It is the default layout of the frame. The class belonging to java.awt, named as BorderLayout,
has the following signature:
 public class BorderLayout extends Object implements LayoutManager2, Serializable

The BorderLayout is a layout where the components can be arranged and resized to fit in five
different regions: north, south, east, west, and center. There can be only one component in each
region and the regions are identified as constants: NORTH, SOUTH, EAST, WEST, and CENTER. Any
of these five constant names can be used while adding a component to a container. For example:
 Panel pnl = new Panel();
 pnl.setLayout(new BorderLayout());
 pnl.add(new Button("submit"), BorderLayout.NORTH);

By default, if you do not mention the string specification, BorderLayout interprets the absence
of a string specification the same as the constant CENTER:
 Panel p2 = new Panel();
 p2.setLayout(new BorderLayout());
 p2.add(new TextArea()); // Same as p.add(new TextArea(),
 // BorderLayout.CENTER);

The various fields, constructors, and methods belonging to the BorderLayout class are mentioned
in Table 14.12.

Table 14.12 BorderLayout Class

Fields of BorderLayout
Field Name Particulars

String AFTER_LAST_LINE Same as PAGE_END, given below.
String AFTER_LINE_ENDS Same as LINE_END, given below.
String BEFORE_FIRST_LINE Same as PAGE_START, given below.
String BEFORE_LINE_BEGINS Same as LINE_START, given below.
String CENTER Middle of container.
String EAST The east layout constraint (right side of container).
String LINE_END The component goes at the end of the line direction for

the layout.
String LINE_START The component goes at the beginning of the line

direction for the layout.

(Contd)

Abstract Window Toolkit 463

Fields of BorderLayout
 Field Name Particulars
String NORTH The north layout constraint (top of container).
String PAGE_END The component comes after the last line of the layout’s

content.
String PAGE_START The component comes before the fi rst line of the

layout’s content.
String SOUTH Bottom of container.
String WEST The west layout constraint (left side of container).

Constructors of BorderLayout
Constructor Name Particulars

BorderLayout()
Constructs a new border layout with no gaps between
components.

BorderLayout(int hgap,
 int vgap)

Constructs a border layout with the specifi ed horizontal
and vertical gap between components.

Methods of BorderLayout
Method Name Particulars

void addLayoutComponent (Component comp,
Object constraints)

Adds the specifi ed component to the layout, using the
specifi ed constraint object.

Object getConstraints (Component comp) Gets the constraints for the specifi ed component.
int getHgap() Returns the horizontal gap between components.
fl oat getLayoutAlignmentX (Container parent) Returns the alignment along the x-axis.
fl oat getLayoutAlignmentY (Container parent) Returns the alignment along the y-axis.
Component getLayoutComponent(Container
target, Object constraints)

Returns the component that corresponds to the given
constraint location based on the target container’s
component orientation.

Component getLayoutComponent (Object
constraints)

Gets the component that was added using the given
constraint.

int getVgap() Returns the vertical gap between components.
void invalidateLayout (Container target) Invalidates the layout, indicating that if the layout

manager has cached information it should be discarded.
void layoutContainer(Container target) Lays out the container argument using this border

layout.
Dimension maximumLayoutSize (Container
target)

Returns the maximum size as dimension object for this
layout given the components in the specifi ed target
container.

Dimension minimumLayoutSize (Container
target)

Determines the minimum size of the target container
using this layout manager.

Dimension preferredLayout Size(Container
target)

Determines the preferred size of the target container
using this layout manager, based on the components in
the container.

(Table 14.12 Contd)

(Contd)

464 Programming in Java

Methods of BorderLayout
 Method Particulars
void removeLayoutComponent (Component comp) Removes the specifi ed component from this border

layout.
void setHgap(int hgap) Sets the horizontal gap between components.
void setVgap(int vgap) Sets the vertical gap between components.
String toString() Returns a string representation of the state of this

border layout.

Let us take an example for BorderLayout. Since the default layout manager for frames is
BorderLayout, we do not explicitly set the layout manager.

Example 14.10 BorderLayout

 L1 import java.awt.*;
 L2 public class BLayoutDemo extends Frame {
 L3 public BLayoutDemo(String title) {
 L4 super(title);
 L5 add(new Button("North"),BorderLayout.NORTH);
 L6 add(new Button("South"),BorderLayout.SOUTH);
 L7 add(new Button("East"),BorderLayout.EAST);
 L8 add(new Button("West"),BorderLayout.WEST);
 L9 add(new Button("Center"),BorderLayout.CENTER);
 L10 setSize(400, 270);
 L11 setVisible(true);
 }
 L12 public static void main(String[] args) {
 L13 BLayoutDemo blaypout = new BLayoutDemo("Border Layout Example");
 }}

Output

Fig. 14.11(a) BorderLayout

(Table 14.12 Contd)

Abstract Window Toolkit 465

In the above frame, components placed within a region extend to fit it. For example, components
in NORTH and SOUTH have stretched themselves horizontally to fit in that entire region and similarly,
components in the EAST and WEST have stretched themselves vertically. The component in the
CENTER stretches both horizontally and vertically to fill any leftover space.

Explanation
L2 Class BLayoutDemo declared to extend the
frame.
L3–11 The constructor belonging to the Frame
class sets the Frame instance title. Likewise, the
BlayoutDemo class accepts a string as parameter
for the title of the frame. In L4, super keyword is

used to set the title by calling the constructor of the
superclass. In L5–9, button objects are created and
added to the frame using the add() method. The
constraints for the button are specified as the second
argument, i.e., BorderLayout.NORTH and so on. L9
signifies the end of the constructor method.

 If no constraint is specified and add(Component c) is used for adding buttons, then by default, all
buttons would be placed in center and they will occupy the entire frame. The button added in the
end would be displayed on top of the frame. The remaining buttons will be beneath the top button
displayed to the user. Figure 14.11(b) shows when buttons are added using add(Component c).
 The code that produces the above output is shown below:
 add(new Button("North"));
 add(new Button("South"));
 add(new Button("East"));
 add(new Button("West"));
 add(new Button("Center"));

Fig. 14.11(b) BorderLayout with Default Settings

14.11.3 CardLayout
 CardLayout class inherits Object class and implements LayoutManager2, serializable interfaces.
Object of cardLayout acts as layout manager for a container. In a container each component is

466 Programming in Java

treated as a card by cardLayout object. Each card is kept on another like a stack and only one
card can be visible at a time. When the container is displayed after adding the first component,
then the first component is visible.
 The ordering of cards is determined by the container’s own internal ordering of its component
objects. CardLayout defines a set of methods that allow an application to flip through these cards
sequentially, or to show a specified card. The various constructors and methods belonging to the
cardLayout class are mentioned in Table 14.13.

Table 14.13 CardLayout

Constructors of CardLayout
Constructors Name Particulars
CardLayout() Creates a new default card layout with space of size zero.
CardLayout (int h, int v) You can create a new card layout with the specifi c horizontal and

vertical space.
Methods of CardLayout

Method Name Particulars
addLayoutComponent
(Component cmp, Object name)

Adds the specifi c component to the internal table of card layout.

void fi rst(Container cont) Visible the fi rst card of the container.
int getHgap() Used to get the horizontal space between components.
fl oat getLayoutAlignmentX
(Container cont)

Used to get alignment along the x axis.

fl oat getLayoutAlignmentY
(Container cont)

Used to get alignment along the y axis.

int getVgap() Used to get the vertical space between components.
void last(Container cont) Visible the last card of the container.
Dimension maximumLayoutSize
(Container target)

Returns the maximum dimensions for this layout given the components
in the specifi ed target container.

Dimension minimumLayoutSize
(Container target)

Returns the minimum dimensions for this layout given the components
in the specifi ed target container.

void next(Container cont) Shows the next card of the specifi c container.
Dimension preferredLayout Size
(Container cont)

Returns the dimension size of the container argument using card layout.

void Previous(Container cont) Shows the previous card of the specifi ed container.
void removeLayoutComponent
(Component cmp)

Removes particular component from the layout.

void setHgap(int h) Sets the horizontal space between components.
void setVgap(int v) Sets the vertical space between components.
void show(Container cont, String
name)

Shows the components that were added to the layout with the specifi c
name by using add layout component.

String toString() Returns the state of card layout as string representation.

Abstract Window Toolkit 467

Example 14.11 CardLayout Demo

 L1 import java.awt.*;

 L2 import java.awt.event.*;

 L3 public class CardDemo extends Frame implements ActionListener {

 L4 Panel cardPanel;

 L5 Panel p1, p2, p3;

 L6 Panel buttonP;

 L7 Button B1,B2,B3;

 L8 CardLayout cLayout;

 L9 public void cardDemo(){

 L10 cardPanel = new Panel();

 L11 cLayout = new CardLayout();

 L12 cardPanel.setLayout(cLayout);

 L13 p1 = new Panel();

 L14 p1.setBackground(Color.red);

 L15 p2 = new Panel();

 L16 p2.setBackground(Color.yellow);

 L17 p3 = new Panel();

 L18 p3.setBackground(Color.green);

 L19 B1 = new Button("Red");

 L20 B1.addActionListener(this);

 L21 B2 = new Button("Yellow");
 L22 B2.addActionListener(this);

 L23 B3 = new Button("Green");

 L24 B3.addActionListener(this);

 L25 buttonP = new Panel();

 L26 buttonP.add(B1);

 L27 buttonP.add(B2);

 L28 buttonP.add(B3);

 L29 cardPanel.add(p1, "B1");

 L30 cardPanel.add(p2, "B2");

 L31 cardPanel.add(p3, "B3");

 L32 setLayout(new BorderLayout());

 L33 add(buttonP, BorderLayout.SOUTH);

 L34 add(cardPanel, BorderLayout.CENTER);

 L35 setVisible(true);

 L36 setSize(300,200);

 L37 setTitle("DemoCard");

 L38 addWindowListener(new WindowAdapter(){

468 Programming in Java

 public void windowClosing(WindowEvent we){

 System.exit(0);

 }});

 }

 L39 public void actionPerformed(ActionEvent e){

 L40 if (e.getSource() == B1)

 L41 cLayout.show(cardPanel, "B1");

 L42 if (e.getSource() == B2)

 L43 cLayout.show(cardPanel, "B2");

 L44 if (e.getSource() == B3)

 L45 cLayout.show(cardPanel, "B3");

 }

 L46 public static void main(String a[]){

 L47 CardDemo demo = new CardDemo();

 L48 demo.cardDemo();

 } }

Output

Fig. 14.12 CardLayout

Explanation

This example shows the CardLayout manager.
Pressing any one of the three buttons available will
show a different “card”.
L4–8 In these lines, we have created reference
variables for panels, buttons, and card layout. The
cardPanel will hold various cards. Three panels

(p1, p2, p3) will constitute different cards. A panel
button is created.
L9 Method declaration.
L10 A cardPanel that will contain cards created
in this program.
L11 We have created a CardLayout object named
as cLayout.

Abstract Window Toolkit 469

L12 Sets the layout of the cardPanel as CardLayout.
L13–18 In these lines, three dummy panels are
created to show the cards, and their backgrounds are
set with three different colors: red, green, and yellow.
L19–24 We have created three buttons and added
the ActionListener to it.
L25–28 A panel (buttonP) is created and buttons
are added to this panel.
L29–31 Three panels (p1, p2, p3) are added to

cardPanel. These will be flipped based on the user
interaction with these three buttons.
L32 Sets the layout of the frame as BorderLayout.
L33–34 Both panels, button panel (buttonP) and
card panel (cardPannel), are added to the frame.
L38 Closes the window when cross is clicked on
the frame.
L40–45 If red button is clicked, the panel with
red background is shown. Panels in card layout are
switched using show() method.

14.11.4 GridLayout
The class belonging to java.awt, named as GridLayout, has the following signature:
 public class GridLayout extends Object implements LayoutManager, Serializable

The GridLayout class is a layout manager that lays out a container’s components in a rectangular
grid. This is a layout manager which can be used to arrange controls in a container. GridLayout
has a specified number of rows and columns, where the container is divided into equal-sized
rectangles, and one component is placed in each rectangle.
 The GridLayout arranges the components in rows and columns order. Each component fills
up its respective grid cell. Table 14.14 describes the constructors and methods of GridLayout.

Table 14.14 GridLayout Class

Constructors of GridLayout
 Constructor Name Particulars
GridLayout() Creates a grid layout with a default of one column per component, in

a single row.
GridLayout(int row, int cols) Creates a grid layout with the specifi ed number of rows and columns.
GridLayout(int row, int cols,
int hzgap, int vrgap)

Creates a grid layout with the specifi ed number of rows and columns
with horizontal and vertical gap.

Methods of GridLayout
Method Name Particulars

void addLayoutComponent (String
name, Component comp)

Adds the specifi ed component with the specifi ed name to the layout.

int getColumns() Gets the number of columns in this layout.
int getHgap() Returns the horizontal gap between components.
int getRows() Gets the number of rows in this layout.
int getVgap() Returns the vertical gap between components.
void layoutContainer(Container
parent)

Lays out the specifi ed container using this layout.

(Contd)

470 Programming in Java

Methods of GridLayout
Method Name Particulars

Dimension minimumLayoutSize
(Container parent)

Determines the minimum size of the container argument using this
grid layout.

Dimension preferredLayout
Size(Container parent)

Determines the preferred size of the container argument using this
grid layout.

void removeLayoutComponent
(Component comp)

Removes the specifi ed component.

void setColumns(int cols) Sets the number of columns in this layout to the specifi ed value.
void setHgap(int hgap) Sets the horizontal gap between components to the specifi ed value.
void setRows(int rows) Sets the number of rows in this layout to the specifi ed value.
void setVgap(int vgap) Sets the vertical gap between components to the specifi ed value.
String toString() Returns a string representation of the grid layout’s object.

Example 14.12 GridLayout

 L1 import java.awt.event.*;
 L2 import java.awt.*;
 L3 class GridLayoutDemo extends Frame{
 L4 public GridLayoutDemo() {
 L5 super("Laying Out Components using GridLayout");
 L6 Panel p = new Panel(new GridLayout(5,2, 20,50));
 L7 p.add(new Label("Name"));
 L8 p.add(new TextField(5));
 L9 p.add(new Label("Roll No"));
 L10 p.add(new TextField(3));
 L11 p.add(new Label("Class"));
 L12 p.add(new TextField(3));
 L13 p.add(new Label("Total Marks"));
 L14 p.add(new TextField(3));
 L15 p.add(new Button("Submit"));
 L16 p.add(new Button("Cancel"));
 L17 add(p);
 L18 setSize(400,400);
 L19 setVisible(true);
 L20 addWindowListener(new WindowAdapter(){
 L21 public void windowClosing(WindowEvent e){
 L22 System.exit(0);
 L23 }
 L24 });
 L25 }
 L26 public static void main(String[] args) {
 L27 GridLayoutDemo g=new GridLayoutDemo();
 }}

(Table 14.14 Contd)

Abstract Window Toolkit 471

Output

Fig. 14.13 Demo of GridLayout

Explanation
L1–2 java.awt and its sub-package awt.event
are imported.
L3 A frame is created.
L4 Constructor for the class is defined.
L5 The constructor of Frame is called using the
super keyword. The string passed to it is used as
the title of the frame.
L6 A Panel object is created to hold the component.
The layout for Panel object is specified as an
argument in the constructor. The layout specified is
GridLayout with number of rows as 5, number of
columns as 2, horizontal gap between the columns

is specified as 20, and vertical gap between the rows
is specified as 50.
L7–17 Components are added to the panel. Labels
and TextFields are added to the panel object along
with two other buttons. The panel object is added to
frame using add(Component c)method.
L18–19 The size of the frame is set and the
visibility of the frame is set to true.
L20–25 WindowListener is registered with frame
so that when the cross on the frame title bar is pressed,
the application frame is closed.

14.11.5 GridBagLayout
GridBagLayout class extends Object and implements interfaces LayoutManager2 and Serializable.
Using GridBagLayout class, we can arrange components in a more controlled way in horizontal
as well in vertical direction. In GridBagLayout, the components need not be of same size in a
row. We can arrange different sizes of components by specifying their position within the cell
of a grid in the same row. One more advantage is that each row can contain dissimilar number
of columns. In GridBagLayout, the size and position of components are dependent on set of
constraints linked to it.

472 Programming in Java

 An object called GridBagConstraint contains the constraint which includes the height, width
of a cell, placement, and alignment of components. Each GridBagLayout object maintains a
rectangular grid of cell. A component can occupy one or more cells and it is called its display
area. ComponentOrientation class controls the orientation of the grid.
 We need to customize GridBagConstraints objects to use GridBagLayout effectively associated
with its components. Customization of a GridBagConstraints object can be done by setting one
or more of its instance variables. These instance variables are discussed below.

 gridx and gridy
The initial address of cell of a grid is gridx = 0 and gridy = 0. GridBagConstraints.RELATIVE
(the default value) is used to specify that the component be aligned immediately following the
component that was added to the container just before addition of this component.

 gridwidth and gridheight
gridwidth constraint specifies the number of cells in a row and gridheight specifies number of
columns in display area of the components. The default value is 1.

 fi ll
When the requested size of components is smaller than the size of display area, then we use this.
We can also use it to resize the component. It is used to determine whether (and how) to resize
the component. Values for this field are as follows:

 GridBagConstraints.NONE (default value–does not grow when the window is resized)
 GridBagConstraints.HORIZONTAL (this value fi lls all the horizontal display area of a

component, but it does not change height).
 GridBagConstraints.VERTICAL (it changes the height of a component, but does not

change its width)
 GridBagConstraints.BOTH (makes the component fi ll its display area horizontally and

vertically, both).

 ipadx and ipady
The ipadx and ipady fields are used for internal padding of components in given layout. If
ipadx is specified, the width of the component will be the minimum width plus ipadx pixels.
Similarly, ipady plus minimum height is the height of the component.

 insets
The insets field is used for external padding of components. It is used for spacing between the
component and the edges of its display area. For example,
 GridBagConstraints c = new GridBagConstraints();
 c.insets = new Insets(int top, int left, int bottom, int right)

 anchor
The anchor field specifies the position of a component in its display area. There are three types
of possible values: absolute, orientation-relative, and baseline-relative.

Abstract Window Toolkit 473

Absolute Values are used to place components at specific locations. These absolute values can
be any of the following:

 GridBagConstraints.NORTH

 GridBagConstraints.SOUTH

 GridBagConstraints.WEST

 GridBagConstraints.EAST

 GridBagConstraints.NORTHWEST

 GridBagConstraints.NORTHEAST

 GridBagConstraints.SOUTHWEST

 GridBagConstraints.SOUTHEAST

 GridBagConstraints.CENTER (The default)

Orientation-relative Values are relative to the orientation of container. These can be any of
the following:

 GridBagConstraints.PAGE_START

 GridBagConstraints.PAGE_END

 GridBagConstraints.LINE_START

 GridBagConstraints.LINE_END

 GridBagConstraints.FIRST_LINE_START

 GridBagConstraints.FIRST_LINE_END

 GridBagConstraints.LAST_LINE_START

 GridBagConstraints.LAST_LINE_END

Baseline-relative Values were added by JDK 6. With the help of these values, you can place a
component vertically relative to the baseline of row. Possible values are as follows:

 GridBagConstraints.BASELINE

 GridBagConstraints.BASELINE_LEADING

 GridBagConstraints.BASELINE_TRAILING

 GridBagConstraints.ABOVE_BASELINE

 GridBagConstraints.ABOVE_BASE LINE_LEADING

 GridBagConstraints.ABOVE_BASELINE_TRAILING

 GridBagConstraints.BELOW_BASELINE

 GridBagConstraints.BELOW_BASELINE_LEADING

 GridBagConstraints.BELOW_BASELINE_TRAILING

 weightx and weighty
These are used to distribute space (horizontal and vertical). If two weights are specified, then all
the components will clump at the center of the container. The value of weight lies between 0.0
and 1.0. The weight of GridBagLayout object is by default zero. The following example shows
how components are displayed using GridBagLayout when no constraints for the specified have
been specified.

474 Programming in Java

Example 14.13 GridBagLayout without Constraints

 L1 import java.awt.*;

 L2 public class GBLayoutDemo1 extends Frame {

 L3 public GBLayoutDemo1()

 {

 L4 setLayout(new GridBagLayout());

 L5 setTitle("GridBagLayout Without Constraints");

 L6 Label l=new Label("Name");

 L7 add(l);

 L8 TextField t = new TextField();

 L9 add(t);

 L10 Button b = new Button("Submit");

 L11 add(b);

 L12 Button b1 = new Button("Reset");

 L13 add(b1);

 L14 setSize(200,200);

 L15 setVisible(true);

 }

 L16 public static void main(String args[]){

 L17 GBLayoutDemo1 d = new GBLayoutDemo1();

 }}

Output

Fig. 14.14 GridBagLayout with no Constraint Specified

Abstract Window Toolkit 475

Explanation

L1 Imports the java.awt package.
L2 Class definition begins.
L3 Constructors defined.
L4 The layout is set to GridBagLayout() using
setLayout method.
L5 setTitle method is used for setting the title

of the frame.
L6–13 Label, TextField, and two Buttons are
created and added to the frame. All the components
are displayed by default in a single row and center
aligned.
L14–15 Sets the size and visibility of the frame.

 Example 14.13 does not place any constraint on the alignment of the components. In the next
example, we would place constraint like fill, gridx, and gridy on the components. The fill
attribute specifies whether components should occupy the entire available space horizontally,
vertically, in both directions or not. The gridx and gridy attributes specify the row and column
combination to display the components.

Example 14.14 GridBagLayout with fi ll, gridx, and gridy Constraints

 L1 import java.awt.*;
 L2 public class GBLayoutDemo2 extends Frame {
 L3 public GBLayoutDemo2()
 {
 L4 setLayout(new GridBagLayout());
 L5 setTitle("GridBagLayout With fi ll, gridx and gridy Constraints");
 L6 GridBagConstraints c = new GridBagConstraints();
 L7 c.fi ll = GridBagConstraints.HORIZONTAL;
 L8 Label l = new Label("Name");
 L9 add(l,c);
 L10 TextField t = new TextField();
 L11 add(t,c);
 L12 c.gridx = 0;
 L13 c.gridy = 1;
 L14 Button b = new Button("Submit");
 L15 add(b,c);
 L16 c.gridx = 1;
 L17 c.gridy = 1;
 L18 Button b1 = new Button("Reset");
 L19 add(b1,c);
 L20 setSize(200,200);
 L21 setVisible(true);
 }
 L22 public static void main(String args[])
 {
 L23 GBLayoutDemo2 d = new GBLayoutDemo2();
 }
 }

476 Programming in Java

Output

Fig. 14.15(a) GridBagLayout with
 fill, gridx, and gridy Constraints
Specified

Fig. 14.15(b) Output is Displayed when the
Fill Attribute is None (L7 is commented)

Explanation
L6 GridBagConstraints object is created.
L7 The fill attribute is set as HORIZONTAL.
The fill attribute makes the component fill the
space horizontally in its display area and aligns
all the components (see Fig. 14.15(a)). If this line
is commented, the output displayed is shown in
Fig.14.15(b). Note the size of the TextField.
L8–9 Label is instantiated and added to the frame
along with the constraints specified as second
argument in the add method.
L10–11 TextField is instantiated and added to the
frame along with the constraints specified as second
argument in the add method.
L12–13 Specifies gridx and gridy constraints with

values 0 and 1, respectively. The gridx constraint
is assigned 0 to indicate first column and gridy is
assigned 1 to indicate second row.
L14–15 A button is added with all the constraint
mentioned above, i.e., the button will be added in
second row, first column (see Fig.14.15(a)).
L16–17 Specifies gridx and gridy constraints with
values 1 and 1, respectively. The gridx constraint is
assigned 1 to indicate second column and gridy is
assigned 1 to indicate second row.
L18–19 Another button is added with a new
constraint mentioned above, i.e., the button will be
displayed in second row, second column (see Fig.
14.15(a)).

 In Example 14.14, we had used only gridx, gridy, and fill constraints. But still the components
are displayed only in the center of the frame. To distribute the extra horizontal and vertical space
in the rows and columns, the weightx and weighty attributes are used.

Example 14.15 GridBagLayout with weightx, weighty, and ipady Constraints

 L1 import java.awt.*;
 L2 public class GBLayoutDemo3 extends Frame {

Abstract Window Toolkit 477

 L3 public GBLayoutDemo3() {
 L4 setLayout(new GridBagLayout());
 L5 setTitle("GridBagLayout with weightx, weighty and ipady Constraints");
 L6 GridBagConstraints c = new GridBagConstraints();
 L7 c.weighty = 1;
 L8 c.weightx = 1;
 L9 c.fi ll = GridBagConstraints.BOTH;
 L10 Label l = new Label("Name");
 L11 add(l,c);
 L12 TextField t = new TextField();
 L13 add(t,c);
 L14 c.gridx = 0;
 L15 c.gridy = 1;
 L16 Button b = new Button("Submit");
 L17 add(b,c);
 L18 c.fi ll = GridBagConstraints.NONE;
 L19 c.gridx = 1;
 L20 c.gridy = 2;
 L21 c.ipady = 30;
 L22 Button b1 = new Button("Reset");
 L23 add(b1,c);
 L24 setSize(200,200);
 L25 setVisible(true); }
 L26 public static void main(String args[])
 {
 L27 GBLayoutDemo3 d = new GBLayoutDemo3();
 }
 }

Output

Fig. 14.16(a) GridBagLayout with
Constraint of weighty specified Apart
from weightx and ipady

Fig. 14.16(b) GridBagLayout with
weightx and ipady Constraints Specified
(L7 commented)

478 Programming in Java

Fig. 14.16(c) GridBagLayout with weighty and ipady Constraints Specified
 (L8 commented)

Explanation

14.12 MENU

Menu is a class which inherits MenuItem class and two interfaces: MenuContainer and Accessible.
Menubar deploys a menu object which is a dropdown menu component. It shows a list of menu
choices. To implement this concept, we use three classes: MenuBar, Menu, and MenuItem. The
various fields, constructors, and methods belonging to the Menu class are mentioned in Table 14.15.
 A menubar may contain more than one menu objects and each menu object contains a number
of MenuItem objects. CheckboxMenuItem can also be used as a menu option. MenuComponent is an
abstract class which inherits the Object class and implements the Serializable interface. All
these menu classes are basically the subclasses of MenuComponent, not Component. So they are
placed on the container in a way different from other components (e.g., buttons, labels, etc.).
The method setMenuBar() of the Frame class is used to set the menubar on the frame. Menubar
cannot be placed on the applet because they are not subclasses of Frame and these do not inherit
the setMenuBar() method, so there is no way of placing a menubar on the applet. A menubar
contains some shortcut keys for menu items. A menu item can have an instance of MenuShortcut.
Menu subclass overrides the method and does not send any event to the frame until one of its
subitems is selected. The setMenuBar() method is used to associate a menu bar with frame. The
constructors and methods belonging to the MenuBar class are mentioned in Table 14.16.

L7–8 weightx and weighty are specified as
1 and the fill attribute is specified as BOTH,
so the components fill up the area horizontally
and vertically (see Fig. 14.16(a)). If only weightx
is specified, then components occupy the area
horizontally (see Fig. 14.16(b)) because the extra
horizontal space is distributed among columns. If

only weighty is specified, then components occupy
the area vertically (see Fig. 14.16(c)) because extra
vertical space is distributed among rows.
L18 The fill attribute is specified as none for
the reset button.
L21 The ipady attribute is used to specify the
vertical pad for the reset button. Take a note of the
size of the reset button in Fig. 14.16(a).

Abstract Window Toolkit 479

Table 14.15 Menu Class

Constructors of Menu
Constructors Description

Menu() Creates a new menu.
Menu(String label) Creates a new menu with a label.
Menu(String label, boolean
tearOff)

Creates a new menu with a label, indicating whether the menu can be
torn off.

Methods of Menu
Methods Description

add(MenuItem m) Adds the specifi ed menu item to the menu.
add(String label) Adds a item with the specifi ed label to the menu.

Methods of Menu
Methods Description

deleteShorcut(MenuShortcut s) Used to delete the menu shortcuts.
getAccessibleContext() Gets the AccessibleContext associated with this menu.
getItemCount() Gets the number of items in the menu.
getItem(int index) Gets the item located at the given index of the menu.
removeAll() Removes all items from the menu.

Table 14.16 MenuBar Class

Constructors of MenuBar
Constructors Description
MenuBar() Creates a new menubar.

Methods of MenuBar
 Methods Description
add(Menu m) Adds the particular menu to the menu bar.
deleteShorcut(MenuShortcuts) Used to deletes the specifi ed menu shortcut.
getAccessibleContext() Gets the AccessibleContext associated with this MenuBar.
shortcuts() Used to manage menu bar shortcut as an Enumeration.
remove(int index) Removes the menu placed at the specifi ed index from the

Menubar.

Steps to Add Menus to a Frame
 Create a menu bar instance and set the menu bar
 setMenuBar(mbar);

 Create a menu
 Menu fmenu = new menu ("File")

480 Programming in Java

 Create MenuItem’s for menu
 MenuItem n = new MenuItem ("New")
 CheckboxMenuItem o = new CheckboxMenuItem ("Abc")

 For handling events
 n.addActionListence (this)

 Add menuItem to the menu
 fmenu.add(n); fmenu.add(o);

 Add menu to the menubar
 mbar.add(fmenu);

 MenuItem It extends the MenuComponent class and implements the Accessible and Serializable
interface. All items contained in a menu must belong to the class MenuItem, or one of its subclasses.
Table 14.17 shows the constructors of MenuItem.
 MenuShortcut It inherits the Object class and implements Serializable interface. The MenuShortcut
class acts as a keyboard accelerator for a MenuItem. These are not created by characters but by
some keycodes like Ctrl-c, Ctrl-v. Table 14.18 lists the constructors of MenuShortcut.

Table 14.17 Constructors of MenuItem

Constructor Name Description
MenuItem() Constructs a new MenuItem with an blank label and there is no keyboard shortcut.
MenuItem(String label) Constructs a new MenuItem with the mentioned label and also there is no keyboard

shortcut.
MenuItem(String label,
MenuShortcut s)

Create a menu item with particular keyboard shortcut.

Table 14.18 Constructors of MenuShortcut

 Constructor Name Description
MenuShortcut(int key) Constructs a menu shortcut with a keycode.
MenuShortcut(int key, boolean
useShiftModifi er)

The menu shortcut creates with a keycode and boolean value
indicates that shift key be used with keycode.

Example 14.16 Menu Demo

 L1 import java.awt.event.*;
 L2 import java.awt.*;
 L3 public class DemoMenu extends Frame implements ActionListener {
 L4 public void demoMenu() {
 L5 setTitle("MenuDemo");
 L6 setSize(250,150);
 L7 MenuBar menuBar = new MenuBar();
 L8 setMenuBar(menuBar);
 L9 MenuShortcut n = new MenuShortcut(KeyEvent.VK_N);

Abstract Window Toolkit 481

 L10 MenuShortcut o = new MenuShortcut(KeyEvent.VK_O);
 L11 MenuShortcut x = new MenuShortcut(KeyEvent.VK_X);
 L12 Menu fi leMenu = new Menu("File");
 L13 Menu editMenu = new Menu("Edit");
 // create and add simple menu item to one of the dropdown menu
 L14 MenuItem newAction = new MenuItem("New",n);
 L15 MenuItem openAction = new MenuItem("Open",o);
 L16 MenuItem exitAction = new MenuItem("Exit",x);
 L17 MenuItem cutAction = new MenuItem("Cut");
 L18 MenuItem copyAction = new MenuItem("Copy");
 L19 MenuItem pasteAction = new MenuItem("Paste");
 L20 newAction.addActionListener(this);
 L21 openAction.addActionListener(this);
 L22 exitAction.addActionListener(this);
 L23 fi leMenu.addSeparator();
 L24 fi leMenu.add(newAction);
 L25 fi leMenu.addSeparator();
 L26 fi leMenu.add(openAction);
 L27 fi leMenu.addSeparator();
 L28 fi leMenu.add(exitAction);
 L29 menuBar.add(fi leMenu);
 L30 cutAction.addActionListener(this);
 L31 copyAction.addActionListener(this);
 L32 pasteAction.addActionListener(this);
 L33 editMenu.add(cutAction);
 L34 editMenu.addSeparator();
 L35 editMenu.add(copyAction);
 L36 editMenu.addSeparator();
 L37 editMenu.add(pasteAction);
 L38 editMenu.addSeparator();
 L39 menuBar.add(editMenu);
 L40 setVisible(true);
 L41 addWindowListener(new WindowAdapter(){
 L42 public void windowClosing(WindowEvent we){
 L43 System.exit(0);
 }
 });
 }
 L44 public void actionPerformed(ActionEvent e) {
 L45 String action = e.getActionCommand();
 L46 if(action.equals("New")){
 L47 System.out.println("New");
 }
 L48 else if(action.equals("Open")){
 L49 System.out.println("File");
 }
 L50 else if(action.equals("Exit")){

482 Programming in Java

 L51 System.exit(0);
 }
 L52 else if(action.equals("Cut")){
 L53 System.out.println("Cut");
 }
 L54 else if(action.equals("Copy")){
 L55 System.out.println("Copy");
 }
 L56 else if(action.equals("Paste")){
 L57 System.out.println("Paste");
 }
 }
 L58 public static void main(String[] args) {
 L59 DemoMenu demo= new DemoMenu();
 L60 demo.demoMenu();
 } }

Output

Fig. 14.17(a) A Sample Menu

Fig. 14.17(b) A Sample of Output Displayed from Menu by Pressing Shortcut Keys

Abstract Window Toolkit 483

Explanation
L7–8 MenuBar object is created and it is set on the
frame using the method setMenuBar.
L9–11 Three MenuShortcuts have been created
with the keys n, o, and x. Pressing Ctrl + n would
refer to a menu onto which it is added.
L12–13 Two menus have been created: fileMenu
and editMenu.
L14–16 Three MenuItems have been created and
shortcuts have been specified for all the three as
arguments in the constructors (these will be added
to file menu).
L17–19 Three other MenuItem have been created
without any shortcuts (these will be added to edit
menu).
L20–22 The menu items are registered with
ActionListener for receiving event notifications.

L23–28 Three menu items created in L14–16 are
added to the fileMenu using the add method. A
separator (line) is added after every menu item using
addSeparator method.
L 29 fileMenu is added to MenuBar.
L30–32 Three menu items (created in L17–19) are
registered with ActionListener for receiving event
notifications.
L33–38 Three menu items created in L17–19
are added to the editMenu using add method. A
separator (line) is added after every menu item using
addSeparator method.
L39 The editMenu is added to the menu bar.
L46–57 If New menu item is clicked or ctrl+n
key is pressed, then L47 is executed and so on for
the rest of cases.

14.13 SCROLLBAR

Scrollbars are used to select continuous values through a range of integer values (the range set
between maximum and minimum). These scrollbars can either be set horizontally or vertically.
The scrollbar’s maximum and minimum values can be set along with line increments and page
increments.
 For creating a scrollbar, you have to create an instance of the Scrollbar class. This class
defines the following constructors:
 Scrollbar() throws HeadlessException
 Scrollbar(int direction) throws HeadlessException
 Scrollbar(int direction, int initValue, int pageSize, int min, int max) throws
 HeadlessException

 The first constructor does not have any argument; by default it creates a vertical scrollbar.
In the second and third constructors, the direction as argument specifies the orientation of the
scrollbar. If the directions can either be specified as Scrollbar.VERTICAL or Scrollbar.HORIZONTAL,
then vertical or horizontal scrollbars respectively are created. The third constructor can have the
initial value of the scrollbar passed as argument initValue, the number of units represented by
height of the page that gets incremented or decremented when the scrollbar is clicked between
the arrow and the scroll box is passed as argument pageSize and the minimum and maximum
values for the scrollbar passed as argument ‘min’ and ‘max’.

Arrows bubble Arrows

Fig. 14.18

484 Programming in Java

The following line will create a horizontal scrollbar:

 Scrollbar demoScroll1 = new Scrollbar(Scrollbar.HORIZONTAL);

The following line will create a vertical scrollbar with a starting position of 0, a thumb (bubble)
size of 5, a minimum value of 0, and a maximum value of 255:

 Scrollbar demoScroll2 =new Scrollbar(Scrollbar.VERTICAL, 0, 5, 0, 255);

There are three different parts of a scrollbar that allow you to select a value between the maximum
and minimum in different ways. The arrows increment or decrement with the line updates which
can be set to a small unit. By default its value is 1. If you click anywhere within the maximum
and minimum range on a scrollbar, the page value will be either incremented or decremented
by a value 10 (default value). The bubble in the middle allows you to traverse the scrollbar
quickly from one end to the other by clicking and dragging it. The visible portion is represented
by the bubble (box in scrollbar). The size of the bubble is represented by the third argument
(5) as shown in the constructor. Table 14.19 lists the methods that can be used with scrollbars.
 Interaction with the scrollbar generates an AdjustmentEvent object. The getAdjustment()
method of the AdjustmentEvent class is used to obtain the type of adjustment. The types which
can be returned by this method are

 BLOCK_DECREMENT: means ‘page-down event been generated.
 BLOCK_DECREMENT: means ‘page-event event has been generated’
 TRACK: means ‘absolute tracking event has been generated’
 UNIT_DECREMENT: means ‘line-down button in the scrollbar has been generated’
 UNIT_INCREMENT: means ‘line-up button in the scrollbar has been generated’

Table 14.19 Methods of Scrollbar

Method Description
void setValues(int initValue, int
pageSize, int min, int max)

The parameters here mean the same as in the third
constructor mentioned above. If you have used either of
the fi rst two constructors to create a scrollbar you set the
values by the above method so that the values of the above
parameters are set for the scrollbar.

int getLineIncrement() To determine the value of the line increment.
void setPageIncrement(int pageSize) To set the page increment.
int getPageIncrement() To determine the value of the page increment.
int getMinimum() To determine the minimum value.
void setUnitIncrement(int newUnitInc) To set the unit increment by new value.
int getValue() To determine the current position of the scrollbar in terms

of value.
int getMaximum() To determine the maximum value.
void setValue(int newValue) To set the current position.
void setBlockIncrement (int newBlockInc) To set the block increment for page-up and page-down by

a new value.

Abstract Window Toolkit 485

Example 14.17 Scrollbar

 L1 import java.awt.*;
 L2 import java.awt.event.*;
 L3 public class ScrollbarDemo extends Frame implements AdjustmentListener {
 L4 Scrollbar HScroll, VScroll;
 L5 Label lbl;
 L6 int X = 100,Y = 150;
 L7 public ScrollbarDemo () {
 L8 HScroll = new Scrollbar (Scrollbar.HORIZONTAL);
 L9 VScroll = new Scrollbar (Scrollbar.VERTICAL);
 L10 lbl = new Label ("",Label.CENTER);
 L11 HScroll.setMaximum (400);
 L12 VScroll.setMaximum (400);
 L13 setBackground (Color.cyan);
 L14 setTitle("Oval size changes with scrollbar movements");
 L15 setLayout (new BorderLayout());
 L16 add (lbl,BorderLayout.NORTH);
 L17 add (HScroll,BorderLayout.SOUTH);
 L18 add (VScroll, BorderLayout.EAST);
 L19 HScroll.addAdjustmentListener (this);
 L20 VScroll.addAdjustmentListener (this);
 L21 HScroll.setValue (X);
 L22 VScroll.setValue (Y);
 L23 lbl.setText ("HScroll = " + HScroll.getValue() + ", VScroll = " + VScroll.getValue());
 L24 setSize(500,500);
 L25 setVisible(true);
 L26 addWindowListener(new WindowAdapter()
 {
 L27 public void windowClosing(WindowEvent e) {
 L28 System.exit(0);
 }
 });
 }
 L29 public void adjustmentValueChanged(AdjustmentEvent e){
 L30 X = HScroll.getValue();
 L31 Y = VScroll.getValue ();
 L32 lbl.setText ("HScroll =" + X + ", VScroll =" + Y);
 L33 repaint();
 }
 L34 public void paint (Graphics g) {
 L35 g.drawOval (50, 60, X, Y); }
 L36 public static void main(String args[])
 {
 L37 ScrollbarDemo d = new ScrollbarDemo();
 }}

486 Programming in Java

Output

Fig. 14.19

Explanation
L1–2 Imports the necessary packages.
L3 Frame is created which inherits AdjustmentLis-
tener for tapping scrollbar events.
L4–6 Two scrollbar references (one for horizontal
and another for vertical scrollbar) have been created
with one label for displaying the position of the
horizontal and vertical scrollbars. Two integer
variables, X and Y, are defined for specifying the
exact position of the scrollbars. Also, these two
variables form the width and height of our oval (see
Fig. 14.19(b)).
L7 Constructor for the class has been defined.
L8–9 Horizontal and vertical scrollbars are
instantiated. Their orientations have been specified
as Scrollbar.HORIZONTAL and Scrollbar.VERTICAL.
L10 Label is instantiated to show the value of the
scrollbar.
L11–12 The maximum range is set for both the
scrollbars using the method setMaximum(400).
Actually if you click on the arrow in the scrollbar
and scroll it till the maximum, the value that the label
will show will be 390 because the size of the bubble
is 10 by default. So the range is actually 0 to 390.
L13 The background color is set as cyan.
L14 The title of the frame is set using the method
setTitle().

L15 The layout is set to BorderLayout.
L16–18 The three components: horizontal scroll-
bar, vertical scrollbar, and label are added in the
EAST, SOUTH, and NORTH directions, respectively.
L19–20 Both scrollbars are registered with
AdjustmentListener.
L21–23 The initial value for the horizontal and
vertical scrollbar is set as 100 and 150 respectively
using the setValue method and initial scrollbar
values are set as text of the label in L23.
L24–28 The size of the frame and its visibility is
set. Apart from this, the frame is registered with the
WindowListener to track window closing event.
L29–33 The method of the AdjustmentListener
is overridden, i.e., adjustmentValueChanged
(AdjustmentEvent e). This method will be invoked
whenever the scrollbar is adjusted. As the scrollbars
are moved, the x and y values change and so the
width and height of the oval. The label is set with the
current values of the horizontal and vertical scrollbar
and then the frame is repainted.
L34–35 paint method is overridden and oval is
drawn using the drawOval method of the Graphics
object. The first two coordinates in the oval are fixed.

Abstract Window Toolkit 487

The width and height are variables and they depend
upon the scrollbar movements. The signature of
drawOval method is shown below:
g.draw Oval (int x, int y, int width, int
height)

L36–37 In the main method, the frame is
instantiated.

14.14 PRACTICAL PROBLEM: CITY MAP APPLET

CityMap applet shows map of a city (top view) with five buttons namely hospitals, shopping
malls, police station, post office, and stadium. If a user presses the hospital button, all hospitals
are shown on the map with a specific color and likewise for malls, police station, post office
and stadium.

Example 14.18 CityMap.java

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

/*<applet code = "CityMap.class" width=650 height=600></applet>*/

public class CityMap extends Applet
 {
 Button b1,b2,b3,b4,b5;

 /* boolean Variables used as fl ag variables */
 boolean hospital,mall,pstation,po,stadium;

 public void init()
 {
 /* Buttons are created and added on the applet. */
 b1 = new Button("Hospital");
 add(b1);
 b2 = new Button("Shopping Malls");
 add(b2);
 b3 = new Button("Police Station");
 add(b3);
 b4 = new Button("Post offi ce");
 add(b4);
 b5 = new Button("Stadium");
 add(b5);

/* Anonymous inner classes are defi ned for all buttons. If listener approach (for
event handling) is used and ActionListener is implemented by the Applet class for
handling button events, then for all fi ve buttons, we have a single "actionPerformed"
method. In the "actionPerformed" we use the if...else..if conditional statement for
knowing which button has been pressed and then we perform the desired task within
that. So there will be fi ve if conditions, one for each button, and these conditions
will be checked every time the button is pressed till a match is found. In our ex-
ample below, each button is registered with its own Event handler, thereby eliminat-
ing the annoying multiple if statements and saving execution time*/

488 Programming in Java

/*creates an Anonymous inner class for hospital button. As soon as the hospital but-
ton is pressed, the actionPerformed of this class is invoked which sets the hospital
Boolean variable to true and repaints the applet. Explicit class name is not provid-
ed by the programmer but the compiler generates the .class fi le for this inner class
with the name "CityMap$1.class" */

b1.addActionListener(new ActionListener()
 {
 public void actionPerformed(ActionEvent ae)
 {
 /*sets the Boolean variable to true and repaints the applet*/
 hospital = true;
 repaint();
 }
 });

 b2.addActionListener(new ActionListener()
 {
 public void actionPerformed(ActionEvent ae)
 {
 /*sets the Boolean variable to true and repaints the applet*/
 mall = true;
 repaint();
 }
 });
 b3.addActionListener(new ActionListener()
 {
 public void actionPerformed(ActionEvent ae)
 {
 /*sets the Boolean variable to true and repaints the applet*/
 pstation = true;
 repaint();
 }
 });

 b4.addActionListener(new ActionListener()
 {
 public void actionPerformed(ActionEvent ae)
 {
 /*sets the Boolean variable to true and repaints the applet*/
 po=true;
 repaint();
 }
 });

 b5.addActionListener(new ActionListener()
 {
 public void actionPerformed(ActionEvent ae)
 {
 /*sets the Boolean variable to true and repaints the applet*/
 stadium = true;

Abstract Window Toolkit 489

 repaint();
 }
 });
 }

 public void paint(Graphics g)
 {
 /* outer black rectangle*/
 g.drawRect(5,40,630,550);

 g.drawLine(106,41,106,167);
 g.drawArc(77,150,30,30,-10,-70);
 g.drawLine(6,180,95,180);

 /*Rectangle with rounded edges is created with black color*/
 g.drawRoundRect(155,50,180,100,30,30);

 g.drawLine(400,41,400,200);
 g.drawLine(410,210,600,210);
 g.drawArc(400,191,18,20,-90,-90);
 g.drawArc(590,210,18,20,-10,90);

 g.drawLine(609,222,609,319);
 g.drawArc(590,309,18,20,0,-90);
 g.drawLine(550,400,603,327);
 g.drawArc(545,400,20,20,110,90);
 g.drawLine(545,407,545,541);
 g.drawLine(220,550,538,550);
 g.drawArc(213,550,20,20,90,90);
 g.drawArc(524,530,20,20,0,-90);
 g.drawLine(170,180,250,180);
 g.drawArc(160,180,20,20,90,90);
 g.drawArc(240,180,20,20,90,-90);
 g.drawLine(260,190,260,230);
 g.drawArc(260,220,20,20,-180,90);
 g.drawLine(270,241,320,241);
 g.drawArc(307,241,20,20,90,-90);
 g.drawLine(327,252,327,283);

 g.setColor(Color.GREEN);
/* The drawOval of fi llOval method creates a circle if width and height of oval is
same. creates a circle which is fi lled with green color*/
 g.fi llOval(305,165,60,60);

/* creates an inner circle with white color at x=310 (5 pixels ahead of the previous
circle) and y=170 (5 pixels below the previous circle)
 with width and height=50*/
 g.setColor(Color.WHITE);
 g.fi llOval(310,170,50,50);

/*creates an unfi lled circle with black color within the broad lined circle created above */

490 Programming in Java

 g.setColor(Color.BLACK);
 g.drawOval(330,190,10,10);

 g.drawArc(306,273,20,20,0,-90);
 g.drawLine(170,293,315,293);
 g.drawLine(160,190,160,283);
 g.drawArc(160,272,20,20,-180,90);
 g.drawLine(400,240,546,240);
 g.drawArc(532,240,20,20,0,90);
 g.drawLine(552,250,552,315);
 g.drawArc(531,305,20,20,0,-70);
 g.drawLine(500,400,548,323);
 g.drawArc(497,398,10,10,110,130);
 g.drawLine(498,408,498,510);
 g.drawArc(477,498,20,20,0,-90);
 g.drawLine(400,519,488,519);
 g.drawArc(390,498,20,20,-90,-90);
 g.drawLine(390,250,390,510);
 g.drawArc(390,239,20,20,90,90);
 g.drawRoundRect(6,200,115,230,20,20);
 g.drawLine(6,480,112,480);
 g.drawArc(98,480,20,20,0,90);
 g.drawLine(116,486,150,570);
 g.drawLine(212,561,220,580);
 g.drawOval(170,330,150,150);

 /*if Hospital button is pressed*/
 if(hospital)
 {
 g.setColor(Color.BLACK);
 g.fi llOval(100,100,10,10);
 g.fi llOval(250,250,10,10);
 g.fi llOval(120,500,10,10);
 g.fi llOval(400,200,10,10);
 g.fi llOval(450,400,10,10);
 hospital=false;
 }
 /*if shopping mall button is pressed*/
 if(mall)
 {
 g.setColor(Color.PINK);
 g.fi llOval(200,70,10,10);
 g.fi llOval(450,100,10,10);
 g.fi llOval(110,300,10,10);
 g.fi llOval(400,300,10,10);
 g.fi llOval(250,550,10,10);
 mall=false;
 }
 /*if police station button is pressed*/
 if(pstation)
 {

Abstract Window Toolkit 491

 g.setColor(Color.YELLOW);
 g.fi llOval(220,70,10,10);
 g.fi llOval(300,550,10,10);
 g.fi llOval(110,500,10,10);
 g.fi llOval(420,200,10,10);
 g.fi llOval(500,350,10,10);
 pstation=false;
 }
 /*if post offi ce button is pressed*/
 if(po)
 {
 g.setColor(Color.BLUE);
 g.fi llOval(80,150,10,10);
 g.fi llOval(100,350,10,10);
 g.fi llOval(500,80,10,10);
 g.fi llOval(590,400,10,10);
 g.fi llOval(390,550,10,10);
 po=false;
 }
 /*if stadium button is pressed*/
 if(stadium)
 {
 /*sets the color as black and creates 10 adjacent Circles. First Circle at
 (x=170,y=330), second at (x=171,y=331), third at (x=172,y=332) and soon.*/
 g.setColor(Color.BLACK);
 for(int i=0;i<10;i++)
 g.drawOval(i+170,i+330,150,150);
 stadium=false;
 }
 }
}

Output

Fig. 14.20(a)

492 Programming in Java

 Figure 14.20(a) shows the map of a city with roads, buildings, round circles, and a stadium.

Fig. 14.20(b)

 Figure 14.20(b) highlights the hospitals in the map as the hospital button is clicked.

SUMMARY

In this chapter, we have emphasized on those comput-
ing aspects of Java that use graphical user interface
(GUI) for input and output. Java has a package named
as java.awt, having various classes responsible
for generating various GUI frameworks. There are
various AWT components helpful in providing these
GUI structures. These components include Button,
Scrollbar, Choicebox, List, TextField, etc. In the
previous chapter, we had studied the basics of event
handling model. In this chapter, we used the same
event delegation model, where events are generated
through various GUI components.

The Component class is at the root of all AWT
components whose direct subclasses include:
(a) button, (b) canvas, (c) checkbox, (d) choice,
(e) label, (f) list, and (g) scrollbar. A GUI environment
always needs a container to hold these components.

For this purpose, AWT package has a class known
as ‘Container’. It may be noted that Panel class is a
superclass of Applet class. Frame is a subclass of
Window class. An object of Window class does not have
any border or menubar, while a Frame can have these.
frames are therefore generally used as containers.
AWT defines ways to lay the AWT components in

containers. There are many layout managers in AWT
like FlowLayout, GridLayout, GridBagLayout, and
CardLayout, available for setting out different patterns
for arranging components in containers.

Menu is a class that inherits MenuItem class and
two interfaces: MenuContainer and Accessible. The
menubar deploys a menu object which is a dropdown
menu component. It shows a list of menu choices.
To implement this concept, we use three classes:
MenuBar, Menu, and MenuItem.

Abstract Window Toolkit 493

EXERCISES

Objective Questions
 1. What will be the result of compiling and running

the following code?
import java.awt.*;
import java.applet.*;
public class Test extends Applet {
 Label l = new Label("Hello");
 public void init() {
 setSize(200,100);
 setVisible(true);
 l.setBackground(new Col
 or(0,100,180));
 setLayout(new GridLayout(1,1));
 add(l);
 setLayout(new FlowLayout());
 1.setBounds(0,0,100,24);
 }
}

 (a) The label will fi ll half the display area of the
applet.

 (b) The label will be wide enough to display the
text “Hello”

 (c) The label will not be visible.
 (d) The label will fi ll the entire display area of the

applet
 2. Which of the following are valid constructors for

a TextField?
 (a) TextField();
 (b) TextField(int cols);
 (c) TextField(int rows, int cols);
 (d) TextField(int cols, String txt);
 3. What is the default layout for a Dialog?
 (a) FlowLayout (b) GridLayout
 (c) CardLayout (d) BorderLayout

 4. What is the default layout for Frame?

 (a) FlowLayout (b) GridLayout
 (c) CardLayout (d) BorderLayout

 5. What is the default layout for Applet?
 (a) FlowLayout (b) GridLayout
 (c) CardLayout (d) BorderLayout

 6. What method is used to change the layout of a
container?

 (a) setLayout (b) setFlowLayout
 (c) setBorderLayout (d) setCardlayout

 7. Using BorderLayout, you can place components
along

 (a) NORTH (b) CENTER
 (c) SOUTH (d) All of the above
 8. Which listener is associated with MenuItem

class?
 (a) ActionListner (b) MouseListner
 (c) ItemListner (d) EventListner

 9. What are the possible types of values of an
anchor fi eld in a GridBagLayout?

 (a) absolute
 (b) orientation-relative
 (c) baseline-relative
 (d) all the above
 10. Which of the following is true about GridBagCon-

straints?
 (a) It contains the constraint which includes

the height, width of a cell, placement and
alignment of components.

 (b) Each GridBagLayout object maintains a
rectangular grid of cell.

 (c) A component can occupy one or more cells
and it is called its display area.

 (d) None of the above.

Review Questions
 1. What are the component and container classes?
 2. Which method of the component class is used

to set the position and size of a component?
 3. What is the difference between the Font and

FontMetrics class?
 4. Explain the hierarchy of classes in the java.awt

package.

 5. What are the different types of AWT components?
How are these components added to containers?

 6. Explain the process of creating a frame and
adding a button to it.

 7. Compare the different layout managers in brief.
 8. What are the methods used to set foreground

and background colors?

494 Programming in Java

Programming Exercises
 1. Write an AWT program to create checkboxes for

different courses belonging to a university such
that the courses selected would be displayed.

 2. Create a frame having Menubar and MenuItems
attached to it as follows:

 3. Create a frame and set the color of the frame to
red.

 4. Create a list of vegetables. If you click on one of
the items of the list, the item should be displayed
in a textbox.

 5. Write a program using AWT to create a simple
calculator. (Hint: Use proper Layout Manager)

 6. Write a temperature conversion program that
converts from Fahrenheit to Celsius. The
Fahrenheit temperature should be entered from

keyboard (via Textfi eld). A Textfi eld should be
used to display the converted temperature. Use
the following formula for the conversion:

 Celsius = 5/9*(Fahrenheit–32)

 7. Write an application that plays ‘guess the number’
as follows:

 Your application chooses the number to be
guessed by selecting an integer at random in the
range 1–1000. The application then displays the
following in a label:

 I have a number between 1 and 1000. Can you
guess my number?

Please enter your fi rst guess.

 A Textfi eld should be used to input the guess.
As each guess is input, the background colour
should change to either red or blue. A label
should display either ‘Too High’ or ‘Too Low’ to
help the user zero in. When the user gets the
correct answer, ‘Correct’ should be displayed,
and the TextField used for input should be
changed to be uneditable. A button should be
provided to allow the user to play the game
again. When the button is clicked, a new random
number should be generated and the input
TextField changed to be editable.

Answers to Objective Questions
 1. (b) 2. (a), (b) 3. (d) 4. (d)
 5. (a) 6. (a) 7. (d) 8. (a)
 9. (d) 10. (a), (b) (c)

 A picture is worth a thousand words Napoleon Bonaparte

After reading this chapter, the readers will be able to
  understand the difference between AWT and swing
  program various swing containers and components
  play with new layouts
  use components and create GUI
  learn dialog boxes in swings
  understand the pluggable look and feel

15.1 INTRODUCTION

 AWT is used for creating GUI in Java, but the components in java.awt are heavyweight
components. AWT provides graphical user interface with certain limitations. One major limitation
is the translation of various components into their corresponding, platform-specifi c equivalents
or operating system equivalents. The look and feel of a component is not defi ned by Java but by
the platform itself. The components of AWT use native code resource and are therefore called
heavyweight components. These components look different on different platforms and even
they act differently on different platforms. Heavyweight components also have a restriction
that they are always rectangular. It is very diffi cult to work with AWT, for example, if we want
to re-position a button slightly to the right or left, we have to do various modifi cations in our
source code and recompile it again.
 Swing (javax.swing) is the solution for the problems faced in AWT. Swing is the set of GUI-
related classes supplied with JDK1.2 and later. Swing components use modelview-controller
architecture for all its components, thus providing greater fl exibility. All swing components have
a model, view, and a controller. Model manages the state and the behavior of the component.
View manages the display of the component depending upon the state, and controller governs
the interaction of the user with the model. Controller basically determines when and how the
state of the model will change.

Swing 1515

496 Programming in Java

 Swing GUI components are event-driven. Swing provides a very good programming approach
to build a GUI application using OOP concepts. It is included in Java as a part of JFC (Java
foundation classes). It contains all the features of AWT but swing components are called
lightweight because they are developed using Java and hence they are platform independent. In
other words, they do not depend on native counterparts (peers) to handle their functionality. In
total, swings have 18 packages but generally, most programmers use the following packages:

  javax.swing

  javax.swing.event

15.1.1 Features of Swing
Some of the common features of swing are

  Swing components are lightweight. They are not built on native window-system.
  It has a number of built-in controls: trees, tabbed panes, sliders, toolbars, tables, etc.
  We can customize our GUI application, e.g., we can change the border, text alignment,

or add an image to almost any control, and also we can separate internal representation
from visual appearance.

  A very attractive feature of swing is its pluggable look and feel. You can change the
look and feel of a swing GUI.

  Internationalization allows developers to build applications that can be used across the
world in different languages.

  All components are named as Jxx, e.g., JApplet, JFrame, JButton, JLabel, etc.
  After Java 5, components can be added using add (Component c) method. Earlier they

were added to containers via the method getContentPane().add().
  All drawing is done in paintComponent rather than paint.
  Swing is not thread safe. When creating a swing GUI, you need to take extra care if

multiple threads are accessing it.

15.1.2 Differences between Swing and AWT
Table 15.1 lists the differences between swing and AWT. Table 15.2 shows some of the classes
of AWT and their counterparts in swing. Apart from the classes shown in the table, some other
classes have been added in javax.swing such as JRadioButton, ButtonGroup, JToggleButton,
JSplitPane, JTabbedPane, JTree, JTable, JFileChooser, JColorChooser, JInternalFrame,
JDesktopPane, JEditorPane, JOptionPane, JPopUpMenu, and Look and Feel classes. We will
discuss all these classes in this chapter. We will discuss two new layouts later in the chapter that
have been added in the swing package, namely BoxLayout and SpringLayout.

Table 15.1 Differences between AWT and Swing

AWT Swing
Heavyweight Lightweight.
Look and feel is OS based Look and feel is OS independent.
Not pure Java-based Pure Java-based.
Platform specifi c limitation for some components Fewer platform limitations for components.

(Contd)

Swing 497

AWT Swing
Faster Slower.
Applet portability: mostly web browser supports for applet Applet portability: A plug-in is required.
Does not support features like icons and tool-tips Supports features like icons and tool-tips.
The default layout manager for applet: FlowLayout and Frame
is BorderLayout

The default layout manager for content pane
is BorderLayout.

Table 15.2 Classes of AWT and their Counterparts in Swing

Classes in AWT Corresponding
classes in swings

Classes in AWT Corresponding classes in
swings

Frame JFrame List JList
Applet JApplet Menu JMenu
Panel JPanel MenuBar JMenuBar

Label JLabel MenuItem JMenuItem
Button JButton Choice JComboBox

TextField JTextField TextArea JTextArea
Checkbox JCheckBox

Note You can use either swing or AWT for your Java program development, but avoid mixing the two.

15.2 JFrame

Swing provides a top-level container to which components are added, e.g., JFrame, JApplet,
etc. JFrame is a subclass of java.awt.Frame and therefore, it inherits all the features of an AWT
frame. Whenever you create a top-level container, an intermediate container of the top-level
container named root pane (JRootPane) is automatically created. This root pane has four sub-
level containers (layers) as shown in Fig. 15.1.

Fig. 15.1 Panes in JFrame

  Layered pane (JLayeredPane)
 Content pane ()
  Menu bar (optional) (JMenuBar)
  Glass pane (JGlass)

(Table 15.1 Contd)

498 Programming in Java

 Every root pane will always have a layered pane, content pane, and a glass pane. The menu
bar is optional. A layered pane is a container that positions components into three-dimensions.
Actually it adds depth to the container and components can be placed one over the other. The
layered pane is responsible for managing the content pane and the menu bar. The glass pane
is transparent. It is basically used for intercepting events so that they cannot reach the content
pane. The menu bar is used to set the menu on the root pane.
 All components are added to a content pane which is an intermediate container. There are two
ways of getting a content pane:

 Every container has a content pane. The content pane is obtained using getContentPane()and it
returns a Container object (recommended). Prior to JDK 5, the content pane has to be obtained
explicitly by using getContentPane() and then add() is used on it, e.g., getContentPane().
add(Component). But now there is no need to obtain the content pane explicitly. You can
directly use add() method as shown in Example 15.1.

  Build your own content pane. It is common to create a new panel for the content pane and
tell the window to use this new panel as its content pane. For example,

 class Demo extends JFrame{
 ...
 // JPanel is a also container with FlowLayout as default layout
 // so we can use it as our own content pane and add contents to it.
 JPanel panel = new JPanel();
 panel.add(...);
 panel.add(...);
 ...
 panel.setOpaque(true);
 setContentPane(panel); // set JPanel as the content pane for the JFrame
 ...
 }

 Example 15.1 shows a small program that uses swing components to print a message.

Example 15.1 Print Message Frame

 L1 import javax.swing.*;
 L2 public class DemoSwing extends JFrame {
 L3 void demoSwing () {
 L4 setTitle("First Swing Program");

 // size of window
 L5 setSize(300,200);
 L6 setDefaultCloseOperation(EXIT_ON_CLOSE);

 //Add "My fi rst Swing program" label
 L7 JLabel label = new JLabel("My fi rst Swing program");

Swing 499

 L8 add(label);

 // Auto fi t the component in container
 L9 // pack();
 // Display the window.
 L10 setVisible(true);
 }

 public static void main(String[] args) {
 L11 DemoSwing demo = new DemoSwing();
 L12 demo.demoSwing();
 } }

Output

Fig. 15.2(a) Output if the Pack Method is
Commented and SetSize is Used

Fig. 15.2(b) Output if the Pack Method (L9)
is executed

Explanation
L1 For creating a GUI using swing, we have to
import the package javax.swing.*
L2 The class inherits from JFrame. A class needs
to be a subclass of JFrame for creating frames
using swings. (Note that JFrame is one of the four
heavyweight classes present in the javax.swing
package. The others being JApplet, JDialog, and
JWindow.)
L3 Method demoSwing has been defi ned.
L4 setTitle “{First Swing Program}” sets the
title of the frame as FirstSwingProgram shown in
Fig. 15.2(a).
L5 The method setSize (300,200) sets the size
of the frame. 300 is an integer specifying width in
pixels. 200 is an integer specifying height in pixels.

L6 setDefaultCloseOperation (int operation)
is a method that specifies the operation to be
performed when the user closes the frame. The
following values can be passed as an argument in
this method. All parameters have been defi ned by
WindowConstants interface to control the window
closing operations.
 DO_NOTHING_ON_CLOSE does nothing. It requires

you to handle the event using traditional
windowClosing method.

 HIDE_ON_CLOSE hides the frame after invoking any
registered WindowListener objects.

 H DISPOSE_ON_CLOSE hides and disposes the frame
after invoking any registered WindowListener
objects.

500 Programming in Java

  EXIT_ON_CLOSE (This has been defi ned in the
class JFrame). It exits the application using the
System exit method. In the previous chapter, we
have seen the same effect when the following
code was written:

add Window Listener (new Window
Adapter()
{
 public void windowClosing()
 {
 System.exit(0);
 }
});

L7 JLabel is a component to display information
like text or icon. The text to be displayed is passed
to the constructor.
L8 All top-level containers have a contentpane to

which components are added. add(label) method is
used to add labels to our frame. The add() method
is inherited by JFrame from Container class of
AWT. By default, content pane of JFrame uses
BorderLayout.
L9 It is commented. When you try to run this
example with this line uncommented, the output will
be as shown in Fig. 15.2(b). The pack() method
cases a Window to fi t according to the preferred size
and layouts of its subcomponents. Using the pack()
method, we need not specify the size of window.
L10 setVisible (true) sets the visibility of frame
to true. If this method is not used, the frame will
not be visible. By default, the visibility of window
is false.
L11–12 An object of DemoSwing is created and the
method demoSwing is invoked.

15.3 JApplet

 JApplet is used for creating applets using swings. JApplet is a Container class like JFrame,
so it possesses all the panes. Components are added to JApplet as they are added in JFrame.
JApplet extends Applet class, so it contains all the features of AWT applet. A class needs to be
a subclass of JApplet for creating applets in swings. We have already seen how applets can be
created using the Applet class in Chapter 12. The lifecycle of a JApplet is same as the life cycle
of an applet. You can override any of the life cycle methods whichever is required by your swing
applet. In swings, painting is avoided in paint() method.
 The example below shows a JApplet with an init() which places three buttons within the
applet (Fig. 15.3).

Example 15.2 JApplet

 L1 import java.awt.*;
 L2 import javax.swing.*;

 /* <applet code = "JAppletDemo.class" width = "300" height = "100"></applet>*/

 L3 public class JAppletDemo extends JApplet {

 L4 public void init(){

 L5 setLayout(new FlowLayout());

 L6 add(new JButton("Button 1"));

 L7 add(new JButton("Button 2"));

 L8 add(new JButton("Button 3"));

 }}

Swing 501

Output

Fig. 15.3 JApplet

The HTML code to run a JApplet is as follows:
 <html><body>
 <applet code ="JAppletDemo.class" width="300" height="100"></applet></body></html>

Explanation
L1–2 Packages java.awt (for FlowLayout class)
and javax.swing are imported.
L5 The JApplet layout is changed to FlowLayout.
By default, the JApplet has BorderLayout.

L6–8 Within init(), three buttons have been
added. The class for button in swing is JButton. It
has been instantiated and string argument is passed in
the constructor which forms the caption of the button.

15.4 JPanel

 JPanel is a lightweight container used for holding components which include JButton, JLabel,
JList, JToggleButton, etc. If you want to put a component to JPanel, then simply add it using
add(Component c) method, then add the JPanel to its top-level container like JFrame. However,
JPanel can also act as a replacement for Canvas class, as there is no JCanvas class in the swing
package. If JPanel is used in place of canvas, you need to follow two additional steps. Firstly,
set the preferred size via the method setPreferredSize (the preferred size of a canvas is its
current size, whereas a JPanel (or panel) determines its preferred size from the components they
contain). Secondly, you should use paintComponent method for drawing, not paint. In addition
to that, you should fi rst clear the screen by super.paintComponent.
 JPanel j = new JPanel(); //assumes double buffer and fl owlayout
 j.add(new JLabel("Name")); //adds Jlabel to JPanel
 j.add(new JTextField(" ",15)); // adds JTextField to JPanel
 j.add(new JButton()); // adds JButton to jpanel
 add(j);
 .
 .
 .

502 Programming in Java

 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 .
 .
 .
 }

15.5 COMPONENTS IN SWINGS

Components present in AWT are all present in swings, e.g., checkbox (JCheckBox), radio button
(JRadioButton and ButtonGroup), button (JButton discussed in previous example), label (JLabel,
we have already discussed in earlier examples and more to follow), TextField (JTextField), etc.
Apart from this we have a special type of button known as toggle button which when clicked
upon remains selected (see Fig. 15.4(a)) and state of the toggle button becomes deselected on
clicking again (see Fig. 15.4(b)).

Fig. 15.4(a) JToggleButton Selected Upon
 Clicking

Fig. 15.4(b) JToggleButton Deselected
 Upon Clicking Again

Example 15.3 shows three components: checkbox, radio button, and toggle button, and how
event handling is done for JToggleButton (Fig. 15.5).

Example 15.3 JCheckBox, JRadioButton, and JToggleButton

 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 public class ComponentDemo extends JFrame implements ItemListener
 {
 L1 JRadioButton m,f;
 L2 JCheckBox c1,c2;
 L3 JToggleButton tb;
 L4 Container content;
 L5 JLabel lbl;
 L6 void componentDemo() {
 L7 setTitle ("Demo for Checkbox RadioButton & ToggleButton");
 L8 content = getContentPane();
 L9 setSize(300,150);
 L10 setDefaultCloseOperation(EXIT_ON_CLOSE);
 L11 setLayout(new FlowLayout());
 L12 c1 = new JCheckBox("Music");
 L13 c2 = new JCheckBox("Dancing");

Swing 503

 L14 c1.addItemListener(this);

 L15 c2.addItemListener(this);

 L16 add(c1);

 L17 add(c2);

 L18 m = new JRadioButton("Male");

 L19 f = new JRadioButton("Female");

 L20 ButtonGroup bg = new ButtonGroup();
 L21 bg.add(m);

 L22 bg.add(f);

 L23 m.addItemListener(this);

 L24 f.addItemListener(this);

 L25 add(m);

 L26 add(f);

 L27 tb = new JToggleButton("Change Color");

 L28 lbl = new JLabel();

 L29 add(lbl);

 L30 tb.addItemListener(this);

 L31 add(tb);

 L32 setVisible(true);

 }

 L33 public void itemStateChanged(ItemEvent ae)

 {

 L34 if(ae.getItem() == tb && ae.getStateChange() == ItemEvent.SELECTED)
 L35 content.setBackground(Color.blue);

 L36 if(ae.getItem() == tb && ae.getStateChange() == ItemEvent.DESELECTED)

 L37 content.setBackground(Color.red);

 L38 if(ae.getItem() == c1 && ae.getStateChange() == ItemEvent.SELECTED)

 L39 lbl.setText("Music");

 L40 if(ae.getItem() == c2 && ae.getStateChange() == ItemEvent.SELECTED)

 L41 lbl.setText("Dancing");

 L42 if(ae.getItem() == m && ae.getStateChange() == ItemEvent.SELECTED)

 L43 lbl.setText("Male");

 L44 if(ae.getItem() == f && ae.getStateChange() == ItemEvent.SELECTED)

 L45 lbl.setText("Female");

 }

 public static void main(String[] args) {

 L46 ComponentDemo demo = new ComponentDemo();

 L47 demo.componentDemo();

 }}

504 Programming in Java

Output

Fig. 15.5(a) Frame Showing Check Boxes, Radio Buttons, and Toggle Button

Fig. 15.5(b) On Selection of Toggle Button, the
Color of the Frame Turns Blue

Fig. 15.5(c) On De-selection of Toggle Button,
the Color of the Frame Turns Red

Fig. 15.5(d) On Selection of Checkbox, the Label is Set with the Text

Fig. 15.5(e) On Selection of Radio Button, the Label is Set with the Text

Swing 505

Explanation
L1–5 The reference variables for various com-
ponents are created like JRadioButton, JCheckBox,
JToggleButton, and JLabel. A reference variable
for container is also created for content pane. These
variables have been declared outside the method
because the instances will be required in other meth-
ods as well.
L12–13 Two checkboxes have been created with
the captions passed as arguments to the constructors
as string. The constructors for JCheckBox are shown
in Table 15.3.
L14–15 Both checkboxes are registered with
ItemListener to handle events using the method
addItemListener(this).
L16–17 Both checkboxes are added to the frame.
L18–19 Two radio buttons are created and their
captions are passed as argument to the constructor.
The constructors for JRadioButton are shown in
Table 15.4.
L20 An instance of ButtonGroup is created. This
class is used to group components into a group so that
only one may be selected out of them. Typically it is
used for JRadioButton and ToggleButton. We are
using it for JRadioButton in this example.
L21–22 Both radio buttons are added to a button
group. Now only one can be selected.
L23–24 Both radio buttons register themselves
with ItemListener using addItemListener method
for listening event.

L25–26 The radio buttons are added to the JFrame.
L27 Toggle button is created with caption passed
as an argument to the constructor of JToggleButton.
The constructors of this class are shown in Table 15.5.
L28–29 A new JLabel is instantiated and added
to the frame.
L30 The ItemListener is registered with JToggle-
Button. Whenever you select or de-select the toggle
button, the state of toggle button changes generat-
ing an ItemEvent which is passed to the method
itemStateChanged(ItemEvent e).
L31 Adds the toggle button to JFrame.
L33 Method itemStateChanged(ItemEvent e)

is overridden. As soon as a checkbox is checked or
radio button selected or a toggle button selected/
deselected, an ItemEvent is generated and this
method is invoked.
L34–45 Checks who generated the event using
getItem() and what is the state of the component:
SELECTED or DESELECTED. The state can be
obtained using the method getStateChange().
Different event handing code is written for different
components depending upon which component
generated the event, e.g., if toggle button is selected,
we have changed the color of content pane to blue and
when it is de-selected, we have changed the color of
content pane to red. For check box and radio button,
the label is set with a string whenever a checkbox or
a radio button is checked.

Table 15.3 Constructors of JCheckBox

Constructor Description
JCheckBox (String txt) Creates an unselected checkbox with txt.
JCheckBox (String txt, boolean selected) Creates a selected checkbox if selected is set

as true.
JCheckBox (String txt, Icon i, boolean selected) The checkbox will have an icon image too,

apart from text and boolean selection.

506 Programming in Java

Table 15.4 Constructors of JRadioButton

Constructor Description
JRadioButton(String txt) Creates an unselected radio button with txt.
JRadioButton (String txt, boolean selected) Creates a selected radio button if selected

is set as true.
JRadioButton(String txt, Icon i, boolean selected) The radio button will have an icon image

too, apart from text and boolean selection.

Table 15.5 Constructors of JToggleButton

Constructor Description
JToggleButton(String txt) Creates an unselected toggle button with txt.
JToggleButton (String txt, boolean selected) Creates a selected toggle button if selected

is set as true.
JToggleButton(String txt, Iconi, boolean selected) The toggle button will have an icon image

too, apart from text and boolean selection.

15.6 LAYOUT MANAGERS

Apart from the layouts introduced in AWT (Chapter 14), a few new layouts have been introduced
in swing package as well. For example,

  BoxLayout
  SpringLayout

15.6.1 SpringLayout
The SpringLayout is a very fl exible layout in the sense that it does not place components on its own
but according to the constraints specifi ed by the putConstraint method. The constraints specify
the distance between two edges of component or distance between the edges of a component
and its container. The edges can be in any direction: north, south, east, or west. Let us take an
example to illustrate this concept (Fig. 15.6).

Example 15.4 Springlayout

 L1 import java.awt.*;

 L2 import javax.swing.*;

 L3 public class SpringDemo extends JFrame {

 L4 void springDemo() {

 L5 setDefaultCloseOperation(EXIT_ON_CLOSE);

 L6 setTitle("Spring Layout");

 L7 Container contentPane = getContentPane();

 L8 SpringLayout layout = new SpringLayout();

Swing 507

 L9 contentPane.setLayout(layout);

 L10 setSize(250,100);

 //Create and add the components.

 L11 JLabel label = new JLabel("Name: ");

 L12 JTextField textField = new JTextField("", 15);

 L13 add(label);

 L14 add(textField);

 L15 JButton b1= new JButton("Submit");

 L16 add(b1);

 L17 layout.putConstraint(SpringLayout.WEST, label,5,SpringLayout.WEST, contentPane);

 L18 layout.putConstraint(SpringLayout.NORTH,label,5,SpringLayout.NORTH,contentPane);

 L19 layout.putConstraint(SpringLayout.WEST, textField,5,SpringLayout.EAST,label);

 L20 layout.putConstraint(SpringLayout.NORTH, textField,5,SpringLayout.

 NORTH,contentPane);

 L21 layout.putConstraint(SpringLayout.HORIZONTAL_CENTER,b1,0,SpringLayout.HORIZON

 TAL_CENTER,contentPane);

 L22 layout.putConstraint(SpringLayout.SOUTH,b1,-5,SpringLayout.SOUTH,content

 Pane);

 //Display the window.

 L23 setVisible(true);

 }

 public static void main(String[] args){

 SpringDemo demo=new SpringDemo();

 demo.springDemo();

 }}

Output

Fig. 15.6 SpringLayout

508 Programming in Java

Explanation
L1–2 Packages java.awt (because getContent-
Pane() returns an object of type java.awt.Con-
tainer) and javax.swing are imported.
L8 SpringLayout object is created.
L9 setLayout method is used to set SpringLayout
to the content pane.
L11 Label is created with the caption as Name.
L12 JTextField object is created with two
arguments. First is a default string to be displayed
in the text fi eld and second is the number of columns
that determines the width of the fi eld. If it is made 0
and the program is executed, the frame is displayed
as shown in Fig. 15.7. In the frame below, notice
the width of the text fi eld. Table 15.6 shows the
constructors for JTextField.
L13–14 Label and text field are added to the
content pane.
L15–16 A button is created with a caption Submit
and added to the content pane.
L17 putConstraint method is used to specify the
location of a component in the JFrame. The signature
of putConstraint method is as follows:
public void putConstraint(String e,Component c,
int p, String e1, Component c1)
It specifi es the distance between edges e and e1 of
components c and c1, respectively as p, where

e is the edge of the dependent component
c is the dependent component
p is the distance between edge e of c and edge
e1 of c1
e1 is the edge of the anchor component
c1 is the anchor component

 The possible set of values for edges can be
SpringLayout.EAST
SpringLayout.WEST
SpringLayout.NORTH
SpringLayout.SOUTH
SpringLayout.VERTICAL_CENTER
SpringLayout.HORIZONTAL_CENTER SpringLay-
out.BASELINE

In this line, we set the constraints for component label
and that the distance between west edge of label and
west edge of content pane is just 5 pixels.
L18 The north edge of the label is just 5 pixels away
from the north edge of the content pane.
L19 The west edge of the text fi eld is 5 pixels away
from the east edge of the label.
L20 The north edge of the text fi eld is just 5 pixels
away from the north edge of the content pane.

Table 15.6 Constructor of JTextField

Constructor Description
JTextField() Creates a text fi eld with the number of columns as 0.
JTextField(String txt) Creates a text fi eld with String txt specifi ed in it.
JTextField (String txt, int column) Creates a text fi eld with String specifi ed and number of

column as specifi ed by column.

Fig. 15.7 JTextField width is Set to Zero

Swing 509

L21–22 L21 places the button in the horizontal
center of the content pane. An integer value of 0 is
specifi ed so that it remains in the center. L22 specifi es
the distance between the south edge of the button and
south edge of the content pane as –5. Specifying a

negative value moves the component upwards from
southern edge of the content pane and specifying a
positive value moves it towards the southern edge
of the content pane.

15.6.2 BoxLayout
The BoxLayout places all the components in a single row or column. Without making it complex,
we can put more than one panel in horizontal and vertical directions, similar to GridBagLayout.
 The BoxLayout manager is designed with an axis parameter that specifi es the type of layout.
This can be done in four ways:

 X_AXIS—Components are placed horizontally from left to right.
 Y_AXIS—Components are placed vertically from top to bottom.
 LINE_AXIS—Components are placed in a line, based on the container’s ComponentOrientation

property.
 PAGE_AXIS—Components are placed the way text lines are written on a page, based on the

ComponentOrientation property of container.
Tables 15.7 and 15.8 list the ComponentOrientation property of Page_Axis and Line_Axis.

Table 15.7 Page_Axis

Component Orientation Components Layout
Horizontal Horizontally, else vertically placed.
Horizontal;left to right Placed left to right, otherwise else right to left.
Vertical orientations Laid from top to bottom

Table 15.8 Line_Axis

Component Orientation Components Layout
Horizontal Components are kept vertically, otherwise they are kept horizontally.
Horizontal;left to right Placed left to right else right to left.
Vertical orientations Laid from top to bottom.

Example 15.5 BoxLayout

 L1 import java.awt.*;
 L2 import javax.swing.*;
 public class BoxDemo extends JFrame {
 void boxDemo(){
 setTitle ("BoxLayout");
 Container content = getContentPane();
 setSize(200,150);
 setDefaultCloseOperation(EXIT_ON_CLOSE);

510 Programming in Java

 L3 BoxLayout b = new BoxLayout(content,BoxLayout.X_AXIS);
 L4 setLayout(b);
 L5 add(new JButton("Button 1"));
 L6 add(new JButton("Button 2"));
 L7 add(new JButton("Button 3"));
 setVisible(true);
 }
 public static void main (String[] args){
 BoxDemo demo = new BoxDemo();
 demo.boxDemo();
 }}

Output

Fig. 15.8 X_AXIS Direction Fig. 15.9 Y_AXIS Direction

Explanation

L3 BoxLayout object is created. The constructor
has two arguments:
 public BoxLayout (Container target, int axis)
L4 setLayout method sets the layout of the content
pane.

L5–7 Three buttons are added to the content pane.
They are displayed according to their axis (see Figs
15.8 and 15.9).

15.7 JList AND JScrollPane

JList is a component that displays a group of items to the user and allows him/her to select
one or more items from the list. A ListModel (interface) is used for maintaining contents of
the list. A class DefaultListModel (inherits ListModel) is normally used for maintaining a list.
This class provides methods to add, remove all elements or a specifi c element, fi nd the index
of an element, and so on. The setModel(ListModel l) method sets a model for the list. The
selection changes on a JList (results in ListSelectionEvent) are managed by another interface
ListSelectionModel and traced by ListSelectionListener (part of javax.swing.event sub-
package). The ListSelectionListener has only one method, i.e.,

 public void valueChanged(ListSelectionEvent l)

Swing 511

This method is overridden by the class that inherits the ListSelectionListener and wants to
capture the ListSelectionEvent. This method is executed whenever the items in the list are
selected.
 The JList supports single selection, multiple selections, as well as multiple interval selection.
The setSelectionMode(int sm) method is used to set the selection mode.
 The integer sm can take any one of the three possible values as shown in Table 15.9.
Example 15.6 illustrates the usage of JLabel. Selection is done on JList, the selected item is
displayed in a JLabel (Fig. 15.10).

Table 15.9 Fields of ListSelectionModel

ListSelectionModel.SINGLE_SELECTION Used for selecting only one item at a time.
ListSelectionModel.SINGLE_INTERVAL_

SELECTION
Used for selecting a single contiguous range of items at
a time.

ListSelectionModel.MULTIPLE_INTERVAL_

SELECTION
Used for selecting any number of contiguous ranges of
items at a time.

Example 15.6 JList

 L1 import java.awt.*;
 L2 import javax.swing.*;
 L3 import javax.swing.event.*;
 L4 public class JListDemo extends JFrame implements ListSelectionListener {
 L5 JList list; JLabel l;
 L6 DefaultListModel model;
 L7 public JListDemo(){
 L8 setTitle("JList Demo");
 L9 setDefaultCloseOperation(EXIT_ON_CLOSE);
 L10 l = new JLabel();
 L11 setSize(260, 200);
 L12 model = new DefaultListModel();
 L13 list = new JList(model);
 L14 JScrollPane pane = new JScrollPane(list);
 L15 for (int i = 0; i < 10; i++)
 L16 model.addElement("List Item:" + i);
 L17 list.addListSelectionListener(this);
 L18 add(pane, BorderLayout.NORTH);
 L19 add(l,BorderLayout.SOUTH);
 L20 setVisible(true);
 }
 L21 public void valueChanged(ListSelectionEvent e)
 {
 L22 l.setText((String)list.getSelectedValue());
 }
 public static void main(String s[]){
 new JListDemo();
 }}

512 Programming in Java

Output

Fig. 15.10 JList with a JLabel to Display the Selected Items in the List

Explanation
L1–3 Packages java.awt (for BorderLayout
class), javax.swing, and javax.swing.event are
imported.
L4 Class defi ned to inherit JFrame and ListSelec-
tionListener. On selection of an item in the JList,
ListSelectionEvent is generated which is captured
by ListSelectionListener.
L5–6 Three instance variables have been defi ned of
type JList, Jlabel, and DefaultListModel so that
they can be accessible from any method in the class.
L12–13 The DefaultListModel is instantiated
and applied to the JList. The constructor of JList
accepts a ListModel.
L14 A JScrollPane consists of a scroll bar
(JScrollBar) as well as a view port (JViewport). The
view port is used to manage the view of data which is
scrollable. A JScrollPane is required when the size
of data model or source exceeds the size of the frame.
The component that needs a scroll pane is passed as
an argument to the JScrollPane constructor. In this
case, the horizontal and vertical scroll bars appear
automatically whenever required, i.e., the data model
exceeds the frame size area.

 JScrollPane j = new JScrollPane(Component c)

 // for more constructor see JDK 6 Docs

L15–16 The list model is populated and items
are added to the list. The addElement method of
DefaultListModel is used to add individual items
to the list.

public void add Element (Object o)

L17 List is registered with its associated lis-
tener, i.e., ListSelectionListener to listen for
ListSelectionEvent generated on change in the
selection on JList.
L18–19 The scroll pane is added to the top, i.e.,
NORTH and the label is added to the bottom, i.e.,
SOUTH.
L20 Visibility is set to true.
L21–22 The valueChanged method is overridden
to capture the ListSelectionEvent. This method
extracts the selected value from the list using a
method getSelectedValue(). This method returns
an object of type Object class which is then cast to
string type and then set as the caption for the label
using setText method of the JLabel. This setText
method accepts a string, so cast of object to string
had to be performed.

Swing 513

15.8 SPLIT PANE

The split pane is a container that graphically separates the components, either horizontally
(JSplitPane.HORIZONTAL_SPLIT) or vertically (JSplitPane.VERTICAL_SPLIT). It can display two
components at a time and the display areas can be adjusted by the user. Let us take an example
of it to see how JSplitPane is used (Fig. 15.11).

Example 15.7 JSplitPane

 import javax.swing.*;
 public class DemoSplitPane extends JFrame {
 public void demoSplitPane() {
 setTitle("Split Pane");
 setSize(250, 250);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 L1 JPanel jpane1 = new JPanel();
 L2 JPanel jpane2 = new JPanel();
 L3 JLabel jlb1 = new JLabel("First Area 1");
 L4 JLabel jlb2 = new JLabel("Second Area 2");
 L5 jpane1.add(jlb1);
 L6 jpane2.add(jlb2);
 L7 JSplitPane splitPane = new JSplitPane(JSplitPane.VERTICAL_SPLIT,true,
 jpane1,jpane2);
 L8 splitPane.setOneTouchExpandable(true);
 L9 add(splitPane);
 L10 setVisible(true);
 }
 public static void main(String[] args){
 DemoSplitPane demo = new DemoSplitPane();
 demo.demoSplitPane();
 }}

Output

Fig. 15.11 Vertically Split JSplitPane Showing two JPanel

514 Programming in Java

Explanation

L1–2 Two instances of JPanel are created for each
portion that will be split by JSplitPane.
L3–4 Two labels are created, one for each panel
with caption ‘First Area 1’ and ‘Second Area 2’.
L5–6 JLabel are added to JPanel.
L7 JSplitPane object is created. The constructor
used in the example is shown below:
JSplitPane (int orientation, boolean
newContinuouslayout, Component c1, Component c2)
where orientation can take two values: JSplit-
Pane.HORIZONTAL_SPLIT and JSplitPane.VERTICAL
SPLIT. HORIZONTAL_SPLIT will divide the entire
horizontal area into parts. VERTICAL_SPLIT will di-
vide the entire vertical area into parts (see Fig. 15.11).

newContinuouslayout is a boolean value indicating
whether components will be redrawn or not when
the divider is moved.
c1 denotes that the component will be displayed in
the top portion (in case of VERTICAL_SPLIT) and
left portion (in case of HORIZONTAL_SPLIT).
c2 denotes that the component will be displayed in
the bottom portion (in case of VERTICAL_SPLIT)
and right portion (in case of HORIZONTAL_SPLIT).
L8 setOneTouchExpandable (true) method of
JSplitPane is used to provide up/down arrow on
the divider. Clicking on the arrows expands/contracts
the split pane.

15.9 JTabbedPane

JTabbedPane allows a user to switch between different tabs containing components or a group
of components (see Fig. 15.12(a) and (b)). The individual tabs will have a title and may contain
icons as well. Table 15.10 shows the constructors for JTabbedPane.

Table 15.10 Constructors of JTabbedPane

Constructor Description
JTabbedPane() Creates a tabbed pane with a default tab placement,

i.e. JTabbedPane.TOP.
JTabbedPane(int tabPlacement) Creates a tabbed pane with tab placement specifi ed.

The tab placement can take any one of the following
values:
JTabbedPane.TOP
JTabbedPane.BOTTOM
JTabbedPane.LEFT
JTabbedPane.RIGHT

Individual tabs can be added using the following methods:
 public void addTab(String title, Component c)

or
 public void addTab(String title, Icon i, Component c)

The listener associated with JTabbedPane is ChangeListener (javax.swing.event). The method
used for registering ChangeListener with JTabbedPane is shown below:
 public void addChangeListener(ChangeListener l)

Swing 515

This ChangeListener interface has a method, publicvoidstateChanged (ChangeEvente), to process
the ChangeEvent that occurred when tabs are selected.
 Let us take an example to understand JTabbedPane and how ChangeListener is used on it. In the
following program, two tabs are created. Both tabs contain JPanel. The JPanel in tab1 contains
a label, whereas the other JPanel contains a toggle button. A third label is added to the JFrame
whose value is set when the tabs are selected.

Example 15.8 JTabbedPane

 import java.awt.*;
 import javax.swing.*;
 import javax.swing.event.*;
 public class JTabbedPaneDemo extends JFrame {
 L1 JLabel lbl,txt;
 L2 JToggleButton jb;
 L3 JTabbedPane jt;
 L4 JTabbedPaneDemo(){
 L5 setTitle("JTabbedPane");
 L6 setDefaultCloseOperation(EXIT_ON_CLOSE);
 L7 lbl = new JLabel("Label in Tab1");
 L8 JPanel panel1 = new JPanel();
 L9 panel1.add(lbl);
 L10 JPanel panel2 = new JPanel();
 L11 jb = new JToggleButton("Change Color");
 L12 panel2.add(jb);
 L13 jt = new JTabbedPane();
 L14 jt.addTab("Tab 1", panel1);
 L15 jt.addTab("Tab 2", panel2);
 L16 jt.setToolTipTextAt(0,"Tab 1");
 L17 jt.setToolTipTextAt(1,"Tab 2");
 L18 add(jt,BorderLayout.NORTH);
 L19 txt = new JLabel();
 L20 add(txt,BorderLayout.CENTER);
 L21 setSize(300,200);
 L22 setVisible(true);
 L23 jt.addChangeListener(new ChangeListener(){
 L24 public void stateChanged(ChangeEvent e){
 L25 txt.setText("Tab selected: " + jt.getSelectedIndex());
 }
 });
 }
 public static void main(String args[]){
 new JTabbedPaneDemo();
 }}

516 Programming in Java

Output

Fig. 15.12(a) JTabbedPane Showing
ToolTipText and Index When Tab2 is
Selected along with the Toggle Button in Tab2

Fig. 15.12(b) JTabbedPane Showing ToolTip-
Text and Index When Tab1 is Selected along
with the JLabel in Tab1

Explanation
L7–9 JLabel is created with text Label in Tab1
and added to JPanel.
L10–12 JToggleButton is created with the caption
ChangeColor and added to another JPanel. We have
not registered the Toggle button for event handling, so
nothing will happen once you click on Toggle button.
L13 JTabbedPane instance is created with default
placement.
L14–15 Individual tabs are added to the tabbed
pane using addTab method. This method also
specifi es what the individual tabs will contain. For
example, Tab1 contains panel1 and Tab2 contains
panel2.
L16–17 Tooltip can be set/get for the tabs using
the following methods:

void setToolTipTextAt(int index, String tooltip)

String getToolTipTextAt(int index)
When you place your mouse over the tab, you will
see the tooltip text appears as shown in Figs 15.12(a)
and (b).
L18–20 The JTabbedPane and JLabel are added
to the content pane.
L23–25 An anonymous inner class is defi ned here
to handle the ChangeEvent generated when the user
clicks on a tab. JTabbedPane registers itself with
ChangeListener using addChangeListener method.
The anonymous inner class will inherit the interface
ChangeListener and the method stateChanged
(ChangeEvent e) (L 24) will be a part of that class.
This method sets the value of the JLabel(txt)with
a string concatenated with the selected index of the
tab. The selected index of the tab is obtained by
getSelectedIndex() method of JTabbedPane.

15.10 JTree

The JTree class is used to display hierarchical data. A JTree object provides a view of the data.
The tree obtains its data by querying its data model. The snapshot of a JTree is shown in Fig. 15.13
 JTree displays the data vertically. Each row contains exactly one node. There are three types
of nodes in a JTree: root node, branch node, and leaf node. All nodes will have a common
root node at the top of the tree. A node can either have children or cannot have children. Nodes
that have children are called branch nodes and nodes that do not have children are called leaf

Swing 517

nodes. In Fig. 15.13, nodes labeled as 1.1 and 2 are leaf
nodes and rest are branch nodes except Numbers which is
root node. We have expanded all branch nodes by clicking
on them in Fig 15.13 to show the difference between three
types of nodes.
 The structure of a Tree is created using DefaultTreeModel
class. All nodes within this model are created using
DefaultMutableTreeNode class. All these nodes are fi rst added
to the model and then the model is added to the JTree. If
a user wants to monitor for node expansion or collapsing
events, TreeExpansionListener is used. A specifi c node is in
expanded state when user double clicks on that node thereby
displaying its child nodes. If the node is in expanded state,
you can collapse it by double clicking on that node. When a

node is in collapse state, all its child nodes are in hidden state. Any node can be identifi ed by a
TreePath object which encapsulates the node along with all its ancestors. Let us take an example
to create a JTree and also check for user selection of nodes (Fig. 15.14).

Example 15.9 JTreeDemo.java

 L1 import javax.swing.*;
 L2 import javax.swing.tree.*;
 L3 import javax.swing.event.*;
 L4 public class JTreeDemo extends JFrame
 {
 L5 JTree jt;
 L6 DefaultTreeModel dtm;
 L7 DefaultMutableTreeNode dtm1;
 L8 JTreeDemo(String title)
 {
 L9 setTitle(title);
 /* Root node creation. DefaultMutableTreeNode creates a node with no parent
 and no child but allows children.*/
 L10 dtm1 = new DefaultMutableTreeNode("Numbers");

 /*Branch Node Creation */
 L11 DefaultMutableTreeNode one=new DefaultMutableTreeNode ("One");

 /* Another hierarchy of branch node has to be added within the branch node one */
 L12 DefaultMutableTreeNode oneInNumber=new
 DefaultMutableTreeNode("1");

 /* Leaf node created for node Labeled "1". The second argument to the con
 structor specifi es that this node will not have children*/

Fig. 15.13 JTree

518 Programming in Java

 L13 DefaultMutableTreeNode oneInNumber2=new

 DefaultMutableTreeNode("1.1", false);

 /* Leaf Node labeled "1.1" added to node "1" */

 L14 oneInNumber.add(oneInNumber2);

 /*Branch node labeled 1 is added to node labeled as "One"*/

 L15 one.add(oneInNumber);

 /*Branch node labeled as "One" is added to root node "Numbers"*/

 L16 dtm1.add(one);

 L17 DefaultMutableTreeNode two=new DefaultMutableTreeNode("Two");

 L18 DefaultMutableTreeNode twoInNumber=new DefaultMutableTreeNode("2");

 L19 two.add(twoInNumber);

 L20 dtm1.add(two);

 L21 dtm = new DefaultTreeModel (dtm1,true);

 L22 jt = new JTree(dtm1);

 L23 jt.addTreeExpansionListener(new TreeExpansionListener()

 {

 public void treeCollapsed(TreeExpansionEvent te)

 {

 System.out.println("Collapsed");

 }

 public void treeExpanded(TreeExpansionEvent te)

 {

 System.out.println(jt.getLeadSelectionPath());

 System.out.println(

 jt.getLastSelectedPathComponent());

 }

 });

 L24 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 L25 add(jt);

 L26 setSize(200,200);

 L27 setVisible(true);

 }

 L28 public static void main(String args[])

 {

 L29 new JTreeDemo("My Tree");

 }

 }

Swing 519

Output

Fig. 15.14(a) JTree is Displayed

 Fig. 15.14(b) Node One is Expanded and Nodes TreePath (i.e., [Numbers, One])
and Name is Displayed on Command Prompt

 Fig. 15.14(c) Sub Node 1 is Expanded and Node’s TreePath and Name is
Displayed on Command Prompt

520 Programming in Java

Fig. 15.14(d) Node One is Collapsed and “Collapsed” is Printed on the Screen

Fig. 15.14(e) Root node is Collapsed and “Collapsed” is Printed on the Screen

Explanation

L 1 – 3 Import the required packages. T h e
javax.swing.tree sub package is imported because
we want to use DefaultTreeModel and DefaultMu-
tableTreeNode class in our program.
L4 Class declaration.
L5–7 Reference variables of JTree, Default-
TreeModel and DefaultMutableTreeNode are created.
L8 Constructor declaration.
L9 Sets the title of the frame.
We want to create our own tree structure so we
need to create a TreeModel. The constructor of
JTree accepts a TreeModel object. TreeModel is an
interface in the java.swing.tree package, so we use
DefaultTreeModel class which inherits the TreeModel
interface. We have passed the DefaultTreeModel
object within JTree constructor. A TreeModel will
have nodes. The constructor of DefaultTreeModel
accepts an object of type TreeNode which is an
interface in java.swing.tree package. For creating

nodes of JTree, we use DefaultMutableTreeNode
(which inherits the TreeNode interface) class. The
caption for the node is passed within the constructor
of the DefaultMutableTreeNode.
First of all a root node (dtm1) is created using
DefaultMutableTreeNode class. The branch nodes
and their child branch nodes are also created using
DefaultMutableTreeNode class and are added to their
respective parent branch nodes. The branch nodes
are added to the root node. Lastly the root node is
added to the DefaultTreeModel object (dtm), which
is passed in the constructor of JTree object.
L10 Creates the fi rst node (root node, i.e., dtm)
using DefaultMutableTreeNode class. The statement
creates a node labeled as “Numbers” with no parent
and no child but allows children.
L11 Creates a branch node (i.e., one) using
DefaultMutableTreeNode class. The statement
creates a node labeled as “One” with no parent and no

Swing 521

child but allows children. This is a branch node within
the root node so it will be added to root node in L16.
L12 Creates another branch node to be added
within the branch node labeled “One”.
DefaultMutableTreeNode oneInNumber=new
DefaultMutableTreeNode("1");

L13 Creates a leaf node labeled as “1.1” to be
added within branch node labeled as “1”. The second
argument (false) to the constructor specifi es that this
node will not have children.

DefaultMutableTreeNode oneInNumber2=new De-
faultMutableTreeNode(“1.1”, false);

L14 Shows how to add leaf node labeled “1.1” to
node “1”.

oneInNumber.add(oneInNumber2);

L15 Branch node labeled “1” is added to node
labeled as “One”.

one.add(oneInNumber);

L16 Branch node labeled as “One” is added to root
node “Numbers”.

dtm1.add(one);

L17–20 Creates another hierarchy of branch node
within the root node. The node labeled “2” is added
to node labeled “Two” of the root node.
L21 Creates a DefaultTreeModel object and
DefaultMutableTreeNode (root node) object is

passed within the constructor of DefaultTreeModel.
The boolean argument in the constructor of
DefaultTreeModel specifi es that any node can have
children including the last nodes. If we omit this
statement and add dtm1 (root node object) directly to
the JTree, then the last branch nodes like 2, as in our
case, are not considered for TreeExpansionListener
event. (Try to see the difference in output by adding
dtmto JTree and later by adding dtm1to JTree.)
L22 Adds the DefaultTreeModel to the JTree
object.
L23 Uses an anonymous inner class for handling
tree events. TreeExpansionListener is used
for handing TreeExpansionEvent. This event
is raised as soon as the Tree is expanded or
collapsed. TreeExpansionListener has two
methods: treeCollapsed and treeExpanded. These
two methods are overridden in the anonymous inner
class with a print statement within them. As the node
is double clicked, treeExpanded method is invoked.
This method prints the TreePath of the node on which
the user has double clicked. The TreePath is obtained
using the getLeadSelectionPath method of JTree
class. TreePath is path of the node starting from the
root node up to the node on which the user has clicked
(see output). The node label can also be obtained
using the getLastSelectedPathComponent() of the
JTree class.
L24–29 These have already been discussed in
various examples.

15.11 JTable

The JTable class lets you display tables of data. Figure 15.15 shows a simple table:

Fig. 15.15 JTable with Two Columns and Rows

522 Programming in Java

 Let us create a JTable for Fig. 15.15 and monitor it for cell selections. As soon as a user selects
a cell, its value is displayed to the user (Fig. 15.16).

Example 15.10 JTable Demo

 L1 import javax.swing.*;
 L2 import java.awt.event.*;
 L3 class TableDemo extends JFrame
 {
 L4 JTable jt;
 L5 JScrollPane jsp;
 L6 TableDemo(String title)
 {
 L7 setTitle(title);
 L8 Object row[][]={{"Kavi","Delhi"},{"Nitin","Dehradun"}};
 L9 Object col[]={"Name","Address"};
 L10 jt = new JTable(row,col);

 L11 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 /* if this value is set, a column can be selected otherwise the entire row is high
 lighted.*/
 L12 jt.setCellSelectionEnabled(true);

 L13 jt.addMouseListener(new MouseAdapter()
 {
 public void mouseClicked(MouseEvent me)
 {
 String string = (String)jt.getValueAt (jt.getSelectedRow() ,jt.getSelectedColumn());

 // Display the selected item
 System.out.println("Value selected = " + string);
 }
 });
 L14 jsp=new JScrollPane(jt);
 L15 add(jsp);
 L16 setSize(300,400);
 L17 setVisible(true);
 }
 L18 public static void main(String[] args)
 {
 L19 new TableDemo("Table Demo");
 }
 }

Swing 523

Output

Fig. 15.16 JTable with Cell Selection Being Monitored

Explanation
L1–2 Imports the required packages.
L3 Class declaration.
L4–5 A reference variable of JTable and
JScrollPane is created.
L6–7 Constructor is declared to accept a string
which is used for setting the title of the JFrame.
L8–10 Table is a collection of row and columns.
Therefore, two arrays have been created in L9 and L10,
a two-dimensional array for populating the rows and
one-dimensional array for column names. These are
added to the JTable by passing in its constructor in L11.
L11 Exits the application as soon as a user clicks on
the X button on the upperleft corner of the JFrame.
L12 By default, complete row are selected on user
clicks. We want to select a particular cell in any row.
So, we have to enable cell selections as shown in
this statement.
L13 MouseListener is registered with JTable to
track mouse click events on individual cell elements

of the JTable. Anonymous inner class is created for
handling mouse events. We wanted to track mouse
click only, so we have overridden the mouseClicked
(MouseEventme) method only. As soon as the mouse
is clicked on a cell, this method extracts the value of
that cell and prints it on the console. The getValue
At method of JTable is used to extract the value
of particular cell. We want to get the value of the
selected cell, so we have passed the index of the
selected row (getSelectedRow()) and the selected
column (getSelectedColumn()) in the getValueAt
method.

String string = (String)jt.getValueAt
(jt.getSelectedRow(),
jt.getSelectedColumn());

L14–15 JTable is added to JScrollPane, which is
added to the frame.
L16–19 All these lines have already been explained.

 In the previous example, we have monitored for only cell selections. In the following example
we will be monitoring selection of a complete row and even multiple rows. Let us create another
JTable and monitor it for row selections (Fig. 15.17).

Example 15.11 JTable Demo 2

 L1 import javax.swing.*;
 L2 import java.awt.event.*;
 L3 class TableDemo2 extends JFrame
 {
 L4 JTable jt;
 L5 JScrollPane jsp;
 L6 //ListSelectionModel selectionModel;

524 Programming in Java

 L7 TableDemo2(String title)
 {
 L8 setTitle(title);
 L9 Object row[][]={{"Kavi","Delhi"},{"Nitin","Dehradun"}};
 L10 Object col[]={"Name","Address"};
 L11 jt=new JTable(row,col);
 L12 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 L13 /*selectionModel = jt.getSelectionModel();*/

 L14 /*selectionModel.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);*/
 L15 jt.addMouseListener(new MouseAdapter(){

 public void mouseClicked(MouseEvent me)
 {
 int rowcount=jt.getSelectedRowCount();
 int colcount=jt.getColumnCount();
 String string=null;
 /*get an index of all the selected rows*/
 int[] sel=jt.getSelectedRows();
 /*Determine and print the selected item */
 for(int i=0;i<rowcount;i++)
 for(int j=0;j<colcount;j++)
 {
 string = (String) jt.getValueAt (sel[i],j);

 // Display the selected item
 System.out.println("Value selected = " + rowcount +" ,
 "+colcount+ ":"+ string);
 }

 }
 });

 L17 jsp=new JScrollPane(jt);
 L18 add(jsp);
 L19 setSize(300,400);
 L20 setVisible(true);

 }
 L21 public static void main(String[] args)
 {
 L22 new TableDemo2("Table Demo2");
 }
 }

Swing 525

Output

Fig. 15.17(a) Single Row Selection of the JTable

Fig. 15.17(b) Multiple Row Selection of the JTable

Explanation
L6, 13–14 Are commented. They are specifi cally
commented and shown in this example for a purpose.
We have allowed multiple row selections. In case
you wish to allow for a single row selection, these
commented statements must be uncommented. As
explained earlier, ListSelectionModel interface
provides the user with an option to set different
selection modes. These modes are provided as
static fi elds of ListSelectionModel interface and
these modes are used to set the selectionMode fi eld
of JTable class. These modes have already been
discussed in Table 15.9.
L15 A user can select any number of rows and we
need to print all the selected rows. So fi rst of all,
we need to determine the number of rows that have

been selected by the user. This information can be
obtained using the getSelectedRowCount() method.
Subsequently we extract the number of columns
in that table using the getColumnCount() method.
Thereafter we use the getSelectedRows() method to
obtain the index of all the selected rows. This method
returns an integer array (i.e., sel[]). To iterate and
print the selected rows a nested for loop is created.
The outer loop is used to iterate through the selected
rows and inner for loop is used to print all the column
values of a selected row. The getValueAt() method
is used to obtain cell values of selected rows as in
the previous example. All the selected row indexes
are stored in an integer array sel, which is passed as
fi rst argument in the getValueAt method.

15.12 DIALOG BOX

There are four types of dialog boxes available in Java swings:
 1. Confi rm dialog: It seeks the user’s response, e.g., YES/NO/CANCEL.
 2. Message dialog: Informs the user about something.

526 Programming in Java

 3. Input dialog: Asks the user to enter a value.
 4. Option dialog: Asks the user to choose a value from a given set of values.

These dialog boxes can be created with the help of a class: JOptionPane. This class provides
static methods for creating all these dialogs, like for creating a confi rm dialog, the following
method is used:

 public static int showConfi rmDialog(Component parent, Object msg, String
 title, int optiontype) throws HeadlessException

where parent is the frame in which the dialog will be displayed. msg is the message that will be
displayed in the dialog. title sets the title of the dialog. optiontype may be one of the following:

  JOptionPane.DEFAULT_OPTION

  JOptionPane.YES_NO_OPTION

  JOptionPane.YES_NO_CANCEL_OPTION

  JOptionPane.OK_CANCEL_OPTION

This method returns an int value indicating the option selected by the user. The possible return
values could be one of the following: YES_OPTION, NO_OPTION, CANCEL_OPTION, OK_OPTION,
CLOSED_OPTION.
 The message dialog displays a message to the user. It can be created using the method shown
below:
 public static void showMessageDialog(Component parent, Object msg) throws
 HeadlessException // creates an information message dialog
or
 public static void showMessageDialog(Component parent, Object msg, String
 title, int messagetype) throws HeadlessException

where messagetype may be one of the following:
  JOptionPane.ERROR_MESSAGE

  JOptionPane.INFORMATION_MESSAGE

  JOptionPane.WARNING_MESSAGE

  JOptionPane.QUESTION_MESSAGE

  JOptionPane.PLAIN_MESSAGE

The input dialog is used to get input from the user and it can be created using the methods
shown below:
 public static String showInputDialog(Component parent, Object msg) throws
 HeadlessException

It seeks input from the user and returns it as a string.
or

 public static String showInputDialog(Component parent, Object msg, String
 title, int messagetype) throws HeadlessException

It seeks input from the user and returns it as a string. The option dialog displays a list of options
to the user and prompts him to choose one. The following method shows how it can be created
and used:

Swing 527

 public static int showOptionDialog(Component parent, Object msg, String
 title, int optiontype, int messagetype, Icon i, Object[] option, Object
 initialValue) throws HeadlessException

It requires the user to select an option from the available set of options specifi ed by the Object[]
option. i specifi es an image icon for the dialog. initialValue specifi es the default value. All
methods throw a HeadLessException which occurs when this code is invoked in an environment
which does not support mouse or keyboard.

Example 15.12 Dialog Boxes using JOptionPane in Swing
 import javax.swing.*;
 import java.awt.event.*;
 import java.awt.*;
 public class DialogBoxDemo extends JFrame{
 JFrame frame; JLabel l;
 public DialogBoxDemo(){
 JButton b1 = new JButton("Message Dialog");
 JButton b2 = new JButton("Confi rm Dialog");
 JButton b3 = new JButton("Input Dialog");
 JButton b4 = new JButton("Option Dialog");
 getContentPane().setLayout(new FlowLayout());
 L1 b1.addActionListener(new MyAction());
 L2 b2.addActionListener(new MyAction());
 L3 b3.addActionListener(new MyAction());
 L4 b4.addActionListener(new MyAction());
 L5 l = new JLabel();
 L6 add(b1);
 L7 add(b2); add(b3); add(b4); add(l);
 setSize(350, 200);
 setVisible(true);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 L8 frame = new JFrame("Message Dialog Frame");
 }

 // Inner class to handle ActionEvent for buttons
 L9 class MyAction implements ActionListener {
 L10 public void actionPerformed(ActionEvent e)
 {
 L11 if(e.getActionCommand().equals("Message Dialog"))
 L12 JOptionPane.showMessageDialog(frame,"DialogBox");
 L13 else if(e.getActionCommand().equals("Input Dialog"))
 L14 l.setText(JOptionPane.showInputDialog(frame,"Enter a value"));
 L15 else if(e.getActionCommand().equals("Confi rm Dialog")){
 L16 int i = JOptionPane.showConfi rmDialog(frame,"Choose","Choose
 One",JOptionPane. YES_NO_OPTION);
 L17 if(i== JOptionPane.YES_OPTION)
 l.setText("YES");
 L18 else if(i== JOptionPane.NO_OPTION)

528 Programming in Java

 l.setText("NO"); }
 L19 else if(e.getActionCommand().equals("Option Dialog"))
 {
 L20 String values[] = { "Car", "Bike", "Bus" };
 L21 l.setText((String)JOptionPane.showInputDialog(frame,"Select one", "Enter
 Your Choice",JOptionPane.INFORMATION_MESSAGE, null,values,values[0]));
 }
 }
 } // inner class ends here

 public static void main(String[] args){
 DialogBoxDemo db = new DialogBoxDemo();
 } }

Output

Fig. 15.18(a) JFrame with Four JButtons Fig. 15.18(b) Message Dialog

Fig. 15.18(c) Confi rm Dialog Fig. 15.18(d) Input Dialog

Fig. 15.18(e) JLabel Showing the Value Typed
in Input Dialog Fig. 15.18(f) Option Dialog

Swing 529

Explanation
L1–7 Four buttons are created and ActionListener
is registered with all of them. The JButton along with
a label are added to the frame.
L8 A new JFrame is constructed for holding dialog
boxes (frame).
L9–20 An inner class has been defined for
capturing JButton events.
L9 When a button will be clicked, ActionEvent
will be handled by MyAction object.
L10 Method actionPerformed overridden.
L11–12 Uses if statement to confi rm which button
has been clicked upon. If it is a message dialog
button, the user is shown a message in a message
dialog box. The getActionCommand method returns
the caption of the button as a string. The method used
to create a message dialog is showMessageDialog
which we have already discussed.
L13–14 If the user clicked on input dialog button,
an input dialog is shown to the user. He/she can enter
the value desired which is returned as a string. The
returned value is set as text for the string.

L15–18 If the user clicked on confirm dialog
button, a confirm dialog is displayed. Method
showConfirmDialog is used to create a confirm
dialog. The title of the dialog is ChooseOne and the
message inside the dialog is Choose. The user clicks
on either yes or no. To check what is the response
of the user, we have used if statement and matched
the return value with JOptionPane.YES_OPTION (if
yes is clicked) and JOptionPane.NO_OPTION (if no
is clicked). The label is set accordingly.
L19–21 If the user clicks an option dialog button,
an option dialog is displayed. A list of options is
displayed in a lookalike combo box control and the
user makes a single selection in this control. The
default value can also be specifi ed. L20 shows a
list of all values that will be inserted in an option
dialog. L21 creates an option dialog using the method
showOptionDialog as discussed. The selection is
returned as an object of type Object which is then
cast to a string and set as the caption for the label
(Fig. 15.18).

15.13 JFileChooser

JFileChooser class provides a fi le open dialog where a user can choose to open or save fi les.
JFileChooser class navigates the fi le system to choose a fi le or directory. Figure 15.19 shows
the JFileChooser used to open a fi le. Note the title of fi le chooser is “Open” and the two buttons
towards the end are Open and Cancel.

Fig. 15.19 JFileChooser Open Dialog

530 Programming in Java

Figure 15.20 shows the JFileChooser save dialog. Please note the title at the top is “Save” and
the two buttons towards the bottom are “Save” and “Cancel”.
 The fi le chooser class is instantiated and the showOpenDialog method is used to show the
Open fi le dialog and showSaveDialog method is used to show the Save fi le dialog. Some of the
constructors of JFileChooser class are shown below in Table 15.11. We will be depicting the
practical usage of JFileChooser class in the practical problem (Section 15.17).

Fig. 15.20 JFileChooser Save Dialog

Table 15.11 Few Constructor of JFileChooser Class

JFileChooser() Constructs a fi le chooser which points to the user’s default
directory.

JFileChooser(File currentDirectory) Constructs a fi le chooser which points to the directory
referred by the File object. If File object does not refer to
any directory (i.e., null), then the user default directory is
shown in the File chooser.

JFileChooser(String currentDirectoryPath) Constructs a File chooser which points to the given path.

15.14 JColorChooser

 JColorChooser is a tabbed control which can be used to manipulate and select a color.
Figure 15.21 shows the JColorChooser. As soon as a color is chosen it is added in the list of
Recent: Colors (see Fig.15.21) and the color of the sample text in the preview pane changes
according to the color chosen by the user.
 JColorChooser can be created by using a showDialog static method of this class. This method
displays the dialog on top of the container where you can choose a color of your choice. The
chosen color is returned as a Color object on the press of the OK button.
 JColorChooser.showDialog(parent component, title, default color)

We will be depicting the practical usage of JFileChooser class in the practical problem (Section
15.17).

Swing 531

Fig. 15.21 JColorChooser

15.15 PLUGGABLE LOOK AND FEEL

Java provides pluggable look and feel. You can change the look and feel of the GUI displayed
to the user. The look and feel is provided by the following packages and their sub-packages:
 javax.swing.plaf
 javax.swing.plaf.basic
 javax.swing.plaf.metal
 javax.swing.plaf.multi
 javax.swing.plaf.synth
 javax.swing.plaf.nimbus (introduced in Java 6 update 10)

Although not part of Java API, the following Look and Feel packages are shipped along with
Java SDK.

 com.sun.java.swing.plaf.gtk.GTKLookAndFeel (for Solaris/Linux)
 com.sun.java.swing.plaf.motif.MotifLookAndFeel (runs on any platform)
 com.sun.java.swing.plaf.windows.WindowsLookAndFeel (only Windows)

Java provides the following look and feel:

  A cross-platform look and feel (also known as Metal) is the default look and feel in
Java. The beauty of this look and feel is that it looks uniform on all platforms.

 (javax.swing.plaf.metal.MetalLookAndFeel).

  A system-defi ned (native) look and feel shows the GUI according to the look and feel
of the native system.

  Synth Using this, you can create your own look and feel
 (javax.swing.plaf.synth.SynthLookAndFeel).

  Multiplexing Delegates to different look and feel at same time
 (javax.swing.plaf.multi.MultiLookAndFeel).

532 Programming in Java

  Nimbus A new cross-platform look and feel introduced Java 6 update 10
 (javax.swing.plaf.nimbus.NimbusLookAndFeel).

  GTK+ This look and feel runs on Solaris and Linux O.S which have GTK+ 2.2 or later
installed in them. The Solaris and Linux O.S without GTK or earlier version of GTK
installed in them will have Motif Look and Feel.

  IBM Unix, HP Unix, and Macintosh provide their own Look and Feel.

 The look and feel can be get and set using the methods getLookAndFeel() and setLookAndFeel()
of the javax.swing.UIManager class. Their signatures are as follows:
 static LookAndFeel getLookAndFeel()
 static void setLookAndFeel(LookAndFeel l)
 static void setLookAndFeel(String className)

LookAndFeel class is the parent of all the look and feel classes in Java. It has two subclasses,
BasicLookAndFeel and MultiLookAndFeel. The BasicLookAndFeel is inherited by MetalLookAndFeel
and SynthLookAndFeel. The NimbusLookAndFeel class inherits the SynthLookAndFeel class.
 The metal look and feel has themes associated with it. The default theme is OceanTheme. Prior
to JDK5 the default theme was DefaultMetalTheme (also known as steel). These themes can be
get/set using MetalLookAndFeel class methods:
 public static void setCurrentTheme(MetalTheme m)
 public static MetalTheme getCurrentTheme()

Let us take an example to see how look and feel can change according to an event. There are
fi ve buttons in the frame; one for each Look And Feel. The look and feel of the frame changes
as soon as these buttons are pressed.

Example 15.13(a) Java Look and Feel
 import javax.swing.*;
 import java.awt.*;
 import java.awt.event.*;
 L1 import javax.swing.plaf.synth.*;
 public class LookAndFeel extends JFrame implements ActionListener
 {
 JButton b1;
 JButton b2;
 JButton b3;
 JButton b4;
 JButton b5;

 Container c;
 LookAndFeel()
 {
 setTitle("LookAndFeel");
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 b1 = new JButton("Metal");

Swing 533

 b2 = new JButton("Motif");
 b3 = new JButton("System");
 b4=new JButton("Nimbus");
 b5=new JButton("Synth");

 c=getContentPane();
 c.setLayout(new FlowLayout());

 b1.addActionListener(this);
 b2.addActionListener(this);
 b3.addActionListener(this);
 b4.addActionListener(this);
 b5.addActionListener(this);

 add(b1);
 add(b2);
 add(b3);
 add(b4);
 add(b5);

 setVisible(true);
 pack();

 }
 public static void main(String args[]) throws Exception
 {
 L2 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new LookAndFeel();

 }
 });

 }
 public void actionPerformed(ActionEvent ae)
 {
 try{
 String str=ae.getActionCommand();
 L3 if(str.equals("Metal"))
 {
 L4 UIManager.setLookAndFeel(UIManager.getCrossPlatformLookAndFeelClassName());
 L5 //UIManager.setLookAndFeel(javax.swing.plaf.metal.MetalLookAndFeel);
 }
 L6 if(str.equals("Motif"))
 UIManager.setLookAndFeel("com.sun.java.swing.plaf.motif.MotifLookAndFeel");

534 Programming in Java

 L7 if(str.equals("System"))
 L8 UIManager.setLookAndFeel("com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
 L9 //UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName())

 L10 if(str.equals("Nimbus"))
 UIManager.setLookAndFeel("javax.swing.plaf.nimbus.NimbusLookAndFeel");

 L11 if(str.equals("Synth"))
 {
 L12 SynthLookAndFeel slaf = new SynthLookAndFeel();
 L13 slaf.load(LookAndFeel.class.getResourceAsStream("rules.xml"),LookAndFeel.
 class);
 L14 UIManager.setLookAndFeel(slaf);
 }
 }catch(Exception e){}
 L15 SwingUtilities.updateComponentTreeUI(c);
 }
 }

Example 15.13(b) rules.xml

 <synth>

 <style id="buttonStyle">

 <insets top="5" left="5" right="5" bottom="5"/>

 <state>

 <imagePainter method="buttonBackground" path="/images/button.png"

 sourceInsets="10 10 10 10" />

 </state>

 </style>

 <bind style="buttonStyle" type="region" key="button"/>

 </synth>

Output

Fig. 15.22(a) Java Metal Look and Feel (Default) Fig. 15.22(b) The Motif Look and Feel

Swing 535

Fig. 15.22(c) The System-defi ned Look and Feel
(on Windows 7)

Fig. 15.22(d) The Nimbus Look and Feel

Metal Motif System Nimbus

Synth

Fig. 15.22(e) The Synth Look and Feel Fig. 15.22(f) button.png

 Explanation

L1 Imports the synth package. The other classes
have been referred by their complete names.
L2 As already told, the swing framework is
not thread safe. A swing programmer has to take
care in programming GUI so that his GUI is
always responsive. Swing provides three types
of threads, namely initial, eventdispatching,
and workerthreads. The job of initial threads is to
schedule a task for execution of event dispatching
thread. The task is scheduled using two methods
invokeAndWait and invokeLater. These methods
are provided by the class, SwingUtilities. The
responsibility of an initial thread is to create a
runnable object which would initialize the GUI and
then schedule the object on an event dispatching
thread. Worker threads are used for executing
long running task, normally background task. The
difference between invokeLater and invokeAndWait
is that, invokeLater schedules a job and returns,
whereas invokeAndWait schedules a job and then
waits for it to complete.

public static void invokeLater(Runnable r)
public static void invokeAndWait(Runnable r)

(Note: It should be used in all examples above)
L3–4 If Metal button is clicked, the cross-platform
look and feel is set using the method UIManager.
getCrossPlatformLookAndFeelClassName(). This
method returns the LookAndFeel subclass name (i.e.,

MetalLookAndFeel)that has cross-platform look and
feel. This class name is passed to setLookAndFeel
method. The class name can also be directly
mentioned as shown in comments below L5.
L6 If Motif button is clicked, the motif look and feel
is set using method UIManager.setLookAndFeel().
The class name has been directly mentioned "com.
sun.java.swing.plaf.motif.MotifLookAndFeel".
L7–8 If System button is clicked, the native
look and feel is set using the method UIManager.
setLookAndFeel().The class name has been
directly mentioned "com.sun.java.swing.plaf.
windows.WindowsLookAndFeel". The class name can
automatically be retrieved using the method
UIManager.getSystemLookAndFeelClassName()

as shown in commented line below L9.
L10 If Nimbus button is clicked, the native
look and feel is set using the method UIManager.
setLookAndFeel(). The class name has been directly
mentioned "com.sun.java.swing.plaf.nimbus.
NimbusLookAndFeel".
L11–14 If Synth button is pressed, all components
on the frame should be shown according to the

Synth Look And Feel.
 Synth Look and Feel is highly customizable. You
can specify style rules for each Synth component
such as button, label, and text fi eld. Each component

536 Programming in Java

(Contd)

has defi ned region associated with it. Region is a way
of identifying all or part of the component. Normally
a component has a single region associated with it
but some components can have more than one region
associated with themselves like split pane, tabbed
pane, and scrollbar . Regions for various components
are defi ned as constant in the javax.swing.plaf.
synth.Region class. Some of the common regions
are shown in Table 15.12. The style rules are
specifi ed using SynthStyle. Using SynthStyle, you
can specify style rules that affect the size, layout,
font, color, etc. Even you can specify background
images for components. The most important part of
SynthStyle is that different styles can be specifi ed
for different components. These styles are obtained
through a SynthStyleFactory. All components
contact the SynthStyleFactory to obtain synth styles
for all its regions. The SynthStyleFactory can be
defi ned either by creating an XML fi le or by creating
a class. We will be using the fi rst approach of creating
an XML fi le which will contain all the styles rules.
The benefi t of putting style rules in an XML fi le is
that if you want to change the look and feel of any or
all the components, you just need to change the rules
in XML fi le and the look and feel of your GUI will

change automatically. As well as, there is no need to
compile the program again and again. The style rules
(.xml fi le) are separate from your program. This XML
fi le is loaded in the program using the load method of
the SynthLookAndFeel class. The load method (L13)
accepts an object of type InputStream (which refers
to the XML fi le) along with the resource base (which
is the class itself in our case). XML fi les have to read
by the class hence we need an InputStream instance
that refers to the .xml fi le. The InputStream instance
is obtained using getResourceAsStream method of
the java.lang.Class. The getResourceAsStream
method is used to refer to external resources like
XML confi guration fi les and property fi les, etc. and
return an InputStream instance. You can refer to fi les
using absolute and relative pathnames. An absolute
path is preceded by a slash (e.g. /chap 15/rules.
xml) whereas relative path is not preceded by a slash
and name is relative to the location from where the
method is invoked (e.g., rules.xml) (Fig. 15.22).
L15 Whenever the look and feel is changed, all
the swing components have to be updated to refl ect
the look and feel changes. The method used for this
purpose is shown below:

SwingUtilities.updateComponentTreeUI(c);

Table 15.12 Some of the Constant Defi ned in the Region Class

BUTTON Button region
CHECK_BOX CheckBox region
CHECK_BOX_MENU_ITEM CheckBoxMenuItem region
COLOR_CHOOSER ColorChooser region
COMBO_BOX ComboBox region
DESKTOP_PANE DesktopPane region
EDITOR_PANE EditorPane region
FILE_CHOOSER FileChooser region
LABEL Label region
LIST List region
MENU Menu region
MENU_BAR MenuBar region
MENU_ITEM MenuItem region
RADIO_BUTTON RadioButton region.

Swing 537

RADIO_BUTTON_MENU_ITEM RegionButtonMenuItem region.
SCROLL_BAR ScrollBar region.
SCROLL_BAR_THUMB Thumb of the ScrollBar.
SCROLL_BAR_TRACK Track of the ScrollBar.
SCROLL_PANE ScrollPane region.
SPLIT_PANE SplitPane region.
SPLIT_PANE_DIVIDER Divider of the SplitPane.
TABBED_PANE TabbedPane region.
TABBED_PANE_CONTENT Region of a TabbedPane containing the content.
TABBED_PANE_TAB Region of a TabbedPane for one tab.
TABBED_PANE_TAB_AREA Region of a TabbedPane containing the tabs.
TABLE Table region.
TABLE_HEADER TableHeader region.
TEXT_AREA TextArea region.
TEXT_FIELD TextField region.
TEXT_PANE TextPane region.
TOGGLE_BUTTON ToggleButton region.
TREE Tree region.
TREE_CELL Region of the Tree for one cell.

The argument passed is the content pane so that all components in the content pane refl ect the
new look and feel.

Overview of XML
To understand the XML fi le, we fi rst need to understand XML along with its structure and its
rules of creation. So let us take an overview of XML.
 XML stands for extensible markup language. XML fi le have an extension .xml and they can
be written in any editor like notepad. XML is a case sensitive language. Unlike HTML, XML
provides a clear cut separation of contents from presentation and is hierarchical in nature. An
XML fi les contains user defi ned tags. These tags conform to some rules specifi ed in a DTD
(document type defi nition) fi le like

 (a) Name of the root tag.
 (b) Which tags will have attributes?
 (c) What will be name of the attributes?
 (d) What is the possible value of these attributes?
 (e) Which tags will have text or sub tags or a combination of both etc.?

We will be following a predefi ned DTD structure so the tags that we are going to use in our xml
fi le are already defi ned. There are certain rules that we should know before creating an XML fi le.

(Table 15.12 Contd)

538 Programming in Java

 (a) Every XML document has a root tag.
 (b) Every opening tag has a closing tag (e.g. <synth> is an opening tag and </synth> is a

closing tag).
 (c) All attribute values are in double quotes.
 (d) XML is case sensitive so opening and closing tags must match case by case.
 (e) Empty tags are those that do not have a closing tag. In other words opening and closing

tags are combined and they cannot have sub tags. (e.g. <font name="Courier New"
size="20" />

If any rule mentioned above is violated while creating xml then the style rules will not be applied.

Explanation of rules.xml
L1 Specifi es the root tag. <synth> is the root tag
of this xml fi le.
L2 <style> is a sub tag of <synth> tag. We can
specify styles within this tag and apply these styles
to components. To identify the styles, an identifi er is
associated with these styling rules. The identifi er is
specifi ed in the id attribute of the <style id=""> tag.
Different types of styles can be created in different
style tags with different ids.
L3 Shows an empty tag. The <insets> tag is used to
specify the spaces that should be left on top, bottom,
right, and left side after the component has acquired
its natural space. (The natural space required by
the component would be the space required by the
caption of the component). To specify this it uses
four attributes as shown: <insets top="5" left="5"
right="5" bottom="5"/>. Note the slash before last
angle bracket.
L4 Shows another empty tag. The font tag is
used to specify the font of the caption or text of
the component. The name and size of the font are
specifi ed in the attribute of the tag. Note that
all attribute are specifi ed in double quotes.
L5 The state tag is used to specify the state of the
component. There are seven possible values of the
state tag. These values are
 (a) ENABLED
 (b) MOUSE_OVER
 (c) PRESSED
 (d) DISABLED
 (e) FOCUSED
 (f) SELECTED
 (g) DEFAULT

If no value is applied, the rules apply to all the states.
A component can be in various states, either it will be
pressed or focused or disabled etc. In our example the
rules mentioned within state tag will be applicable for
all states of the component as we have not mentioned
any of the seven values. If we wish to apply the rules
(mentioned in this tag) only when mouse is put over
the component, the state tag should be as follows:
 <state value="MOUSE_OVER">
 ………..
 </state>
L6 In case you wish to specify a background
image for your component, then you can use the
<imagePainter> tag. The <imagePainter> tag has
three attributes: method, path, and sourceInsets.
Method attribute It is required to specify

which method of SynthPainter class is to
be invoked for painting. In our case we wish
to set a background image for our compo-
nent, i.e., button. The method that would be
used to achieve it is paintButtonBackground
(….). So the value in this attribute will be “but-
tonBackground”. To determine this value, the
paint word in the beginning of method name has
been removed and fi rst alphabet of the subsequent
words, i.e., B (for button) is converted to lower
case and the rest of the word remains as it is.

 Path attribute specifi es the path of the image to
be used as background for your component. We
have kept the button.png fi le in images folder
which is created in the same directory as that of
the program.

Swing 539

SourceInsets attribute is used to specify width
and height of the corner areas of an image.
The signifi cance of this attribute is that image
should not be stretched at corners beyond these
values. The four values passed as in this attribute
correspond to top, left, bottom and right corners
of the image.

L7 Closes the state tag.
L8 Closes the style tag.
L9 Shows an empty tag <bind>. This tag is used to
bind the style rules mentioned in the above lines to a
component. The identifi er of the style tag is passed in
the style attribute of the bind tag. You will have more
than one bind statement to bind styles to different
components. In case you wish to apply rules to all
the components used in the GUI, the bind tag will
be as shown below

<bind style=” StyleId “ type=”region" key=”.*”/>
We want to specify rules for buttons. The type
attribute of the bind tag is used to specify a "region"
and key will be “button”. The rules apply to all the
buttons on the frame. In case you wish to apply
separate rules for separate buttons, the bind tags
should be used in the following way:
<bind style="StyleId" type="name" key="name
of the button" />
For example, if the button name is Nimbus and style
id is nimbusStyle, then bind tag will be as follows:
<bind style="nimbusStyle" type="name"
key="Nimbus" />
L10 Closes the root tag <synth>.

15.16 INNER FRAMES

 Inner frame is a frame within a frame. Inner frames are created using javax.swing. JInternalFrame
class. It is a lightweight object that provides many features of a JFrame, like dragging, closing,
becoming an icon, resizing, title display, and support for a menu bar. The JInternalFrame is added
to a JDesktopPane which is a subclass of JLayeredPane. You can also add components to content
pane of JInternalFrame using the add method. Let us create internal frames within a frame.

Example 15.14 Inner Frames

 L1 import java.awt.event.*;
 L2 import java.awt.*;
 L3 import javax.swing.*;
 L4 import javax.swing.event.*; /* for InternalFrameListener */
 L5 public class DemoInternalFrame extends JFrame implements ActionListener
 {
 /* Subclass of Layered Pane */
 L6 JDesktopPane dp;
 L7 JInternalFrame jif;
 L8 JMenuBar jmb;
 L9 JMenu File;
 L10 static int count=0;
 L11 DemoInternalFrame()
 {
 L12 super("Inner Frame Example");

 L13 dp=new JDesktopPane();
 /* set the Desktop Pane as the content pane */

540 Programming in Java

 L14 setContentPane(dp);

 /* public void setBounds(int x,int y,int width,int height) */

 L15 setBounds(100,100,600,600);
 L16 setVisible(true);
 L17 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 /* Creates a Menu bar */
 L18 jmb=new JMenuBar();
 L19 setJMenuBar(jmb);

 L20 File=new JMenu("File");
 L21 File.setMnemonic(KeyEvent.VK_F);
 L22 jmb.add(File);

 L23 JMenuItem newItem = new JMenuItem("New");
 L24 newItem.setMnemonic(KeyEvent.VK_N);
 L25 File.add(newItem);

 L26 newItem.addActionListener(this);

 }
 L27 public void actionPerformed(ActionEvent ae)
 {
 /* (title, resizable,closable,maximizable,iconifi able) */
 L28 jif=new JInternalFrame("Internal Frame"+count++,
 false,true,true,true);
 L29 jif.add(new JLabel("This an Internal Frame"));
 L30 jif.setSize(300,200);

 L31 jif.setLocation(20*count,20*count);
 L32 jif.setDefaultCloseOperation(DISPOSE_ON_CLOSE);
 L33 jif.setCursor(new Cursor(Cursor.HAND_CURSOR));

 L34 jif.addInternalFrameListener(new InternalFrameAdapter() {

 L35 public void internalFrameActivated(InternalFrameEvent i)
 {
 L36 System.out.println(" Internal Frame Activated");

 }
 L37 public void internalFrameOpened(InternalFrameEvent i)
 {
 L38 System.out.println("New Internal Frame Opened");

 }

Swing 541

 L39 public void internalFrameIconifi ed(InternalFrameEvent i)
 {
 L40 System.out.println(" Internal Frame Minimized ");
 }
 L41 public void internalFrameDeiconifi ed(InternalFrameEvent i)
 {
 L42 System.out.println(" Internal Frame Maximized");
 }
 L43 public void internalFrameDeactivated(InternalFrameEvent i)
 {
 L44 System.out.println(" Internal Frame Deactivated");
 }
 L45 public void internalFrameClosing(InternalFrameEvent i)
 {
 L46 System.out.println(" Internal Frame Closing");
 }
 L47 public void internalFrameClosed(InternalFrameEvent i)
 {
 L48 System.out.println(" Internal Frame Closed");
 }
 });

 L49 jif.setVisible(true);

 /* adds inner frame to desktop pane */
 L50 dp.add(jif);
 /* if this line is moved after the jif.selected(true), the new inner frame
 are displayed beneath the older frames because setSelected method selects the
 window if the window is displayed */

 L51 try{
 L52 jif.setSelected(true);
 L53 }catch(java.beans. PropertyVetoException p){}
 L54 /*dp.add(jif);*/
 }
 L55 public static void main(String args[])
 {
 L56 SwingUtilities.invokeLater(new Runnable()
 {
 public void run()
 {
 new DemoInternalFrame();
 }
 });
 }
 }

542 Programming in Java

Output

Fig. 15.23(a) A New Internal Frame is Created and Activated

 Fig. 15.23(b) Another Internal Frame is Created. The Previous Frame (Frame 0) is Deactivated
and New Frame is Opened and Activated

 Fig. 15.23(c) Internal Frame 1 is Iconifi ed. So it becomes Deactivated. The Frame Beneath it
Becomes Activated and the Internal Frame 1 is Minimized

Swing 543

 Fig. 15.23(d) Internal Frame 1 is Deiconifi ed. Internal Frame 0 becomes Deactivated.
The Frame 1 is Activated and Maximized

 Fig. 15.23(e) Internal Frame 1 is Closed. The Closing Method is Called and Frame is
Deactivated. The Frame Beneath it becomes Activated and the Internal Frame 1 is Closed

Fig. 15.23(f) If L50 is Commented and L54 is Uncommented

544 Programming in Java

Explanation
L6 A reference variable of JDesktopPane is created.
It is a subclass of JLayeredPane. It is a container used
for creating MDI (multiple-document interface).
Internal frames are created using JInternalFrame
class and added to the JDesktopPane.
L7 A reference variable of JInternalFrame is
created.
L8–9 We want to add fi le menu to our frame, so
reference variable of JMenuBar and JMenu are created.
L10 Static variable count is created to keep track
of the number of internal frames created.
L11 Constructor for the class is declared. L11–26
show the constructor of the class.
L12 Sets the title of the frame.
L13–14 JDesktopPane is instantiated in L13. The
desktop pane is set as content pane of the frame
(L14).
L15 setBounds is used to resize the frame. The
top-left corner is specifi ed by x and y coordinates (fi rst
two arguments), and the size is specifi ed by width
and height (third and fourth arguments).
L18–26 We have to create a fi le menu on the frame.
So a JMenuBar is created (L18) and set on the frame
using setJMenuBar() method (L19). A File menu is
created using JMenu (L20). Mnemonic is set for the
File menu using the setMnemonic method (L21).
Mnemonic is a key which if used in combination
with alt key activates the menu / menu item on
which it has been set. Mnemonics are specifi ed as
static integer constants in java.awt.event.KeyEvent
class. We have specifi ed that when key combination
alt+f is pressed, the fi le menu should be opened.
So the argument passed is VK_F. The fi le menu is
added to the menu bar in L22. A New menu item is
created in L23 using JMenuItem. A mnemonic for
New menuitem is set in L24. The key combination
used to activate this menu item is alt+n and hence
the argument to setMnemonic method is VK_N.it is a
part of fi le menu so it is added to fi le menu in L25.
Lastly, it is registered with ActionListener (L26)
so that the click event on this New menu item can be
monitored and handled.
L27 actionPerformed method is overridden. The
ActionEvent is passed to this method as soon as the
user clicks on the new menu item or the mnemonic

combination is pressed on the fi le menu.
L28–54 Execute on every New menu item click.
L28 An internal frame is created using the
JInternalFrame class. Five arguments are passed
within the constructor of JInternalFrame class. The
fi rst one specifi es the title of the internal frame,
second argument specifies whether the internal
frame can be resized or not, third argument specifi es
whether the internal frame can be closed or not, forth
argument specifi es whether the internal frame can
be maximized or not, and fi nal argument specifi es
whether the internal frame can be iconifi ed (i.e.,
minimized) or not. The title of the frame includes
the count variables so as soon as a new frame is
created, count is incremented and title is set. The
internal frame cannot be resized as second argument
is specifi ed as false.
L29 To show how components can be added to the
internal frames, we have added a label on the internal
frame using the add method.
L30 The size of the internal frame is set using the
setSize method.
L31 Location for the internal frame has been
specifi ed using the setLocation method. If the
location is not specifi ed, new internal frames will
appear on top of older internal frames once they
are created. In other words they will fully cover the
older inner frames. So location is set to show the
user that internal frames are created and user can
easily switch between frames. The setLocation
method accepts two arguments: x and y coordinates.
We have to specify new coordinates for every inner
frame created. The count value increases on every
inner frame creation. This value is multiplied with
a constant value to achieve new x and y coordinates
for the new internal frame. So whenever you create
a new frame the new location for the internal frame
is somewhere below the older frame (see Fig. 15.23).
L32 Specifi es the close operation for the internal
frame. As soon as the cross on the internal frame is
pressed, the internal frame is disposed.
L33 The cursor on the internal frame is changed
using setCursor method. The cursor class has static
constants to change the visual display of the cursor.
The following values can be specifi ed:

Swing 545

 Cursor.HAND_CURSOR
 Cursor.CROSSHAIR_CURSOR
 Cursor.MOVE_CURSOR

(For more details see cursor class in Java docu-
mentation)
L34–48 InternalFrameListener is registered
with every internal frame that is created. An
anonymous inner class is created which inherits the
InternalFrameAdapter class. InternalFrameAdapter
i s an adap te r c l a s s wh ich inhe r i t s t he
InternalFrameListener interface. Although not
required but we have overridden all the methods of
the interface to show you the calling sequence of
these methods. When a new internal frame is created,
the internalFrameOpened (InternalFrameEvent i)
is called and then this new frame is selected so
internalFrameActivated (InternalFrameEvent i)
is called (see Fig. 15.23(a)). If another frame
is created; firstly the new frame is opened, the
previous frame is deactivated and this new frame is
activated (see Fig. 15.23(b)). When this activated
internal frame (Frame 1) is minimized, fi rstly it is
deactivated, the previous inner frame (Frame 0) is

activated and theinternalFrameIconifi ed(Interna
lFrameEvent i) on the frame 1 is invoked (see Fig.
15.23(c)). If the minimized frame (i.e., Frame 1)
is de-iconifi ed (maximized), then fi rstly the frame
0 is deactivated, frame 1 is activated and then it is
maximized by calling its internalFrameDeiconifi ed
(InternalFrameEvent i). If the activated Frame 1
cross button is pressed, fi rstly the closing method
(internalFrameClosing(InternalFrameEvent i))
on this frame is invoked, this frame is deactivated,
the frame beneath it (if any) is activated and lastly the
internal frame is closed (see Fig. 15.23(e)).
L49 The internal frame visibility is set to true.
L50 The internal frame is added to Desktop pane.
L51–54 The newly created internal frame will be
selected by this statement. As we have added the
internal frame fi rst and then selected them, the newly
added frames will appear on top of each other. If we
reverse the order, that is if you select it fi rst and then
add the frames, the new frames will be added but
will appear beneath the older frame. If you put L50
in comment and uncomment L54. The output will be
as shown in Fig. 15.23(f).

15.17 PRACTICAL PROBLEM: MINI EDITOR

The following program shows a menu-based editor with minimal functionality. The functionality
provided by our editor is as follows:

 (a) Creating a new fi le
 (b) Opening an existing fi le,
 (c) Saving a fi le,
 (d) Editing a fi le–change the contents of the fi le and then save it
 (e) Perform cut, copy and paste operation on the fi le.
 (f) Change the color of the text in the editor.
 (g) Exit the editor

Note Note that we have created a very basic editor. We have purposely not created the entire editor
for you because we want you to create it on your own. Many students fi nd it diffi cult to start
with a project. So, we have provided a beginning to you. While making enhancements to this
editor, you might change the structure of the program or may create more classes to support
your editor.

546 Programming in Java

Example 15.15 Editor.java

 import javax.swing.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.io.*;
 import java.net.*;

 public class Editor extends JFrame implements ActionListener
 {
 JEditorPane j;
 Container c;
 JPopupMenu pum;
 String selText;
 Editor()
 {
 super("Editor");
 c=getContentPane();
 j=new JEditorPane();
 JMenuBar mb=new JMenuBar();
 JMenu mn=new JMenu("File");
 JMenuItem n=new JMenuItem("New");
 JMenuItem op=new JMenuItem("Open");
 JMenuItem saveas=new JMenuItem("Save As");
 saveas.addActionListener(this);
 JMenuItem exit=new JMenuItem("Exit");
 n.addActionListener(this);
 op.addActionListener(this);
 exit.addActionListener(new ActionListener()
 {
 public void actionPerformed(ActionEvent ae)
 {
 System.exit(0);
 }
 });

 mn.add(n);
 mn.add(op);
 mn.add(saveas);
 mn.add(exit);
 mb.add(mn);

 JMenu ed=new JMenu("Edit");
 JMenuItem copy=new JMenuItem("Copy");
 JMenuItem cut=new JMenuItem("Cut");
 JMenuItem paste=new JMenuItem("Paste");

 copy.addActionListener(this);
 cut.addActionListener(this);
 paste.addActionListener(this);

Swing 547

 ed.add(copy);
 ed.add(cut);
 ed.add(paste);
 mb.add(ed);

 /*Pop up Menu created which will be displayed once a user right clicks on the editor*/
 pum=new JPopupMenu();

 /*The pop up menu will have the following options: copy,cut,paste, change
 color of the text*/

 JMenuItem pumcopy=new JMenuItem("Copy");
 JMenuItem pumcut=new JMenuItem("Cut");
 JMenuItem pumpaste=new JMenuItem("Paste");
 JMenuItem changecolor=new JMenuItem("Change Color");
 /*add the menu items to the pop up menu*/
 pum.add(pumcopy);
 pum.add(pumcut);
 pum.add(pumpaste);
 pum.add(changecolor);

 /*registers pop up menu items with action listener so that something happens
 when user clicks on those Pop up menu items*/
 pumcopy.addActionListener(this);
 pumcut.addActionListener(this);
 pumpaste.addActionListener(this);
 changecolor.addActionListener(this);
 /*adds pop up menu to the editor*/
 j.add(pum);

 /* On mouse click we want to show the Pop up Menu, so we obtain the (x,y)

position of the mouse click using me.getX() and me.getY() methods and show
the pop up menu on those coordinates using the show() method of pop up menu.
The pop up menu has to be shown on the JEditor so the fi rst argument is the
JEditor object.*/

 j.addMouseListener(new MouseAdapter()
 {
 public void mousePressed(MouseEvent me)
 {

 if(me.isPopupTrigger())
 {
 int x=me.getX();
 int y=me.getY();
 pum.show(j,x,y);
 }
 }

 public void mouseReleased(MouseEvent me)
 {

548 Programming in Java

 if(me.isPopupTrigger())
 {
 int x=me.getX();
 int y=me.getY();
 pum.show(j,x,y);
 }
 }
 });

 setJMenuBar(mb);
 c.add(new JScrollPane(j),BorderLayout.CENTER);
 setSize(300,500);
 setVisible(true);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public void actionPerformed(ActionEvent ae)
 {

 if(ae.getActionCommand().equals("Open"))
 {

 /* To Open an existing File, a JFileChooser Dialog object is created. The default
directory is set using the setCurrentDirectory method and the content of this di-
rectory are shown to the user within the File Chooser Dialog. The dialog is shown
to the user on the editor (parent component) using showOpenDialog method of the
JFileChooser object. This method returns an int value corresponding to the state of
the JFileChooser object like JFileChooser.CANCEL_OPTION, JFileChooser.APPROVE_OPTION
and JFileChooser.ERROR_OPTION. If the user has not pressed the cancel button (int
value is not equal to the CANCEL_OPTION), then get the selected fi le (getSelected-
File() method) and display the fi le on the JEditorPane. */

 JFileChooser choose = new JFileChooser();
 choose.setCurrentDirectory(new File ("d: /javabook/ programs"));

 if(choose.showOpenDialog(this)!=JFileChooser.CANCEL_OPTION)
 {
 try
 {
 /* The toURL of the fi le class is deprecated so to convert it into URL we fi rst have
 to convert it to URI and then the URI object to URL */

 URL u=choose.getSelectedFile().toURI().toURL();
 j.setPage(u);
 }catch(MalformedURLException e){}
 catch(IOException e){}
 }
 }
 else if(ae.getActionCommand().equals("New"))
 j.setText("");

Swing 549

 else if(ae.getActionCommand().equals("Save As"))
 {
 JFileChooser choose=new JFileChooser();
 choose.setCurrentDirectory(new File ("d:/ javabook /programs"));
 choose.showSaveDialog(this);

 try{
 FileWriter fw=new FileWriter (choose. getSelectedFile());
 fw.write(j.getText());
 fw.close();
 }catch(IOException ie){}

 }
 else if(ae.getActionCommand().equals("Copy"))
 {
 j.copy();
 System.out.println(j.getCaretPosition());
 }
 else if(ae.getActionCommand().equals("Paste"))
 {
 j.paste();
 }
 else if(ae.getActionCommand().equals("Cut"))
 {
 j.cut();
 }

 else if(ae.getActionCommand().equals("Change Color"))
 {

 /* show a dialog on top of the editor where you can choose a color of your choice.
 The chosen color is returned as a color object.*/
 /* JColorChooser.showDialog(parent component, title,default color) */

 Color col=JColorChooser.showDialog(j,"Choose a Color",Color.red);

 /* set the caret color as the color chosen by the user*/
 j.setCaretColor(col);

 /* change the color of the text in the editor as the color chosen by the user.*/
 j.setForeground(col);
 }

 }
 public static void main(String args[])
 {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new Editor();
 }});
 }
 }

550 Programming in Java

Output

Fig. 15.24(a) File Menu of the Editor is Displayed
When Mouse Click Occurs on File Menu

Fig. 15.24(b) Edit Menu of the Editor is
Displayed When Mouse Click Occurs on Edit Menu

Fig. 15.24(c) Pop Up Menu on the Editor is Displayed When Right Mouse Click Occurs on Editor

SUMMARY
Swing is a very powerful API provided by Java for
creating graphical user interfaces. The most impor-
tant feature of swing components is that they are
lightweight, swing components are written in Java, so
they are portable and the GUI has a pluggable look
and feel. All component names follow Jxxx format, e.g.,
JButton, JPanel, JLabel, JTextField, etc.

Many new components have been added in
swings which help in creating more interactive
GUIs. JSplitPane splits the display area into parts.
JTabbedPane groups together a number of components
and displays them as a unit. JScrollPane has all the
functionality of a scrollbar as well as view pane. Dialog
boxes (provided by other GUI software tools) are also
provided by swing package.

Swing 551

Four types of dialog boxes have been provided,
namely confi rm dialog, input dialog, option dialog,
and message dialog. New layouts have been added
in swings like BoxLayout and SpringLayout. The
pluggable look and feel feature gives Java an upper

edge over other languages. The cross-platform look
and feel gives Java GUI a standard look and feel which
is uniform on all platforms. Apart from this, the native
look and feel is also supported.

EXERCISES

Objective Questions
 1. Why are swing components termed as light-

weight?
 (a) they depend on native platform
 (b) they do not depend on native platform
 (c) they depend on native application
 (d) they do not depend on native application
 2. Which method is used to close a swing frame?
 (a) setTitle()
 (b) setDefaultCloseOperation()
 (c) setVisible()
 (d) pack()
 3. Which pane is used for placing components on

a JFrame?
 (a) content pane (b) root pane
 (c) layered pane (d) glass pane
 4. The default layout of a content pane is
 (a) FlowLayout (b) BoxLayout
 (c) SpringLayout (d) BorderLayout

 5. Which method is used to set the selection mode
for the JList?

 (a) setSelectionMode()
 (b) setSelection()
 (c) setMode()
 (d) setSelectedMode()
 6. Which mode is used for setting ‘multiple interval

selection’ mode for a JList?

 (a) SINGLE_SELECTION
 (b) SINGLE_INTERVAL_SELECTION
 (c) MULTIPLE_INTERVAL_SELECTION
 (d) MULTI_INTERVAL_SELECTION
 7. Which method is used to make a split pane

expand or contract when you click on the divider?
 (a) setOneTouchExpandable
 (b) setExpandable
 (c) setExpandContract
 (d) setDivider
 8. Which method is used to add tabs to a

JTabbedPane?
 (a) addTabbed (b) addTab
 (c) setTabAt (d) setTabbedPane
 9. The class used to create input dialog box in Java

is
 (a) JInputDialog (b) JDialogBox
 (c) JOptionPane (d) JConfi rmDialog
 10. The method used to create a confi rm dialog in

swing is
 (a) showInputDialog
 (b) showMessageDialog
 (c) showOptionDialog
 (d) showConfi rmDialog

Review Questions
 1. Explain the difference between swing and AWT.
 2. Explain the difference between invokeLater and

invokeAndWait methods.
 3. Explain the pluggable look and feel feature of

swings along with the look and feels available
in Java.

 4. What is the difference between JButton and
JToggleButton?

 5. What are the various dialog boxes available in
swing and how are they created?

 6. What are inner frames? What classes are used
to create them?

 7. Explain the role of JFileChooser class.
 8. How are trees created in a Java GUI?
 9. How can you create a table having multiple rows

and columns in a Java frame?

552 Programming in Java

Programming Exercises

Answers to Objective Questions
 1. (b) 2. (b) 3. (a) 4. (d)
 5. (a) 6. (c) 7. (a) 8. (b)
 9. (c) 10. (d)

 1. Create a login form which contains a user id,
password fi eld, and two buttons, submit and
reset. If the user id or password fi eld is left blank,
then on click of submit button, show a message
to the user to fi ll in the fi elds. On click of reset
button, clear the fi elds.

 2. Create two lists using JList class with a button.
On click of that button, all selected items in one
list are copied to the other list.

 3. Create a split pane which divides the frame into
two parts. The fi rst part possesses a list and on
selecting an item in a list, the item should be
displayed in the other portion.

 4. Create a tabbed pane and place the login form
(Exercise 1) on fi rst tab and the list (Exercise 2)
on second tab.

 Time has been transformed, and we have changed; it has advanced and set us in
motion; it has unveiled its face, inspiring us with bewilderment and exhilaration.

 Kahlil Gibran

After reading this chapter, the readers will be able to
  handle databases
  do server side programming with servlets
  understand how to create and use JSP pages
  create and use Java beans
  create remote application using RMI
  understand the concept about EJB

16.1 INTRODUCTION TO J2EE

J2EE architecture is a multi-tier architecture with four tiers: client tier, web tier, enterprise tier,
and information system tier. The client tier basically consists of presentation logic. Web tier
consists of components that respond to clients’ request over the Internet, i.e., accepting HTTP
request and generating responses for them. Enterprise tier consists of business logic like the EJB,
and information system tier consists of databases. J2EE consists of the following technologies:
Java server pages (JSP), servlets, Java beans, Java database connectivity (JDBC), Java naming
and directory interface (JNDI), enterprise Java beans (EJB), remote method invocation (RMI),
Java mail API, Java messaging service, Java transaction API, and Java IDL/CORBA. We will
discuss few of the technologies in this chapter.

16.2 DATABASE HANDLING USING JDBC

JDBC stands for Java database connectivity. It is a standard API for all Java programs to connect
to any databases. The JDBC API is available in two packages:

  Core API java.sql.
  Standard extension to JDBC API javax.sql (supports connection pooling, transactions,

etc.).

Introduction to
Advanced Java 1616

554 Programming in Java

JDBC defi nes a few steps to connect to a database and retrieve/insert/update databases. The
steps are as follows:

  Load the driver
  Establish connection
  Create statements
  Execute query and obtain result
  Iterate through the results

16.2.1 Load the Driver
If your program needs a database connection, then the fi rst step is to load the driver. JDBC
version 4.0 (works only with Java 6 and above) onwards the manual loading of database driver
was done away with. It is now done automatically, but for learning purpose, we will show you
all the steps involved. The driver is loaded with the help of a static method,
 Class.forName(drivername)

Every database has its own driver. Table 16.1 shows the driver names for a few databases.

Table 16.1 Driver Names

Database name Driver Name
MS Access sun.jdbc.odbc.JdbcOdbcDriver

Oracle oracle.jdbc.driver.OracleDriver

Microsoft SQL Server 2000
(Microsoft Driver)

com.microsoft.sqlserver.jdbc.SQLServerDriver

MySQL (MM.MySQL Driver) org.gjt.mm.mysql.Driver

 All the JDBC drivers have been classifi ed into four
categories:
  Type 1: JDBC ODBC bridge driver
  Type 2: Native-API/partly Java driver
  Type 3: Net-protocol driver
  Type 4: Pure Java driver

Type 1: JDBC ODBC Bridge Driver
This driver is shipped with the JDK and used only for
learning/experimental purpose. This driver translates all
JDBC call to ODBC and sends it to the ODBC drivers.
ODBC is a standard way for accessing databases and
is independent of operating system, programming
languages, and databases. ODBC API is available in the

administrative tools of the control panel, present in all Microsoft operating systems. Figure 16.1
illustrates the concept.

Fig. 16.1 Type 1 Driver

Introduction to Advanced Java 555

 Data source name (DSN) is created by the programmer through ODBC API. DSN keeps a
record of which database needs to be accessed, the location of the database, and the driver needed
to access the database. Optional attributes like user id and password are also maintained with
DSN. There are three types of DSN:

  User DSN—for a specifi c user.
  System DSN—for all users on the machine.
  File DSN—for all users who have same drivers installed and the users can be on different

machines.
Anyone of these three can be created using ODBC API depending upon the requirement. The
advantage of using this type of driver is that it is readily available. However, it has the following
disadvantages:

  Performance is much low as JDBC calls ODBC and ODBC driver access
database and then the result is retrieved.

  Not platform independent.
  Not suitable for web applications.

Type 2: Native-API/Partly Java Driver
In Type 2 driver, JDBC calls the native API driver which calls the database native API to con-
nect to the database. This is shown in Fig. 16.2.
 The advantage is that it offers better performance than Type 1 driver, but on the other side, it
has the following disadvantages:

  Libraries (API) need to be installed on the client machine.
  Not suitable for web applications.

Type 3: Net-protocol Driver
Type 3 drivers are written purely in Java and used in a networked environment (3-tier architecture).
The requests are routed to a middle tier which converts JDBC calls to database-specifi c calls.
This is illustrated in Fig. 16.3.

Fig. 16.2 Type 2 Driver Fig. 16.3 Type 3 Driver

556 Programming in Java

 The advantages of this approach are
 Clients are insulated from the database specifi c libraries.
 It can be used in web applications.
The disadvantage of this driver is that the database-specifi c code has to be
embedded into the middle tier.

Type 4: Pure Java Driver
Type 4 driver is a pure Java driver (similar to Type 3) that is used to connect
to the database directly. Figure 16.4 illustrates this concept.
 Following are the advantages of using a Type 4 driver:
 It is platform independent.
 Though its performance is very good, it requires a different driver for

 every database.

16.2.2 Establish Connection
A connection to the database is established using the static method getConnection (databaseUrl)
of the DriverManager class. It is the class for managing JDBC drivers. The database URL takes
the following shape: jdbc:subprotocol:subname. If any problem occurs during accessing the
database, an SQLException is generated, else a Connection object is returned which refers to a
connection to a database. Connection is actually an interface in java.sql package.
 Connection con = DriverManager.getConnection(databaseUrl);

 Table 16.2 shows the various database URLs for connecting to various databases.

Table 16.2 Few Database URLs

Database Database URL
MS Access jdbc:odbc:<DSN>

Oracle thin driver jdbc:oracle:thin:@<HOST>:<PORT>:<SID>

Microsoft SQL Server 2000 jdbc:microsoft:sqlserver:// <HOST>:<PORT>[;DatabaseName = <DB>]

16.2.3 Create Statements
The connection (after being established) is used to send SQL statements to the database. There
are three interfaces in java.sql package used for sending SQL statements to databases, namely
Statement and its two sub-interfaces, PreparedStatement and CallableStatement. Three methods
of the Connection object are used to return objects of these three statements.
 A Statement object is used to send a simple SQL statement to the database with no parameters.
Its objects are returned by using the createStatement (String query) of the connection object.
 Statement stmt = con.createStatement();

A PreparedStatement object sends precompiled statements to the databases with or without IN
parameters. Normally, we insert rows of data into the databases using the insert SQL statement.
For every insertion, we write an insert SQL statement which is sent to the database. If n rows
need to be inserted, then the same statement gets compiled n number of times. It consumes a

Fig. 16.4 Type 4 Driver

Introduction to Advanced Java 557

lot of time. So to increase effi ciency, we use precompiled PreparedStatement. In this case, only
the values that have to be inserted are sent to the database again and again.
 PreparedStatement ps = con.prepareStatement(String query);

A CallableStatement object is used to call stored procedures. It is created using the preparecall
method.
 CallableStatement cs = con.prepareCall(String query);

16.2.4 Execute Query
The SQL statements are executed with the help of three methods provided by the Statement
interface:

 ResultSet executeQuery(String sqlQuery) throws SQLException
 int executeUpdate(String sqlQuery) throws SQLException
 boolean execute(String sqlQuery) throws SQLException

The method executeQuery is used for executing SQL statements that return a single ResultSet,
e.g., a select statement. The rows fetched from database are returned as a single ResultSet
object. For example,

 ResultSet rs = stmt.executeQuery("select * from emp");

The method executeUpdate is used for DDL and DML SQL statements like insert, update,
delete, and create. This method returns an integer value for DML to indicate the number of rows
affected/inserted (also known as update counts) and 0 for DDL statements which do not return
anything. For example,
 PreparedStatement ps = con.prepareStatement("update emp set salary = ?
 where empid = ?");

The statement is sent to database and is prepared for execution, only the value of the IN (?)
parameters need to be sent.
 ps.setInt(1,100000);
 ps.setString(2,"Emp001");
 ps.executeUpdate();

The PreparedStatement has certain methods that are used to set value for the IN parameters as
shown in the lines of code above. In setInt(1,100000), the fi rst argument is the ordinal position
of the IN parameters. This method will set salary = 100000 and the method setString (2,
"Emp001") sets the second IN parameter in the query, i.e., where empid = ‘Emp001’.
 The execute method is used for callable statement when the statement may return more than
one ResultSet or update counts or a combination of both. This happens when stored procedures
are executed.

16.2.5 Iterate ResultSet
The ResultSet is iterated with the help of a method next which returns a boolean value to
indicate that the ResultSet has more rows to be iterated. The next method moves the cursor to
the next row. The individual column data is obtained by using accessor (i.e., getX) methods. For
example, if the fi rst column is a string, the method to fetch its value is getString(1). Similar
methods are available for other data types:

558 Programming in Java

 For int, the method is int getInt(int columnIndex)
 For long, the method is long getLong(int columnIndex)
 For fl oat, the method is fl oat getFloat(int columnIndex)
 For short, the method is shortgetShort(int columnIndex)
 For Boolean, the method is boolean getBoolean(int columnIndex)
 For byte, the method is byte getByte(int columnIndex)
 For Date, the method is Date getDate(int columnIndex)

 The code shown below is used for iterating the ResultSet:
 while (rs.next())
 {
 System.out.println(rs.getString(1));
 System.out.println(rs.getInt(2));

 }
 Column indexing in the ResultSet starts from 1, not 0. Now, how do we know what is the type
of data in the fi rst/second columns so that the appropriate methods can be used, and how many
columns are returned in the ResultSet? All these details can be obtained using a ResultSetMetaData
object. This object is used to obtain metadata about the ResultSet that include number of columns,
types of columns, etc. The method getMetaData()is used to return the ResultSetMetaData object.
The method getColumnCount() returns the number of columns in the ResultSet. The method
getColumnTypeName(int columnIndex) returns the type of data the column holds.
 ResultSetMetaData rsmd = rs.getMetaData();
 System.out.println("Column in ResultSet:" +rsmd.getColumnCount());
 for(int i = 1; i < = rsmd.getColumnCount(); i++)
 {
 System.out.println("Column Name :" +rsmd.getColumnName(i));
 System.out.println("Column Type :" +rsmd.getColumnTypeName (i));
 }

Note A ResultSet object is automatically closed when the Statement object (from which ResultSet
was obtained) is closed, or re-executed.

 Example 16.1 shows a program to demonstrate how the data is stored and retrieved from a
database. Assuming that an emp table is already created in MS-Access with three attributes:
EmpId, Name, and Salary. To access the database of dsn by the name ‘sac’ is also created.

Example 16.1 Storing and Retrieving Data from Database
 import java.sql.*;
 class DatabaseConnection
 {
 public static void main(String args[]) throws Exception
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Connection con = DriverManager.getConnection("jdbc:odbc:sac");
 PreparedStatement ps = con.prepareStatement("insert into emp values (?,?,?)");
 ps.setString(1, "Emp001");
 ps.setString(2, "Peter");

Introduction to Advanced Java 559

 ps.setInt(3,10000);
 System.out.println("Row inserted : " +ps.execute Update());
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery("select * from emp");
 // obtaining meta data of the result set
 ResultSetMetaData rsmd = rs.getMetaData();
 int cc = rsmd.getColumnCount();
 System.out.println("Number of columns in result set:" +cc);
 for(int i = 1;i < = cc;i++)
 System.out.print(rsmd.getColumnName(i)+ "\t");
 System.out.println();
 while(rs.next())
 {
 System.out.print(rs.getString(1)+ "\t");
 System.out.print(rs.getString(2)+ "\t");
 System.out.print(rs.getString(3)+ "\n");
 }
 }
 }

Output
 C:\javabook\programs\chap 15>java DatabaseConnection
 Row inserted : 1
 Number of columns in result set: 3
 EmpId Name Salary
 Emp001 Peter 10000

16.2.6 Scrollable ResultSet
The ResultSet, before JDBC 2.1, could be scrolled in the forward direction only. JDBC 2.1
introduced the concept of moving the cursor in the backward direction also. You can even
position the cursor of a ResultSet object on a specifi c row. The methods that were introduced
are shown in Table 16.3.
But in order to use these methods, the scrollable ResultSet must be obtained. This is specifi ed
at the statement creation time by passing the following (as in Table 16.4) ResultSet types in the
createStatement method.

Table 16.3 Few Methods of ResultSet Interface Used for Scrolling through it

fi rst() Moves the cursor to the fi rst row of the ResultSet.
last() Moves the cursor to the last row of the ResultSet.
previous() Moves the cursor to the previous row of the ResultSet.
absolute(int row) Moves the cursor to the specifi ed row number.
relative(int row) Moves the cursor relative to the current row of the ResultSet.

A negative value can be specifi ed to move backwards and positive value to move forward.
getRow() Returns the current row number.

560 Programming in Java

Table 16.4 ResultSet Types

ResultSet.TYPE_FORWARD_ONLY Cursor can move forward only. This is the default type.
ResultSet.TYPE_SCROLL_INSENSITIVE Cursor moves in both directions and ResultSet is

insensitive to the changes made to the tables.
ResultSet.TYPE_SCROLL_SENSITIVE Cursor moves in both directions and ResultSet is

sensitive to the changes made to the tables.

The createStatement()method accepts two arguments as shown below:
Statement createStatement(int resultSetType, int resultSetConcurrency) throws
SQLException
This other argument specifi es the ResultSet concurrency mode. There are two modes for
specifying the concurrency of a ResultSet (Table 16.5).

Table 16.5 ResultSet Concurrency Types

ResultSet.CONCUR_READ_ONLY ResultSet may not be updated concurrently
ResultSet.CONCUR_UPDATABLE ResultSet may be updated concurrently

 For example, the Statement object for a scrollable result set having concurrent read only mode
can be created as shown below:
Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE, Result Set.
CONCUR_READ_ONLY);
 DatabaseMetaData dbm=con.getMetaData();
 System.out.println(dbm.supportsResultType(ResultSet.TYPE_FORWARD_ONLY));
 System.out.println(dbm.supportsResultType(ResultSet.TYPE_SCROLL_INSENSITIVE));
 System.out.println(dbm.supportsResultType(ResultSet.TYPE_ SCROLL_SENSITIVE));
 System.out.println(dbm.supportsResultTypeConcurrency(ResultSet.TYPE_ SCROLL_
 SENSITIVE,));

Note This feature may not be supported by all JDBC driver. The database meta data can be obtained
from the connection object and queried to know whether a driver supports scrollable result
sets or not as shown below. The supportsResultType method returns boolean values to tell
whether a ResultSet type is supported or not. The method supportsResultTypeConcurrency
also returns boolean to inform whether a type along with concurrency type are supported
together or not.

16.2.7 Transactions
A transaction is a set of statements that if executed should complete it entirety. If any of the
statement fails to execute in a transaction, the entire transaction should be rolled back. To enforce
this and execute SQL statements in a transaction, the auto commit feature should be turned off.
Auto commit feature commits the changes made by SQL statements to the database and is by
default set to true. It can be set using the following method of the connection object:
 con.setAutoCommit(false);

Introduction to Advanced Java 561

 If any problem occurs during a transaction, it can be rolled back by using the rollback method
on the connection object.
 con.rollback();

The following code snippet will show you how a short transaction can be created and in case of
a problem exception occurs and the changes are roll backed.

 try {
 con.setAutoCommit(false);
 Statement stmt1=con.createStatement();
 Statement stmt2=con.createStatement();
 stmt1.executeUpdate("Query 1");
 stmt1.executeUpdate("Query 2");
 con.commit(); /* commit the changes to the database and make them
 permanent. */
 ...

 } catch(SQLException se)
 {
 try{
 con.rollback(); // roll back the changes made to the database.
 }
 catch(SQLException){}
 }

 Another way of carrying out a transaction is using batch updates. In this case, a batch of
statements is created and then the batch is executed as a single transaction. If any of the batch
statement fails to execute, the entire batch is rolled back. The following code snippet shows how
a batch of statements can be created and used.

 try {
 con.setAutoCommit(false);
 Statement stmt1 = con.createStatement();
 stmt1.addBatch("Query1");
 stmt1.addBatch("Query2");
 int[] i = stmt1.executeBatch();
 con.commit(); /* commit the changes to the database and make them
 permanent. */
 ...

 } catch(BatchUpdateException be)
 {
 try{
 stmt1.clearBatch(); // you can clear the batch by using this method
 }catch(SQLException){}
 }

 The executeBatch method returns an integer array of update counts. The update count refers
to the number of rows that are affected on successful execution of every SQL statement. If a
statement fails to execute, BatchUpdateException occurs.
 Sometimes it is desired to allow a transaction to be committed even if one or two last steps
of a transaction fail. For example, if you make a transaction like paying a bill, or purchasing an
item, you get a notifi cation in the end through an SMS/email that the transaction has occurred.

562 Programming in Java

The transaction should not be rolled back just because the SMS/ email alert could not be sent at
the time of the transaction. In such a case, Savepoint is used to roll back a transaction to a set
point in a transaction. It is actually an interface in the java.sql package and was introduced in
JDBC 3.0 API. All changes made up to the save point are committed and after the savepoint are
rolled back. The code below shows you how to rollback upto spl. It means rollback all changes
made after sql and commit all changes before spl.

 try {
 con.setAutoCommit(false); //
 Statement stmt1 = con.createStatement();
 Statement stmt2 = con.createStatement();
 stmt1.executeUpdate("Query 1");
 Savepoint sp1 = con.setSavepoint("SavePoint1");
 stmt1.executeUpdate("Query 2");
 con.commit(); /* commit the changes to the database and make them
 permanent. */
 ...

 } catch(SQLException se)
 {
 try{
 con.rollback(sp1); // roll back the changes up to the savepoint
 }catch(SQLException){}
 }

16.3 SERVLETS

Servlets are Java server-side programs that accept client’s request (usually http request), process
them and generate (usually http response) responses. The requests originate from client’s web
browser and are routed to a servlet located inside an appropriate webserver. Servlets execute
within a servlet container which resides in a webserver like Apache Tomcat. The newer release
of Tomcat has a JSP (Java server pages) container also in it. Normally, HTTP (hypertext transfer
protocol) is used between web client and servlets, but other protocols like FTP (fi le transfer
protocol) can also be used.

16.3.1 Lifecycle of Servlets
Servlets have their own execution lifecycle. The lifecycle includes
three methods as shown in Fig. 16.5.
 Whenever a client request is received by the servlet container (part
of a webserver), it
 locates the servlet responsible for handling the request and loads it.
 instantiates it.
 initializes the servlet by calling init()method, followed by service
 and destroy.
The init() method is called only once during the lifetime of an
applet. One time initializations are done in this method.

 The service method is used for processing the client’s request and generating responses.
The request may be forwarded by service method to doGet() or doPost() depending upon the

public void init()

public void service()

public void destroy()

public void doPost()

public void doGet()

Fig. 16.5 Lifecycle of Servlets

Introduction to Advanced Java 563

http request. If it is a get request, the doGet()method will be called and if it is a post request,
the doPost() method will be called. The get and post are two methods of http protocol used
for transmitting data to the server-side programs like servlets. The service method is capable
of handling both types of requests (get and post). In that case, you need to override the service
method in your servlet. The signature of service method (see Example 16.2) shows two
arguments: ServletRequest object (to handle client’s requests) and ServletResponse object (to
write responses to the client) which are passed to it by the servlet container. The destroy method
is called by the servlet container before the servlet is unloaded. So clean-up activities like closing
the database connections can be done in this method.

16.3.2 First Servlet
Let us create a simple servlet that outputs the contents to the client.

Example 16.2 First Servlet

 L1 import javax.servlet.*;
 L2 import javax.servlet.http.*;
 L3 import java.io.*;
 L4 public class FirstServlet extends HttpServlet
 {
 L5 public void service(ServletRequest req, ServletResponse res) throws
 ServletException,IOException
 {
 L6 res.setContentType("text/plain");
 L7 PrintWriter pw = res.getWriter();
 L8 pw.println("My First Servlet is running");
 }}

Explanation

L1–3 The packages javax.servlet.*, javax.
servlet.http.*, and java.io.* have to be
imported to create an HttpServlet.
L4 The class FirstServlet must be a public class
and it must inherit HttpServlet, as http protocol is
used for communication between client and server. So
to handle http request from client and generate http
response for client, we have to create an HttpServlet.
L5 The service method is overridden. It
accepts two arguments ServletRequest and
ServletResponse. The entire client’s request is
encapsulated in ServletRequest object (like http,
ftp) and passed to the service method by the servlet
container along with ServletResponse object. This
ServletResponse object is used to send responses

(usually html responses) to the client. This method
may throw ServletException and IOException.
L6 Before sending any data to client, the type of
data to be sent to the client has to specifi ed with
the help of a method res.setContentType ("text/
plain"). In other words, the MIME type (stands
for multipurpose Internet mail extension) has to
set. Nowadays, web pages contain text, images, and
multimedia. A servlet informs the browser about
the type of data it will be sending to browser. The
servlet in our example is transmitting plain text, so
the MIME type is text/plain. If html (webpage) is
to be sent to the client, the MIME type is text/html.
L7–8 Using the getWriter() method of the res
object, we get a PrintWriter object. This method

564 Programming in Java

may throw an IOException that is why we have
mentioned it in the throws clause of the service
method definition. The println method of the

PrintWriter object is used to write the contents to
the client. The string argument to the println method
is written to the client as it is.

How to Run the Servlet?
For running the servlet, we need to follow certain steps:

 1. The fi rst step is to compile the servlet For compiling the servlet classes, we need to
include the servlet-api.jar fi le in the classpath (at command prompt) as shown below.

 set classpath = %classpath%; C:\Apache\Tomcat 7.0\lib\servlet-api.jar;

 Or edit the environment variable classpath and append the above path in it.
 2. Steps to install Tomcat 7.0 and execute the servlets and JSP The server used by

us for running servlets and JSP is Tomcat 7.0.40. You can download the webserver
installer from Apache Tomcat website (e.g., apache-tomcat-7.0.40). The webserver is
very easy to install. You just need to double click on the installer and the installation
starts. You need to specify the path where you want to install the webserver (if you do
not specify the path it will be installed in program fi les of your machine). This server
gets installed as a service in your machine. You can manually start/stop this service by
opening the Control Panel of your machine and clicking on Administrative Tools (see
Fig. 16.6). You can also set up two environment variables as shown below. It is a good
practise and will help you later.

 JAVA_HOME = c:\program fi les\java\jdk1.6.0_01 (base directory of JDK)
 CATALINA_HOME = c:\Apache\Tomcat 5.0 (base directory of Tomcat)

Fig. 16.6 Administrative Tools in the Control Panel

 Double click on Services and click on the Apache Tomcat 7 entry in the Services window as
shown in Fig. 16.7. The service is already running so you are shown two options, i.e., to Stop
and Restart service. If the service is stopped, then only Start service option will be displayed.

Introduction to Advanced Java 565

Fig. 16.7 Services within the System

 To test the server and see if it is actually running, open a browser and type
http://localhost:8080 in the address bar of the browser (see the snapshot in Fig. 16.8).

Fig. 16.8 Apache Tomcat 7 Webserver is Running

 3. The third step is to place the compiled servlet class into an appropriate directory in
the Tomcat We have created our own directory named myproj within webapps directory
for placing our created servlets. Figure 16.9 shows the directory structure of Tomcat.

566 Programming in Java

 All the servlets class fi les are placed in the classes directory. The fi le web.xml exists
within the WEB-INF directory. A sample web.xml fi le is shown below for running the
FirstServlet.class.

Tomcat 7.0

webapps

myproj

WEB-INF

Classes
Html/JSP

files

web.xml FirstServlet.class

ReadData.class

RedirectServlet.class

CookieDemo.class

Formdata.

html

Fig. 16.9 Tomcat Home Page

 <?xml version = "1.0" encoding = "ISO-8859-1"?>
 <!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
 <web-app>
 <!-- Defi ne servlets that are included in the example application -->
 <servlet>
 <servlet-name>FirstServlet</servlet-name><servlet-class>FirstServlet</serv-
 let-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>FirstServlet</servlet-name><url-pattern>/servlet/FirstServlet</
 url-pattern>
 </servlet-mapping>
 </web-app>

 The web.xml fi le acts as a deployment descriptor for the servlets. This fi le specifi es the name
of the servlet and the URL mapping for the servlet. The web.xml fi le

  associates servlet class fi le with a name
  defi nes a URL mapping for the servlet.

Introduction to Advanced Java 567

This fi le has to be edited every time you add a new servlet class in the classes directory. The
two tags <servlet> and <servlet-mapping> along with their sub-tags must be added for every
servlet in the classes directory specifying the name and URL used to call the servlet.
 For example, the <servlet> tag specifi es that the servlet class FirstServlet.class will be
referred to as FirstServlet and the <servlet-mapping> tag specifi es URL for accessing the
servlet, e.g. http://localhost:8080/myproj/servlet/FirstServlet. The servlet is run in the
Internet explorer and the following output (Fig. 16.10) is displayed on it.

Fig. 16.10 Servlet Output Displayed on the Internet Explorer

16.3.3 Reading Client Data
The client’s data is sent to the server from the client’s browser via two methods of http protocols:
get and post. These two methods differ in their approach of sending data from client to server.
The get method appends data to the URL (of the servlet handling the request) and passes it to
the server. The drawbacks of this approach are:

  The URLs are of fi xed size and it puts a restriction on the amount of data that can be
transmitted to the server.

  Moreover, whatever data is sent to the server is visible in clear text.
On the other hand, post method overcomes these limitations by sending data to the server as a
part of http header format instead of appending it to the URL. This overcomes both the limitations
of the get method.

Table 16.6 Methods Used to Fetch Values from Client’s Request

Methods Description
String getParameter(String n) This method is used to return the value corresponding to a given

name. The name is specifi ed as an argument (String n). ‘name’
is the name of the control in html. To use this method we should
know the name.

(Contd)

568 Programming in Java

Methods Description
Enumeration getParameterNames() We do not always know all the names in a request. This

method returns all the names associated with the requests as
an enumeration.

String[] getParameterValues (String n) This method returns all the values associated with a single
name as a string array, e.g. hobbies.

 For example, consider an email id registration form that requires the users to fi ll in their
details like name, id, password, and hobbies. This data is sent to a server-side program like
servlet which is then stored in a database. The users can now login using their id and password
and check mails. We have already seen how a Java program can store data into a database. The
question is how a servlet would fetch client’s data from request? The data in both requests (get
and post) is passed to the server in the form of pairs: name = value pairs. Three methods (Table
16.6) can be used for fetching these names and values from the request.
 We will create an html form and send the form data to a servlet. The sample servlet will retrieve
the data and rewrite it back to the client. The html form coding is shown in Example 16.3(a)
followed by how it is displayed in the Internet Explorer.

Example 16.3 (a) HTML File for Sending from Data to Server
 <html>
 <head><title> form data </title></head>
 <body>
 <center>
 <h1><U> Registration Form </u></h1>
 <form method = get action = "servlet/ReadData">
 Name <input type = text name = fname>

 Address <input type = text name = add>

 User id <input type = text name = uid>

 Password <input type = password name = pass>

 Gender:
 male<input type = radio name = gender value = male>
 female<input type = radio name = gender value = female>

 Hobbies:
 Dancing <input type = checkbox name = hobbies value = dance>
 Music <input type = checkbox name = hobbies value = music>
 Travel <input type = checkbox name = hobbies value = travel>

 <input type = submit>
 <input type = reset>
 </center>
 </body>
 </html>

 We have created a webpage using html which contains a form. The form tag has two attributes:
method and action. The method attribute is used to specify the method used to send data to server

(Table 16.6 Contd)

Introduction to Advanced Java 569

like get and post. The action attribute is used to specify the URL of the servlet responsible
for handling the request. The form contains textfi elds (e.g. name, address, and UID), password
fi eld, radio button, and checkboxes. These fi elds are created with the help of input tag. The input
tag has attributes, type and name. The type specifi es the type of input fi eld. Table 16.7 shows
a list of possible types. The name attribute is used to give a name to the control. This name will
be used as an argument in the getParameter(String n) method to fetch its value at the servlet.

Table 16.7 A few Values for the Type Attribute of Input Tag

Values of type attribute Description
type = text Creates a text fi eld.
type = submit Creates a submit button which on click, sends the data in the form to servlet

specifi ed in the action attribute of the form tag. The mode of sending is specifi ed by
method attribute.

type = reset Creates a reset button. It resets all the fi elds in the form.
type = password Creates a password fi eld. The characters in this fi eld are echoed as dots.
type = button Creates a normal button. If you click on this button, nothing happens (use Java

script for event handling).
type = radio Creates a radio button (single selection).
type = checkbox Creates a checkbox (multiple selection).

The reset button resets the form by clearing all the fi elds and selections. The submit button sends
all the input data and selections to the servlet specifi ed in the action attribute of the form tag.
On clicking submit, the URL will look like the following:
 http://localhost:8080/myproj/ReadServlet?fname = peter&add = London&uid = pet_
 007&pass = jennifer&gender = male&hobbies = music&hobbies = dancing

The ‘?’ operator separates data from the address. The ‘&’ operator separates one name/value pair
from another. The form is shown below (Fig. 16.11) as it appears in Internet Explorer.
 The servlet used for handling client’s request and generating response is shown in Example
16.3(b) . As a response, our servlet echoes all the data back to the client.

Fig. 16.11 HTML form

570 Programming in Java

Example 16.3 (b) Extracting Data from Client’s Request
 import javax.servlet.*;
 import javax.servlet.http.*;
 import java.io.*;
 L1 import java.util.*;
 L2 public class ReadData extends HttpServlet
 {
 L3 public void doGet(HttpServletRequest req, HttpServletResponse res) throws
 ServletException, IOException
 {
 L4 res.setContentType("text/html");
 L5 PrintWriter out = res.getWriter();
 L6 Enumeration e = req.getParameterNames();
 L7 while(e.hasMoreElements())
 {
 L8 String name = (String)e.nextElement();
 L9 String[] values = req.getParameterValues(name);
 L10 for(int i = 0; i < values.length; i++)
 {
 L11 out.println("<html><head><title> client data</title></head>");
 L12 out.println("<body>");
 L13 out.println(name + " : <i>" +values [i] + "</i>
");
 out.println("</body></html>");
 }
 }
 }
 L14 public void doPost(HttpServletRequest req, HttpServletResponse res) throws
 ServletException, IOException
 {
 L15 doGet(req,res);
 }
 }

Explanation

L1 Apart from other packages, java.util has
been imported. The reason for this will be clear in
the explanation below.
L2 A public servlet class has been created, named
ReadServlet. This class inherits the HttpServlet
class, as we are dealing with http request and http
responses.
L3 The doGet method is overridden and used for
handling get requests from client. This method accepts
two arguments: HttpServletRequest (used only for
http client request) and HttpServletResponse (used
for sending http response to client). Similar to service
method, this method also throws ServletException
and IOException.

L6 The getParameterNames() is invoked through
the req object. This method extracts all the names
from the names/value pairs in the request object
and returns them as an Enumeration of names.
Enumeration is a collection interfaces. This interface
is a part of java.util that is why we have imported
this package in L1.
L7–13 Repeated for each name in the Enumeration.
L8 Extracts the next name from the Enumeration
and stores it in a string variable name.
L9 req.getParameterValues(name) returns all
values associated with the name as a String array.
L10–13 for loop is used to iterate through all the
values of the array. HTML tags are written within

Introduction to Advanced Java 571

the quotes in the println method to send html to
client’s browser. The names are specifi ed in bold
and values have been specifi ed in bold and italicized
<i> as shown in Fig. 16.11.
L14–15 doPost method has been overridden. It
is almost entirely similar to doGet method. From

within doPost, we call doGet method. The reasons
for overriding doPost and calling doGet from within
is that the servlet is capable of handling get as well
as post request. There is no need to worry about the
request, whether it is a get request or a post request.

 The response sent by the servlet to the client’s browser will appear as shown in Fig. 16.12.

Fig. 16.12 Data Read from Client and Written Back to it
 Make sure the servlet name and mapping is present in the web.xml fi le before running the
example. The following tags must be a part of the web.xml fi le of the myproj web application.
 <servlet>
 <servlet-name>
 ReadData</servlet-name>
 <servlet-class>
 ReadData
 </servlet-class></servlet>
 <servlet-mapping>
 <servlet-name>
 ReadData</servlet-name>
 <url-pattern>
 /servlet/ReadData
 </url-pattern>
 </servlet-mapping>

16.3.4 HTTP Redirects
Http redirect is a way of redirecting a user to another location on the Internet. Say, for example,
your website has got a new domain name but the entire user base is not informed about it. So
they will keep coming to the older URL. Http redirect is a way of telling the client’s browser
about the new URL. All the requests that arrive on the old URL are redirected to the new URL.

572 Programming in Java

Example 16.4 Http Redirect

 L1 import javax.servlet.*;

 L2 import javax.servlet.http.*;

 L3 import java.io.*;

 L4 public class RedirectServlet extends HttpServlet

 {

 L5 public void doGet(HttpServletRequest req, HttpServletResponse res) throws

 ServletException, IOException

 {

 L6 res.sendRedirect ("../Formdata.html");

 }

 }

Explanation
L6 The redirect method of the HttpServletResponse
object is used to redirect all the request made to this
servlet to Formdata.html. Whenever the user enters
the URL:
http://localhost:8080/myproj/servlet/
RedirectServlet,

the user is automatically redirected and displayed
the following page:
http://localhost:8080/myproj/Formdata.html.

You may choose to use relative URL as shown
in the example also. As you know all html fi les
reside in the root (i.e. myproj) directory. You
can fi re RedirectServlet by invoking the path:
localhost:8080/myproj/servlet/RedirectServlet
and from this path you need to move to myproj/
directory so that Formdata.html can be accessed.
So we need to move up one level and hence the two
dots are specifi ed../ followed by fi lename.

16.3.5 Cookies
Cookies are basically small pieces of information stored on the client’s machine by the browser. A
cookie contains information like user browsing preferences, user id and password combinations,
session id, and the number of times a user has visited a page. This information is stored in pairs,
i.e., name-value pairs. This information wrapped in a cookie object is sent to the client browser
by a servlet, which stores it somewhere in its temporary Internet fi les. Whenever a request is
sent to that particular server (from where the cookie was downloaded), all the cookies (stored in
the client’s machine from that very server) are attached to the http request and sent to the server.
The server can then fetch the cookies from the request and then act accordingly.
 Example 16.5 keeps a track of how many times a user has visited the page. For this purpose,
the servlet creates a cookie and stores it in the client’s machine with the number of counts in it.
Every time the user requests a page, the value from the cookie is fetched, incremented by one,
and stored back again on the client’s machine. The common misconception is that cookies are
a risk. But in reality, cookies are not interpreted or executed in any way. Moreover, 20 cookies
per site are allowed and not more than 300 cookies can be stored by the browser. The size of a
cookie is limited to 4kb (Fig. 16.13).

Introduction to Advanced Java 573

Example 16.5 Cookie Example

 import javax.servlet.*;

 import javax.servlet.http.*;

 import java.io.*;

 public class CookieDemo extends HttpServlet

 {

 public void doGet(HttpServletRequest req, HttpServletResponse res) throws

 ServletException,IOException

 {

 L1 res.setContentType("text/html");

 L2 PrintWriter out = res.getWriter();

 L3 Cookie c[] = req.getCookies();

 L4 if(c == null)

 {

 L5 Cookie counts = new Cookie("Counts","1");

 L6 out.println("<html><head><title> client data</title></head>");

 L7 out.println("<body>");

 L8 out.println("Welcome
");

 L9 out.println("This is the fi rst time you have visited this page");

 L10 out.println("</body></html>");

 L11 res.addCookie(counts);

 }

 L12 else {

 L13 for(int i = 0;i < c.length;i++)

 {

 L14 String name = c[i].getName();

 L15 String val = c[i].getValue();

 L16 int accessCount = (Integer.parseInt(val) +1);

 L17 out.println("<html><head><title> client data </title></head>");

 L18 out.println("<body>");

 L19 out.println("Welcome back
");

 L20 out.println("Number of times you have visited this page: "+accessCount);

 L21 out.println("</body></html>");

 L22 Cookie counts = new Cookie(name,new Integer(accessCount).toString());

 L23 res.addCookie(counts);

 }}}

 public void doPost(HttpServletRequest req,HttpServletResponse res)

 throws ServletException,IOException

 {

 doGet(req,res);

 }}

574 Programming in Java

Output

Fig. 16.13 Using Cookie to Get Access Counts

Explanation
L3–11 The servlet fi rst checks whether any cookie
did arrive with the request or not using the req.
getCookies() method of the HttpServletRequest
object. If none of the cookie arrived with the request
(i.e. this is the fi rst visit of the user on this page),
a cookie object (counts) is created with name (as
counts) and value (as 1). The message is written to
the client “Welcome this is the fi rst time you
have visited this page.” The cookie object created
in L5 is added to the client’s response by using res.
addCookie (counts) method.
L12–23 If cookies arrive with the request then
obviously c will not be equal to null. In that case,
L12–23 will be executed. All cookies arrive in the

cookie array, i.e., c[]. A for loop is used to iterate
the cookie array. We had only stored one cookie, so
only one would be retrieved. The name of the cookie
is fetched using the method c[i].getName() and
the value is fetched usingc [i].getValue(). This
value has to be incremented by one, but the return
type of getValuemethod is string, so this string
has to be converted to an integer using Integer.
parseInt(val)method and then incremented by
one (incremented value is stored in integer variable
accessCount on L16). The client is shown a message
“Welcome back Number of times you have visited
this page: ”+ accessCount. A new cookie object is
created with the new accessCount value and added
to the response using res.addCookie (counts).

16.3.6 Session Management
A session is used to track the user between successive requests from the same client to the same
server. It is a kind of conversation between the server and a client. A conversation is a series of
continuous requests and responses.
 When the communication takes places on the Internet there are three partners in it: web client,
webserver, and the protocol used for communication. Web client is the browser, webserver is
where we put our servlet classes, JSP pages, and html which generates responses for the clients
request or handles the request, and the protocol is normally http. There can be other as well
like FTP. (But generally it is http, so we will stick to it). A browser sends an http request to a
webserver for a page; the page is located by webserver and send back in response. Further if the
same browser sends again an http request to the same webserver for same page (or any other) it
is treated as a new http request. Http is an application layer protocol and it uses TCP at transport

Introduction to Advanced Java 575

layer. So whenever an http request is sent from the application layer, a new TCP connection is
created at transport layer. That is why, it’s a new request every time an HTTP request is sent,
even from the same client to the same server for the same resource.
 Let us take a scenario to understand the session and its importance. When you login to Gmail
server or Yahoo mail server to view your emails, Firstly you enter your user id and password to
sign in. The request along with the user id and password goes to the webserver where your input
values are authenticated. You are shown your mailbox with options to view mails or compose a
message, etc. When you click on inbox to view your email, it is a new http request (which has
no correlation to the previous request) although it goes from the same server to the same client.
The question is how does the server decide, whose inbox is to be shown on this request? The user
id and password that the user typed in came in the earlier request and not this one. One would
think of sending the user id and password combination every time with any request and get it
authenticated from the database, and generate appropriate responses. That is very impractical,
tedious, time consuming, and risky option.
 The real problem is to maintain the state of the client across various requests. We need to
maintain the state of the client (session information) across request. Maintaining a client state
will make him identifi able across requests and the server can then easily generate appropriate
responses for valid clients, i.e., once you login you will be shown your emails only and not
somebody else’s email. The client’s state is maintained till the time a client logs out. Now the
question that arises is who is going to maintain the state of the client? The http protocol is stateless
so it does not maintain client information; for it, every request is a new request (had it been a
stateful protocol no problems would have occurred). Obviously you are left with two choices:
client and server to maintain the client state. Depending on which method is chosen for session
maintenance, either the client or the server will maintain the sessions.
 The solution is that the client be provided with a unique identifi er whenever it makes a request.
This identifi er will be used in all subsequent requests to identify a particular client requests from
other. As soon as a user logs in, a unique session id, associated with that user is created. This
id can be maintained across subsequent request using the following ways: (a) hidden fi elds,
(b) URL rewriting, (c) cookies, or (d) HttpSession API.

 Hidden Fields
Hidden fi elds are html fi elds not visible to the users. The state of the client is maintained (at the
client side) in these hidden fi elds and embedded in the responses generated by the servlet. They
are sent back to the server with the http request and extracted by the servlet. Hidden fi elds are
inserted in html as shown below:

 <form method ="" action="URL">
 . . .
 <INPUT TYPE="hidden" NAME="Id" VALUE="Unique Identifi er">
 <INPUT TYPE="hidden" NAME="Customer Name" VALUE="Tom">
 <INPUT TYPE="hidden" NAME="Item_1" VALUE="Plastic Bottles" >
 <INPUT TYPE="hidden" NAME="Item_1_Qty" VALUE="20" >
 <INPUT TYPE=Submit> . . .
 </form>

576 Programming in Java

 Normally there will be no hidden fi elds when a page is displayed for the user for the fi rst time.
Subsequent requests by the user will force a servlet to add hidden fi elds to maintain the history/
state of the client. As soon as the submit button is pressed, all data including hidden fi elds are
sent to the servlet mentioned in the action attribute. The information can be used by the server
for session tracking. Each time the servlet is activated; it creates and sends an html form on the
client browser in addition to other things. This form will have new items to gather user input (if
required) along with the older items (like items checked by the user on the last page).
 Earlier this solution was useful in implementing shopping carts where information of users
along with their item selections have to be maintained and fi nally according to their selection,
bills are generated. This information can be maintained using hidden fi elds along with a unique
session id. Every time the user requests for a new page, all fi elds (including hidden fi elds) are
sent to the server. These fi elds are extracted by the servlet and set in a new html form, as hidden
fi elds, to be sent back to the client as part of the response. This method does not need any special
confi guration either from the browser or the server and is available for session tracking. However,
the disadvantage is that they will only be sent to the server once the form is submitted and not
when a user clicks on a hyperlink and moves on the next page. They can be used when the amount
of information to be hidden is less. Hidden fi elds are hidden (not visible) from the users but by
selecting the “View Source”option in the browser, the entire form, including the hidden fi elds
can be viewed by the user. Hence, hidden fi elds cannot be used for security purposes.

 URL Rewriting
Another way of achieving session management (at the client side) is using URL rewriting. URL
rewriting is a technique in which history/session information/state of the client is appended to
the URL before sending the page back to the client. This URL has to be rewritten in the action
attribute of the form tag or the anchor tags whatever has been used in the page. For example,
 If the original URL is http://server:port/servlet/ServletName
 The rewritten URL will be
 http://server:port/servlet/ServletName?sessionid=123456 & userid=sac123 &...

This technique does not need any special support from the browser but it is a tedious approach.
All data associated with a user can be fetched according to the user id from the databases. (A
session id can also be a combination of user id and a unique number. The user id can be extracted
from the session id and then user specifi c data can be extracted from the database.). In this
approach you need to take precaution in maintaining and appending the parameters every time
while rewriting URL’s until the session completes. Moreover, you cannot have static pages; each
page will be dynamically generated if this approach is used.

 Cookies
A cookie is a small amount of information stored on the client’s machine within the browser’s
fi les. Cookie can be used to store state/session information on the client side. It is a key value
pair sent by the server to the client. This pair is automatically attached with every request to the
server from where it was downloaded and then sent to the server. We have already shown how
cookies can be used. The advantage of using this technique of maintaining sessions is that it is
a simple and easy approach. The disadvantage is that if the users disable cookies, the browser
will not be able to save the cookie at client computer and session tracking fails.

Introduction to Advanced Java 577

 Session API
Session tracking API is built on top of the methods discussed above. All servers support cookies
for session tracking and if any how it cannot be done through cookies, servers switch to URL
rewriting. It reduces the developer overhead as the servlet container manages the session (either
way automatically by cookies or URL rewriting) and the user need not do it explicitly.
 The HttpSession API is used for creating and maintaining sessions among clients and servers.
It is within the javax.servlet.http package. HttpSession is an interface within this package and
it maintains all the sessions. All incoming requests carrying session identifi ers are automatically
associated with their respective session objects. In other words, every client is mapped with a
session object.
 A session is created using a getSession method of the request object. It returns an HttpSession
object. This method is overloaded; one that does not accept any argument and other that
accepts a boolean value. If true is passed as a boolean value in this method, it returns the
current HttpSession object associated with this request or, if none exists then it creates and returns
a new session. If false is passed in the getSession method and the request does not contain any
HttpSession object, this method will return null. If no value is passed in the getSession method,
it behaves in the same way as getSession(true).
 A session object can be used to hold values which can be retrieved whenever required.
But you can only store and retrieve objects from a session. The method setAttribute() and
getAttribute() respectively are used to store and retrieve objects from the session object. The
attributes will be set in key-value pairs. So in case you wish to store primitive type such as int
and fl oat, you will have to use their respective wrapper classes such as Integer and Float. The
following statement shows how to get and set an attribute name to and from the session object
with the value Tom:

 session.setAttribute("name","Tom");
 String n=(String) session.getAttribute(name);

A session can be destroyed by using the invalidate()function on the session object. All
information corresponding to session will be lost at the server.

16.4 PRACTICAL PROBLEM: LOGIN APPLICATION

Let us create a login example to illustrate how session API can be used. The user is fi rst displayed
an html page (Login.html) which has two input fi elds (one for user id and other for password)
with a submit and a reset button. The user has to enter a valid user id and password combination
to login. As soon as the user submits the details in this html page, the http request is sent to an
Authenticate.java servlet which invalidates the older sessions (if any present), establishes a
connection to the database for validating the user, and if successful, creates a new session and
redirects the user to showAuthenticationDetails.java servlet. This servlet generates a dynamic
html for the user which shows certain user specifi c details along with two hyperlinks one to
sign out and other to show messages. If the user clicks on sign out hyperlink he is redirected to
SignOut.java servlet which invalidates and redirects the user to Login.html page. But if a user
clicks on Show message hyperlink, his request is forwarded to ShowMessage.java servlet which
identifi es the session associated with a user and display user with some dynamic generated text

578 Programming in Java

along with a hyperlink to Sign out. If the user clicks on Sign Out hyperlink, the Sign Out servlet
invalidates the user session and redirects the user to Login.html.
 If the user, at any point of time, clicks on the back button of the browser, the contents of the
previous page are displayed even after the user has signed out, as the html generated by the server
is cached by the browser. To force the browser not to cache the pages, we create a NoCacheFilter.
java class which is actually a Filter class. It forces the browser not to cache the pages but
ask for a fresh copy of the pages from the server every time a URL is accessed. Along with the
NoCacheFilter class we also have an AlreadyLoginFilter.java class which checks whether a
user is logged in or not and if not, all requests are redirected to the Login.html page. This is
basically created for blocking mischievous user requests who try to play tricks and put the URL
of servlets like showAuthenticate and showMessage directly in the address bar without logging.
The Tomcat directory structure of the application is shown in Fig. 16.14.

Tomcat 7.0

webapps

login

WEB-INF

classes

Authenticate.class

ShowAuthenticationDetails.class

ShowMessage.class

SignOut.class

NoCacheFilter.class

AlreadyLogingFilter.class

web.xml

Login.html

Fig. 16.14 Tomcat 7.0 Directory Structure for Login Application

Example 16.6(a) Login.html

<html><head><title> Login Page </title></head>
<body>
<form method ="post" action="auth/authenticate">

Introduction to Advanced Java 579

User id <input
type="text" name="id">

Password <input type="password"
name="pass">

<input type="submit" name="Submit">
<input type="reset" name="Reset">
</form></body></html>

Output

Fig. 16.15 Login.html webpage

Explanation

The page is invoked using the URL: localhost:8080/
login (after starting the webserver) as shown in
Fig.16.13. /login is the name of the directory (i.e.,
context root within the webapps directory) that holds
the webpage. The point to note is that we have not
mentioned the name of the fi le while invoking the
html page (i.e., Login.html) but still as soon as
the above mentioned URL is typed in the browser,
Login.html fi le is displayed. This is because we have
mentioned the welcome-fi le name in the web.xml
fi le on the webserver. So as soon as the context root
(/login) is invoked, the welcome fi le for that context
root is displayed. See web.xml fi le in Example
16.6(h).
 The title tag sets the title of the page. You can
see the title (login page) on the top blue bar of the
browser. The form tag is to create a form within the

body tag. This form has two input fi elds with two
special buttons submit and reset created using input
tags. One input fi eld is used for entering user id
(type=text) and other is used for entering password
(type=password). Submit (type=submit) and reset
(type=reset)buttons are also created using input tag.
On clicking submit button, the data in the form is sent
to the servlet class mentioned in the action attribute of
the form tag using the method specifi ed in the method
attribute of the form tag. As you already know post
method instead of appending the data with the URL
mentioned in the action attribute, sends data as part
of header. Please note that in the action attribute you
have to specify the url-pattern mentioned in the
servlet-mapping tag specifi ed in the web.xml fi le for
sending the request to the appropriate servlet without
the preceding slash.

580 Programming in Java

Example 16.6(b) Authenticate.java (Servlet Class)

 L1 import java.io.*;
 L2 import javax.servlet.*;
 L3 import javax.servlet.http.*;
 L4 import java.sql.*;
 L5 public class Authenticate extends HttpServlet
 {
 L6 public void doPost(HttpServletRequest request,HttpServletResponse response) throws
 ServletException, IOException
 {
 L7 PrintWriter out = response.getWriter();
 L8 String id = request.getParameter("id");
 L9 String pass = request.getParameter("pass");
 L10 String query="select * from Login where UserID=’"+id +"’ and
 Password=’"+pass+"’";
 // to invalidate older sessions
 L11 HttpSession session=request.getSession(false);
 L12 if(session!=null)
 L13 session.invalidate();

 L14 try
 {
 L15 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 L16 Connection con=DriverManager.getConnection("jdbc:odbc:auth");
 L17 Statement stmt=con.createStatement();
 L18 ResultSet rs=stmt.executeQuery(query);
 L19 if(!rs.next())
 {
 L20 response.sendRedirect("/login");
 }
 L21 else
 {
 L22 session=request.getSession(true);
 L23 session.setAttribute("LOGIN_DONE",true);
 L24 session.setAttribute("User-Id",id);
 L25 response.sendRedirect("showAuthenticate");
 }

 L26 } catch(Exception e){out.println(e);}
 }
 }

Introduction to Advanced Java 581

Explanation
L1–4 Imports the required packages.
L5 Shows Servlet class declaration. The Servlet
class has to be a public class.
L6 As the request that arrives is a post request, the
doPost method is overridden.
L7 Shows creation of a PrintWriter object so
that responses can be sent to client. The getWriter
method of the response object is used to obtain a
PrintWriter object.
L8–9 Extract the id and password from the request
object using the getParameter method and store
them in the separate strings. This id and password
combination will be matched from the database.
These two fi elds are submitted by the user in the
Login.html page and send to this servlet along with
the http request.
L10 Shows creation of a SQL query. This query
is stored in a String variable and will be executed
once the database connection is established. Note
that the id and password extracted from request are
added to this query to authenticate the user. The table

name is Login which contains two fi elds: UserID and
Password.
L11–13 Used for invalidating any older session (if
any) present. The getSession method with a false
argument extracts the session from the request (if any
present) and does not create a new session if none is
found. The session, if found, on a user login attempt
in these statements is considered by our application
as an old session and is invalidated in if statement
on L15 using the invalidate method.
L14 try block starts.
L15–18 Statements show how to connect to the
database. We have used MS-Access 2010 for this
example. L15 loads the driver, L16 establishes
the connection, L17 creates the Statement and
L18 executes the Statement (query) and obtains a
ResultSet object. Note that in jdbc:odbc:auth,auth
is the data source name. Remember this DSN is
created in the Data Sources (ODBC) within the
Administrative Tools of the Control Panel (see Figs
16.16 and 16.17).

Fig. 16.16 DSN Name

Fig. 16.17 DSN Along with the Database it Refers to

582 Programming in Java

L19–25 On execution of the Query if the result set
contains a row it clearly specifi es that the user has
entered a valid user id and password and rs.next()
will return true otherwise false. If false, the user is
redirected back to the context root (/login) on L20
otherwise a new session is created for the valid user
on L22. L23 shows an attribute is set into the new
session object by the name LOGIN_DONE and value
is set as true. We will illustrate its purpose later. L24
sets the user-id into the session object and the user is
redirected to showAuthenticate (i.e., ShowAuthen-
ticationDetails.class) servlet on L25. showAu-
thenticate name is specifi ed as the url-pattern

for servlet-class ShowAuthenticationDetails in the
web.xml fi le. So to invoke ShowAuthenticationDe-
tails, we are using the name showAuthenticate.
But you would raise one question after having a
look at the web.xml fi le in Example 16.6(h) i.e.,
the url-pattern for the said servlet is /auth/
showAuthenticate and we have just mentioned
showAuthenticate in L24. The reason is because
the user is already in the auth context when the user
invoked/auth/authenticate.
L26 Catches the exception raised from the try
block, if any.

Example 16.6(c) ShowAuthenticationDetails.java

 L1 import java.io.*;

 L2 import javax.servlet.*;

 L3 import javax.servlet.http.*;

 L4 public class ShowAuthenticationDetails extends HttpServlet

 {

 L5 public void doGet(HttpServletRequest request,HttpServletResponse response) throws
 ServletException, IOException

 {

 L6 PrintWriter out=response.getWriter();

 L7 response.setContentType("text/html");

 L8 HttpSession session=request.getSession(true);

 L9 String id= (String)session.getAttribute("User-Id");

 L10 out.println("<Html><head><title> Welcome " +id + "</title></head>");

 L11 out.println("<body><H1> Login Successful </H1>");
 L12 out.println(" Sign Out
");

 L13 out.println(" show Messages ");

 L14 out.println("<H1> Session Details: </H1>");

 L15 out.println("Session Id: "+session.getId()+"
");

 L16 out.println("User id: "+id +"
");

 L17 out.println("<H1>Requested URI: "+ request.getRequestURI() +"</H1>
");

 L18 out.println("</body></Html>");

 }

 }

Introduction to Advanced Java 583

Output

Fig. 16 .18 Response Generated by ShowAuthenticationDetails Servlet

Explanation
L1–3 Imports the required packages.
L4 Servlet class declaration.
L5 doGet method is overridden as this request (i.e.,
a get request) comes through a hyperlinked URL.
L6 PrintWriter object is created as it is this
servlet which will show the user something after it
is authenticated.
L7 contentType is set as text/html.
L8 The session details are acquired from the
request object. The same session created by the
Authenticate Servlet is retrieved here.
L9 The user id is extracted and stored in a String
variable.
L10 An html is generated for the client and sent
using the println method of the PrintWriter object.

As you can see in this line, the title of page is set as
“Welcome” along with the id of the user (see output).
L11 An h1 heading “Login Successful” is sent
to client.
L12–13 Two hyperlinks are sent to the client:
SignOut and ShowMessage. Respective servlets are
invoked on clicking either of the hyperlinks.
L14 An h1 heading “Session Details” is sent to
client.
L15–16 Session Id and User Id is sent to the
client to be displayed.
L17 The requested URI is obtained and sent to
the client.
L18 html fi le is closed.

 We demonstrated in this particular servlet how to determine that this request belongs to a
particular session and send some details and options back the client.

Example 16.6(d) ShowMessage.java (Servlet Class)
 L1 import java.io.*;
 L2 import javax.servlet.*;
 L3 import javax.servlet.http.*;
 L4 public class ShowMessage extends HttpServlet
 {
 L5 public void doGet(HttpServletRequest request,HttpServletResponse response) throws
 ServletException, IOException
 {

584 Programming in Java

 L6 HttpSession session=request.getSession(true);
 L7 response.setContentType("text/html");
 L8 PrintWriter out = response.getWriter();
 L9 out.println("<HTML>\n" + "<HEAD><TITLE> Show Messages </TITLE>");
 L10 out.println(" </HEAD>\n"+"<BODY BGCOLOR=\"#FDF5E6\">\n");
 L11 out.println("<H1> Welcome </H1>
");
 L12 out.println("My Session Identifi er: "+session.getId()+"
");
 L13 out.println("My User Id: "+session.getAttribute("User-Id")+"
");
 L14 out.println("Requested URI: "+ request.getRequestURI () + "
");
 L15 out.println(" Sign Out");
 L16 out.println("</BODY></HTML>");
 }
 }

Output

Fig. 16.19 Html generated by ShowMessage Servlet

Explanation
All similar lines have been explained in the previous
example. The important point to note is that the
session id is same in both the ShowMessage and

showAuthenticationDetails servlets. The user id
put in the session object is extracted again here and
displayed to the user.

Example 16.6(e) SignOut.java (Servlet Class)
 L1 import java.io.*;
 L2 import javax.servlet.*;
 L3 import javax.servlet.http.*;
 L4 public class SignOut extends HttpServlet
 {
 L5 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 L6 HttpSession session=request.getSession(false);
 L7 session.invalidate(); //logout
 L8 response.sendRedirect("/login");
 }
 }

Introduction to Advanced Java 585

Explanation
All similar lines have been explained in the previous
example. The important point to note is that the

session is invalidated and user is redirected to the
Login.html page.

Example 16.6(f) NoCacheFilter.java (Filter Class)
 L1 import java.io.*;
 L2 import javax.servlet.*;
 L3 import javax.servlet.http.*;
 L4 public class NoCacheFilter implements Filter
 {
 L5 public void doFilter(ServletRequest req, ServletResponse res, FilterChain chain)
 throws IOException, ServletException
 {
 L6 HttpServletResponse hsr = (HttpServletResponse) res;

 /*Forces caches to obtain a new copy of the page from the server*/
 L7 hsr.setHeader("Cache-Control", "no-cache, no-store, must-revalidate"); // HTTP 1.1.

 //HTTP 1.0 backward compatibility
 L8 hsr.setHeader("Pragma", "no-cache");

 //Causes the proxy cache to see the page as "stale"
 L9 hsr.setDateHeader("Expires", 0);
 L10 chain.doFilter(req, res);
 }
 L11 public void destroy(){}
 L12 public void init(FilterConfi g f){}
 }

Explanation
This is a fi lter class and is used for fi ltering tasks on
either request or response to and from a resource or in
both conditions. In other words, a fi lter’s functionality
is either performed before or after the functionality
of a servlet or a JSP. For example, if a request is
made for a servlet on which a fi lter has been applied
to allow only authorized user to access the servlet,
the fi lter may pass or block the users request on to
that servlet depending on which request is legal and
which one is illegal. As is evident from Fig. 16.20,
that the request for a resource goes through the fi lter.
The role of this fi lter class is to prevent the browser
cache from storing previous pages but obtain fresh
copy of the pages from the server every time a
resource is accessed. This fi lter is applied to all the
servlets and is specifi ed in the following fashion
in web.xml fi le. Note the <url-pattern>/*</url-
pattern> specifi es that it applies to all.

 <fi lter>
 <fi lter-name>noCacheFilter</fi lter-name>
 <fi lter-class>NoCacheFilter</fi lter-class>
 </fi lter>
 <fi lter-mapping>
 <fi lter-name>noCacheFilter</fi lter-name>
 <url-pattern>/*</url-pattern>
 </fi lter-mapping>
 Filter, introduced in Servlet 2.3 specifi cation is
actually an interface in the javax.servlet package.
This interface has three methods as you can see in
L5, 11, 12. The fi ltering task is performed in the
doFilter method. The doFilter method is called by
the container every time a client request for a fi ltered
resource which resides at the end of the chain. It may
be possible that a fi lter may invoke another fi lter to
process a request/response pair. The FilterChain
object keeps a track of it. The FilterChain object

586 Programming in Java

allows the request and response to be passed on to
the next fi lter in the chain, if there are more fi lters to
be processed for a request/response pair and if it is
the last fi lter in the chain the requested resource is
invoked.
L6 As doFilter method accepts ServletRequest
and ServletResponse types as its arguments, they
need to be cast into HttpServletRequest and
HttpServletResponse objects before their respective
methods can be used on them.
L7 Sets an http header “Cache-Control” through
the response object. The values are self-explanatory
which specify not to cache, not to store the page
and ask for a validated copy of the page from the
originating server every time. This header is part
of HTTP version 1.1 but some browser and caches
supporting older version of http protocol ignore it
so pragma and Expires header should also be set to
avoid caching in any circumstance.

L8 Pragma header is part of HTTP/1.0 version. It
serves the same purpose of not letting the client cache
the server responses. This header is basically set for
backward compatibility.
L9 The Expires header specifi es the date/time
after which the response is considered stale (old
or expired). An entry marked as stale will not be
returned normally by a cache unless it is validated
with the originating server.
L10 Shows the FilterChain object calling
the doFilter method. This FilterChain object
represents a chain of fi lters which have to be invoked
one after the other to fulfi l a request for a resource.
It causes the next fi lter within the chain of fi lter to
be invoked and if the calling fi lter is the last fi lter in
this chain, the resource is invoked.
L12 When the servlet fi lter is loaded for the fi rst
time, its init() method is invoked.

Filter

Servlet

JSP

Http Request

Fig. 16.20 Shows How a Request is Processed through a Filter

Example 16.6(g) AlreadyLogingFilter.java (Filter Class)
 L1 import java.io.*;
 L2 import javax.servlet.*;
 L3 import javax.servlet.http.*;
 L4 public class AlreadyLogingFilter implements Filter
 {
 L5 public void doFilter(ServletRequest request, ServletResponse response, FilterChain
 chain) throws IOException, ServletException
 {
 L6 HttpSession session=((HttpServletRequest)request).getSession(true);

 L7 if(null == session.getAttribute("LOGIN_DONE"))
 {
 L8 ((HttpServletResponse)response).sendRedirect("/login");
 }
 L9 chain.doFilter(request, response);
 }
 L10 public void destroy(){}
 L11 public void init(FilterConfi g f){}
 }

Introduction to Advanced Java 587

Explanation

The purpose of creating this fi lter is to allow only
authorized session holders to view the messages and
the authentication detail pages. Unlike the previous
fi lter, this fi lter is applied to only to the showmessage
and showAuthenticate servlets. This is specifi ed in
web.xml fi le as shown below (see url-pattern tag
below). So, if a user, instead of accessing the login
page, tries to access the showmessage servlet directly
by typing the following URLin the browser address
bar: localhost:8080/login/auth/showmessage,
the user is automatically redirected to the login
page. The request is fi ltered by this fi lter class and
appropriate action is taken. The same happens in
case of showAuthenticate servlet if user tries to
access it directly (localhost:8080/login/auth/
showAuthenticate) without logging. The following
tags have to be inserted in web.xml fi le.
 <fi lter>
 <fi lter-name>checkLoginFilter</fi lter-
 name>
 <fi lter-class>AlreadyLogingFilter</fi lter-
 class>

 </fi lter>

 <fi lter-mapping>
 <fi lter-name>checkLoginFilter</fi lter-
 name>
 <url-pattern>/auth/showmessage</url-pat
 tern>
 <url-pattern>/auth/showAuthenticate</
 url- pattern>
 </fi lter-mapping>
L6 The session is obtained from the request object.
L7–8 Remember we had inserted an attribute in
the session object “LOGIN_DONE” with the value
true, as soon as user was authenticated and a new
session was created. The purpose was to check for
already logged in user holding valid sessions. If the
LOGIN_DONE session attribute is not null, it means
the user is authenticated and holds a valid session.
So the requested resource is invoked. But if it is null,
it means the user is not authenticated and the user is
redirected to welcome page (/login).

Example 16.6(h) web.xml

 <?xml version="1.0" encoding="ISO-8859-1"?>

 <web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0"
 metadata-complete="true">

 <welcome-fi le-list>
 <welcome-fi le>Login.html</welcome-fi le>
 </welcome-fi le-list>

 <!-- Defi ne example fi lters -->
 <!-- Defi ne servlets that are included in the example application -->

 <servlet>
 <servlet-name>authenticate</servlet-name>

588 Programming in Java

 <servlet-class>Authenticate</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>authenticate</servlet-name>
 <url-pattern>/auth/authenticate</url-pattern>
 </servlet-mapping>

 <servlet>
 <servlet-name>showAuthenticationDetails</servlet-name>
 <servlet-class>ShowAuthenticationDetails</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>showAuthenticationDetails</servlet-name>
 <url-pattern>/auth/showAuthenticate</url-pattern>
 </servlet-mapping>

 <servlet>
 <servlet-name>showmessage</servlet-name>
 <servlet-class>ShowMessage</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>showmessage</servlet-name>
 <url-pattern>/auth/showmessage</url-pattern>
 </servlet-mapping>

 <servlet>
 <servlet-name>signout</servlet-name>
 <servlet-class>SignOut</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>signout</servlet-name>
 <url-pattern>/auth/signout</url-pattern>
 </servlet-mapping>

 <fi lter>
 <fi lter-name>noCacheFilter</fi lter-name>
 <fi lter-class>NoCacheFilter</fi lter-class>
 </fi lter>

 <fi lter-mapping>
 <fi lter-name>noCacheFilter</fi lter-name>
 <url-pattern>/*</url-pattern>
 </fi lter-mapping>

Introduction to Advanced Java 589

 <fi lter>
 <fi lter-name>checkLoginFilter</fi lter-name>
 <fi lter-class>AlreadyLogingFilter</fi lter-class>
 </fi lter>

 <fi lter-mapping>
 <fi lter-name>checkLoginFilter</fi lter-name>
 <url-pattern>/auth/showmessage</url-pattern>
 <url-pattern>/auth/showAuthenticate</url-pattern>

 </fi lter-mapping>
 </web-app>

16.5 INTRODUCTION TO JAVA SERVER PAGES

Java server pages (JSP), in contrast to servlets, is basically a page that contains Java code
embedded within html tags. Servlet is a Java program where html tags are embedded in Java
code or html responses are generated through Java. JSP fi les have an extension .jsp and they
execute within a JSP container present in the webserver. This container translates the .jsp into
an equivalent servlet. In other words, JSP is a servlet in the background. The basic purpose of
using JSP is also same as that of servlet, i.e., to process the request and generate dynamic web
content for the client. The obvious question that arises is why is JSP required? Does it offer an
advantage over a servlet?
 JSP offers a signifi cant advantage over a servlet. JSP is embedded in html with some special
delimiters which look like tags. So it is easy to learn. To work with a servlet you need to learn Java
and its programming styles which is not the case in JSP. Moreover, JSP pages are automatically
recompiled when required, which is not the case with servlets. Servlets have to be recompiled in
case they are changed. So as soon as you refresh your JSP page, changes made to it are refl ected.
The URL mapping required in web.xml fi le for servlets is not required in the case of JSP.

16.5.1 JSP Life Cycle
JSP life cycle has three methods: jspInit(),_jspService(), and
 jspDestroy() similar to a servlet lifecycle. These methods are automatically
called when a JSP page is requested and it terminates normally.
 jspInit() method is similar to the init() method of a servlet or an applet.
It is called only once during the entire lifecycle and is used to initialize
variables and objects that can be used throughout the JSP.
 _jspService() method is automatically called and is used to generate
response for the request. This method delegates request to doGet() or
doPost() method of a generated servlet.
 jspDestroy() method is automatically called when the JSP page terminates
normally. It is used for cleaning the resources held by the JSP.Fig. 16.21 JSP Life Cycle

590 Programming in Java

Note jspInit() and jspDestroy() methods can be declared in a JSP page but the _jspService()
method cannot be declared in a JSP page as it is dynamically generated by the JSP container.

16.5.2 Steps in JSP Page Execution
The following steps are followed during execution of a JSP page:

  User sends request for a JSP page to the webserver through a web browser.
  Webserver accepts the request and passes it to the JSP container.
  If the JSP fi le has been called for the fi rst time then the JSP container parses the page,

converts it into a servlet, and compiles the servlet.
  The container loads the Servlet class by instantiating it and calling the jspInit() and

_jspService() methods of the JSP life cycle.
  If JSP page is called for second or nth time, the container checks whether the JSP page

is newer than its class and if yes, the translation of JSP to servlet takes place and again
it is compiled, instantiated, and loaded again; otherwise the most updated instance is
already running.

  The generated HTML is displayed on the user’s web browser.

16.5.3 JSP Elements
JSP has three types of components namely

  Directives  Expression, scriptlets, and declarations  Actions

Directives
Directives are specifi c instructions to the container informing it how to process the JSP page.
There are three types of directives in JSP: page, include, and taglib. The syntax for adding
directive to a JSP page is
 <@ directive-name attribute-name="value" …. >

 (a) page, as the name suggests, is used to specify attributes for the page, for example, what
classes to be imported for the servlet or what will be the content type for the generated
responses by the servlet and so on. Some of the attributes is provided in Table 16.8.

Table 16.8 Attributes of the Page Directive

Attribute Description
contentType Specifi es the character encoding scheme.
Extends Specifi es a superclass for the generated servlet.

Import
Specifi es the packages or classes to be imported similar to the Java import
statement.

Info Specifi es a string that can be extracted using the getServletInfo() method.
isThreadSafe Specifi es the thread model for the generated servlet.
Language Defi nes the programming language to be used in the JSP page.
Session Specifi es whether or not the JSP page is participating in a session.
isELIgnored Specifi es whether expression language within the JSP page will be ignored or not.
isScriptingEnabled Specifi es whether scripting elements are allowed or not.

Introduction to Advanced Java 591

 If you want to use Date class in your JSP page you will have to import the java.util package
in your JSP page as shown below:
 <%@ page import="java.util.*" %>

or its xml equivalent tag can also be used as shown below:
 <jsp:directive.page import ="java.util.*" />

(b) include directive is used to add the contents of another fi le into a JSP page. It is used as
shown below:

 <%@ include fi le="includedirective.html" %>

or its xml equivalent tag can also be used as shown below:
 <jsp:directive.include fi le="includedirective.html" />

(c) taglib directive is used while creating user defi ned tags. It can be used as:
 <%@ taglib uri=" " prefi x="" >

 or its xml equivalent can also be used as shown below:
 xmlns:prefi x="tag library url"

Expressions
To execute Java expressions like (a+b*c), we make use of JSP expression syntax. The result of
expression is directly embedded in the html page. Expressions are enclosed within <%= … %>.
Note that expressions are not terminated with a semicolon. For example,
 The result of 2+22 is <%= (2+2-2) %>.The expression in <% %> is evaluated and answer is
added to the html.
 <% ="Introduction to JSP" %>. The string “Introduction to JSP” is added to the html sent to
the client. It is similar to the out.prinln() statement.

Note XML equivalent for the expression can also be used like: <jsp:expression> … </jsp:expression>

Scriptlets
If a number of statements have to be executed, scriptlets is the right place. Note that scriptlets
are enclosed within <% %> delimiters and semicolons are used to terminate statements. For
example,

<%

 out.println("This following text is visible through a Scriptlet
");

 d=new Date();

 out.println("
 The Current Date is: "+d+"
");

 out.println("
 A Sample for Loop
 ");

 for (int i=0;i<5;i++)

 out.println("Iteration No :" +i+"
");

%>

592 Programming in Java

The above code uses out object which is a predefi ned object in JSP. println and print are
methods of this out object which are responsible for sending strings to the client. In other words
the strings passed as parameter values in print methods are added to the generated html. Table
16.9 lists all implicit objects.

Table 16.9 Implicit Objects in JSP

Object name Description
request The request received by the server normally a ServletRequest or HttpServletRequest.
response The response generated by the server normally a ServletResponseor or HttpServletResponse.
application Provides information on server version, application level initialization parameters; can be

used for logging; common for all session objects; contains all servlets, JSP, html, and other
resources used in the application.

session Unique object associated with a particular user.
pageContext Object is used to either forward request to other resources or include output of other resources.

Apart from that it is used to maintain attributes at four levels: page level, request level, session
level, and application level.

exception An instance of java.lang.Throwable class; valid only of is ErrorPage attribute of the
page directive is set to true.

page Object is used to refer to the current servlet (similar to this keyword).
confi g Object is used to access the initialization parameters of the servlet mapping besides the servlet

context and servlet name.
out Object is used to write the contents back to the client.

Note XML equivalent for the scriptlet can also be used like: <jsp:scriptlet> … </jsp:scriptlet>.

Declarations
If you wish to declare any item it should be done here. Note that declarations are enclosed
within <%! %>. A variable can be declared in scriptlet as well. The difference between declaring
a variable in scriptlet and through declarations is that all the scriptlet code goes into the service
method of the JSP page (when it is converted to servlets) and all declarations reside on top of
the service method within the class. Semicolons are allowed while declaring a variable or object
in a JSP page. For example,
 <%! Date d;%>

Note JSP container creates a servlet automatically for every JSP page. The expression, scriptlets,
and html found in the JSP page are used by JSP container to create Java code for the
automatically generated _jspService() method of the servlet. This method is analogous to
service() method of the servlets.

Actions
Actions are JSP elements that use, create or modify other objects and they follow strict XML
syntax. Table 16.10 lists the JSP actions.

Introduction to Advanced Java 593

Table 16.10 Actions in JSP

<jsp:useBean> To use beans in JSP pages.
<jsp:include> Similar to include directive.
<jsp:forward> To forward the request to some other JSP page or servlet.
<jsp:getProperty> To get properties of a bean.
<jsp:setProperty> To set properties of a bean.

Note We will discuss some actions later when we discuss Java beans.

16.5.4 Placing your JSP in the Webserver
The only thing that you need to do is to place your JSP according to the directory structure
shown in Fig. 16.22. As is evident from the fi gure, all html and jsp fi les are placed parallel to
the WEB-INF directory within the root directory of the web application (i.e., login in our case).
 After placing your JSP in the appropriate directory structure as shown in Fig. 16.23, type the
following in the address bar to see the output as in Fig. 16.23.
 http://localhost:8080/login/JspElements.jsp

Let us put all that we have discussed into practice and create a simple JSP page. We will call it
JspElements.jsp. We will be creating a html table to display directives, expressions, scriptlets,
declarations, actions, and important implicit objects in a single JSP page, and try to show how
most of them can be used in a JSP page.

Apache software foundation

Tomcat 7.0

bin

cont

lib

webapps

login

WEB-INF

JspElements.jsp

includedirective.html

Fig. 16.22 Directory Structure for JspElements.jsp

594 Programming in Java

Example 16.7 JspElements.jsp
<Html>
<Head>
<title> Introduction to JSP </title>
</Head>
<body><h2> Three Components of JSP </h2>

 Directives
 Expression, scriptlets and declarations
 Actions

Apart from this JSP contains implicit objects.

<table border=1><tr><td><h3> Directives </h3></td>
<td><h3> Expressions </h3></td>
<td><h3> Scriptlets </h3></td>
<td><h3> Declarations </h3>

</td>
<td><h3> Actions </h3></td>
<td><h3> Some Important Implicit Objects </h3></td></tr>
<tr>
<td>There are three types of directives:
page, include and taglib.</
em>
The following text is generated using a include directive.

<%@ include fi le="includedirective.html" %>
<%@ page import="java.util.*" %>
</td>
<td> The result of 2+2-2 is : <%= (2+2-2) %>

 <%= "Introduction to JSP Elements" %>
</td>
<td> if a number of statements have to be executed, scriptlets is the
right place.
The following scriptlet includes a print statement,
statement to instantiate a Date object and a for loop.
<!-- Starting of scriptlet -->

<%
 out.println("This following text is visible through a Scriptlet
");
 d=new Date();
 out.println("
 The Current Date is: "+d+"
");

 out.println("
 A Sample for Loop
 ");
 for (int i=0;i<5;i++)
 out.println("Iteration No :" +i+"
");

%>
<!-- Ending of Scriptlet -->
</td>
<td>

If you wish to declare any item it should be done here.
 we are declaring a Date
here which is instantiated in a scriptlet.
<%!Date d;%>
</td>
<td>
<jsp:useBean>

Introduction to Advanced Java 595

<jsp:include>

<jsp:forward>

<jsp:getProperty>

<jsp:setProperty>

</td>
<td>
request

response

session

application

out

</td>
</tr>
</table>
<h5> NOTE: </h5>

JSP container creates a servlet automatically for everyJSP page. The expression,
scriptlets and html found in the JSPpage is used by JSP container to create the
Java code for the automatically generated _jspService() method of the servlet. This
method is analogous to service() method of the servlets

</body>
</Html>

Output

Fig. 16.23 Snapshot of the Browser Showing the JspElements.jsp Page

Explanation

The above example clearly shows Java code being
embedded in html fi le. Note that the extension of

fi le is not html. The meaning of all tags used in the
example is shown in Table 16.11.

596 Programming in Java

Table 16.11 Html and JSP Tags

Html and JSP tags used in examples Description
Html Root tag of html fi le.
Head Header of the html fi le.
title Used for specifying title of the page. It is used within the head tag
body Displayable portion of the html.
ol Used for creating ordered (i.e., numbered) list (see output).

li
Used for creating list items of the ordered (ol) or unordered list
(ul) (see code).

table Used for depicting data in a tabular format. A table has rows
and columns.

tr Row creation of a table is done using this tag.

td Column creation of a table is done using this tag.

br Used for line breaks.

em Similar to italics.

< Used for displaying less than sign in html (i.e., <).

> Used for displaying greater than sign in html (i.e., >).

h1, h2, h3, h4, h5, h6 Used for headings. h1 is the biggest and h6 is the smallest.
<%@include fi le = "includedirective.
html" %>

JSP include directive is used to include the contents of
includedirective.html fi le within the JspElements.jsp
page.

<%@ page import = "java.util.*" %> JSP page directive is used to import util package.

<%= (2+2-2) %>

JSP expression is used to evaluate the expression and send the
result to the client embedded in the generated html.

<%= "Introduction to JSP Elements" %>
JSP expression is used to send the string to the client embedded
in the generated html.

<%
out.println("This following text is
visible through a Scriptlet
");
d=new Date();
out.println("
 The Current Date is:
"+d+"
");
out.println("
 A Sample for
Loop
 ");
 for (int i=0;i<5;i++)
 out.println("Iteration No :"
+i+"
"); %>

JSP scriptlet is used to depict a number of statement can be
embedded in html. Predefi ned object out is used in this scriptlet
to write strings to the client. The output of all these statement is
embedded in the generated html sent to client.

Introduction to Advanced Java 597

16.6 JAVA BEANS

Java Beans provides a standard format for writing Java classes. Java Bean is a reusable software
component. Once it is designed and created, it can be used over and over again in many different
applications as per their requirements. Java Beans can be used by IDE and other Java API’s to
create new applications. The information of these beans is automatically discovered and then
manipulated without explicitly coding them again. A Java Bean may be as simple as an ordinary
Java class which follows certain guidelines like:

  A bean class must have a no-argument constructor.
  A bean class should have no public properties.
  Properties should be modifi ed and accessed through setter (setXXX) and getter

(getXXX) methods, respectively.
  Supporting introspection which allows a builder tool to analyze how a bean works.
  Supporting customization thus allowing users to alter the appearance and behavior of

a bean.
  Supporting events which allow beans to fi re events and inform application builder tools

about the events they can fi re and handle.
  Supporting persistence thus allowing beans to be customized in an application builder

tool to have their state saved and later restored.

16.6.1 Properties of a Bean
The properties of a bean are discussed in the following sections:

 Basic Properties
A basic or simple property is one which accepts a single value. The value may be any of the
primitive types or object references. These properties can be accessed using getter methods
and modifi ed using setter methods. Suppose the bean contains a property (variable or attribute)
named length, the getter and setter for this property will be
 public int getLength() // getter for length
 {
 return length;
 }
 public void setLength(int l) // setter for length
 {
 length=l;
 }

A special case is for boolean properties whose type is boolean. In such case the getter/accessor
method makes use of is instead of get.
 public boolean isAcceptable()
 {
 return acceptable;
 }

 Indexed Properties
An indexed property is one which accepts an array of values. Suppose the bean contains an integer
array to hold the marks scored named marks, the getter and setter methods for this property will be

598 Programming in Java

 public int[] getMarks() // getter for marks
 {
 return marks;
 }

 public void setMarks(int[] m) // setter for marks
 {
 marks=m;
 }

 Beans must also provide methods to get and set specifi c elements of the array. For example,
 public int getMarks(int index) // gets specifi c element at index
 {
 return marks[index];
 }

 public void setMarks(int index, int m) // sets specifi c elements at index
 {
 marks[index]=m;
 }

 Bound Properties
A bound property is one which is bound to the listener and this listener is notifi ed whenever
the value of this field changes. PropertyChangeListener and PropertyChangeEvent of
the java.beans package are used for this purpose. The bean must add the methods
addPropertyChangeListener() and removePropertyChangeListener() for managing the bean’s
listeners. As soon as the bound property is changed, the bean sends a PropertyChangeEvent to
its registered listeners. java.beans package includes a utility class PropertyChangeSupport to
keeps track of property listeners. It also includes a method that fi res PropertyChangeEvent to all
registered listeners. An instance of this class is declared as a member fi eld of the bean and all
such task are delegated to it. Let us see how this is done.

Example 16.8 Property Change Listener for a Bound Property
 import java.beans.*;
 public class DemoBean
 {
 private int length = 10;

 /*An instance of PropertyChangeSupport is created. The bean object is passed as the
 source of event within the constructor. */

 private PropertyChangeSupport pcs = new PropertyChangeSupport(this);

 public int getLength()
 {
 return length;
 }

 public void setLength(int l)

Introduction to Advanced Java 599

 {
 int oldLength = length;

 /*Change the length*/
 length = l;

 /* And fi re a property change event to the registered listener. If the old and new
 value is same, no event is fi red.
 public void fi rePropertyChange(String propertyName,boolean oldValue,
 boolean newValue) */

 pcs.fi rePropertyChange("length",oldLength,l);
 }

 /* PropertyChangeListener is added to the listener list for all properties. */

 public void addPropertyChangeListener(PropertyChangeListener listener)
 {
 pcs.addPropertyChangeListener(listener);
 }

 /* Remove a PropertyChangeListener from the listener list. */
 public void removePropertyChangeListener(PropertyChangeListener listener)
 {
 pcs.removePropertyChangeListener(listener);
 }
 }

 Constrained Properties
A constrained property is a special kind of bound property. In this case, the listeners are consulted
prior to changing the constrained property and if there is no objection from any of the listeners,
changes are made. But if any one of the associated listeners veto’s the change, the property remains
unchanged. VetoableChangeListener and VetoableChangeSupport of the java.beans package
are used for this purpose. Let us take the previous example and add VetoableChangeSupport and
VetoableChangeListener to it.

 import java.beans.*;
 public class DemoBean {
 private int length = 10;
 private Pr opertyChangeSupport pcs = new PropertyChangeSupport(this);

 /*An instance of VetoableChangeSupport is created. The bean instance is passed
 within the constructor as the source of events. */

 private VetoableChangeSupport vcs = new VetoableChangeSupport(this);

 public int getLength()
 {

600 Programming in Java

 return length;
 }

 public void setLength(int l) throws throws PropertyVetoException
 {
 int oldLength = length;

 /*public void fi reVetoableChange(String propertyName, Object oldValue,
 Object newValue) throws PropertyVetoException

 This method apprises the listeners about the change in the property’s value.
Any of the registered listeners can throw a PropertyVetoException to veto the
update. In such a case the method passes an "undo" PropertyChangeEvent. This
will revert back the old value to all listeners that confi rmed this update and
re-throws the PropertyVetoException. If the old and new values are same and
non-null, No event is fi red */

 vcs.fi reVetoableChange("length", oldLength, l);
 length = l;

 /* fi re a property change event */
 /* public void fi rePropertyChange(String propertyName, boolean oldValue, bool
 ean newValue) */

 pcs.fi rePropertyChange("length",oldLength, l);
 }
 public void addPropertyChangeListener(PropertyChangeListener listener)
 {
 pcs.addPropertyChangeListener(listener);
 }

 public void removePropertyChangeListener(PropertyChangeListener listener)
 {
 pcs.removePropertyChangeListener(listener);
 }

 /* VetoableChangeListener is added to the listener list. It is registered for
 all properties */
 public void addVetoableChangeListener(VetoableChangeListener listener)
 {
 vcs.addVetoableChangeListener(listener);
 }

 /* Remove a VetoableChangeListener from the listener list. */
 public void removeVetoableChangeListener(VetoableChangeListener listener)
 {
 vcs.removeVetoableChangeListener(listener);
 }
 }

Introduction to Advanced Java 601

16.6.2 Using Beans through JSP
jsp:useBean action is used to load a bean in the JSP page. The simplest syntax for using this tag is
 <jsp:useBean id="name" class="package.Class" />

This action instantiates an object of the class specifi ed in the class attribute and bind it with
the name specifi ed in the id attribute. So, for example, if we want to use a bean created by the
name CalculateBean.java residing in the beans directory, the following JSP action can be used:
 <jsp:useBean id="calc" class="beans.CalculateBean" >

The name calc specifi ed in the id attribute is bound with this bean. It will be used further to
access the bean class. It can be considered as equivalent to the following scriptlet code:
 <% beans.CalculateBean calc = new beans.CalculateBean; %>

Note All classes should be part of a package in order to be accessible in other classes. Classes
within the default package are invisible to classes of the same package. So whenever you
create bean classes, make sure it is part of some package.

package beans;
public class CalculateBean {
 // ...
}

 After placing the bean class (rather all classes) in a package, recompile it and place it in
/WEB-INF/classes/beans/CalculateBean.class

 Then you can reference it as follows:
<jsp:useBean id="calc" class="beans.CalculateBean" />

Accessing Bean Properties in JSP
The properties of a bean can be accessed using the jsp:getProperty tag which takes two attributes:
a name and property attribute. The value of the name attribute should be similar to the id attribute
of the jsp:useBean and value of the property attribute should match with the instance variables
specifi ed in the bean class. For example, the CalculateBean class has a string property called
name. An instance called calc is created using the jsp:useBean as shown above. The value of
the name property can be accessed in either of the following ways:
 <jsp:getProperty name="calc" property="name" />

or its equivalent
 <%= calc.getName() %>

Setting Bean Properties through JSP
The properties of a bean can be modifi ed using the tag which takes three attributes name (should
be an exact match with the id specifi ed in jsp:useBean), property (the name of the property to
be changed), and value (the new value for the property). For example, if you wish to change the
value of the name attribute it can be done in any of the following ways:

602 Programming in Java

 <jsp:setProperty name="calc" property="name" value="Peter" />

or

 <% calc.setName("Peter"); %> // scriptlet code

The property “name”, is of type String whereas there may be other attributes in a bean that
may be numeric in nature. But, the value that is passed will always be a String, (value = "") so
conversion from string to other types will be required. This will prove to be a tedious approach
while converting from one type to other. JSP provides a simple solution of letting the container
automatically handle all conversions. You just need to specify

 <jsp:useBean id = "calc" class = "beans.CalculateBean" />
 <jsp:setProperty name = "calc" property = "*"/>

Note Moreover, the above setting is also used to synchronize html form elements (input fi elds) with
Java Bean. In other words, it is used for form synchronization. Suppose we have an HTML
form which accepts some data from the user (e.g., user id and password) and we want to pass
this data to JSP. Apart from JSP, we also have a Java Bean that performs the reading and
writing to and from the database based on the data which user has entered. Our JSP code
will fi rst read the HTML form data from the request object and then set all the parameters in
the Java bean using the jsp:setProperty tag. This is perfectly right but certainly repetitive.
Form synchronization lets JSP synchronize HTML forms element data directly with a Java
bean thus alleviating much of this repetitive coding. Each Html form element will synchronize
with a property of a Java Bean that has the exactly the same name (case-sensitive) as that
of form element. Their values will be directly passed to the bean without worrying about the
type conversions.

Let us take an example to practice what we have learnt so far.

16.6.3 CalculateBean Example
The following example shows how to use Java beans in JSP. We will be creating a JSP page and
a Java bean class. The bean class will have three attributes: two integer variables and a String
variable. The two numeric variables are added together by sum() method of bean class. These
attributes are accessed and changed using set and get property tags of the JSP. The values of
these attributes are passed through JSP tags to the bean classes. String which is automatically
converted to their respective types wherever required (as property = " * " is already set in
the JSP:setproperty tag). The method sum () is invoked from the JSP page. Let us fi rst see the
JavaBeans.jsp page.

Example 16.9(a) JavaBeans.jsp

<Html>

<Head>

<title> Using Java Beans in JSP </title>

</Head>

<body>

Introduction to Advanced Java 603

Hello

<jsp:useBean id="calc" class="beans.CalculateBean" >

After Instantiating Bean

<jsp:setProperty name="calc" property="*" />

<jsp:setProperty name="calc" property="name" value="sachin" />

After Setting property: name

<jsp:setProperty name="calc" property="var1" value="10" />

After Setting property: variable 1

<jsp:setProperty name="calc" property="var2" value="10" />

After Setting property: variable 2

Name: <jsp:getProperty name="calc" property="name" />

Variable 1: <jsp:getProperty name="calc" property="var1" />

Variable 2: <jsp:getProperty name="calc" property="var2" />

<%= "Result: "+ calc.sum() %>

</jsp:useBean>

</body>

</Html>

Example 16.9(b) CalculateBean.java

 package beans;
 import java.io.*;
 public class CalculateBean implements Serializable
 {
 /*Attributes*/
 private int var1;
 private int var2;
 private String name=new String();

 /*getter methods*/
 public int getVar1()
 {
 return var1;
 }
 public int getVar2()
 {
 return var2;
 }
 public String getName()
 {
 return name;
 }

 /*setter methods*/

604 Programming in Java

 public void setName(String x)
 {
 name=x;
 }

 public void setVar1(int x)
 {
 var1=x;
 }
 public void setVar2(int y)
 {
 var2=y;
 }

 /*Method for calculating sum*/
 public int sum()
 {
 return var1+var2;
 }
 }

Output

Fig. 16.24 Output for Example 16.8

Directory Structure for the Example
We are using the same login directory for the accessing beans in a JSP page. The login directory
contains WEB-INF which contains classes and the lib directory. The classes directory within the
WEB-INF will contain the beans directory. All JSP pages reside in our login directory. Directory
structure for JavaBeans.jsp example is given in Fig. 16.25.

Introduction to Advanced Java 605

webapps

login

WEB-INF

classes

beans

CalculateBean.class

CalculateBean.java

JavaBeans.jsp

JspElements.jsp

includedirective.html

lib

Fig. 16.25 Tomcat Directory Structure for JavaBeans.jsp Example

16.7 JAR FILES

JAR stands for Java archive. It is similar to a ZIP fi le. A Jar tool is provided with Java development
kit (JDK) to perform basic tasks with Jar fi les. Let us see how Jar fi les can be created and used.

16.7.1 Creating a JAR File
The basic command for creating a Jar fi le is as follows:
 jar -cvmf jar-fi le-name manifest-fi le-name input-fi le-names

The options and arguments used in this command are
  c option stands for creating a Jar fi le.
  v stands for verbose output on standard output. All fi les included in Jar will be shown

on the console.
  f option stands for fi le to indicate that the output will go into a fi le rather than to the

standard output.
  m stands for specifying manifest fi le to be added to the Jar. If the option is not specifi ed,

Jar utility will create a default manifest fi le.
  Jar-fi le-name is the names that you want the resulting Jar fi le to have. Jar fi les have a

.jar extension.
  File names to be a part of Jar fi le can be specifi ed separated by single white spaces.

If a directory is specifi ed the contents of that directories are added to the Jar archive
recursively.

606 Programming in Java

This command will create a compressed Jar fi le and place it in the current directory. For example,
Fig. 16.26 shows the creation of Calculator.jar.

F ig. 16.26 Creation of JAR File

 As you can see above, the name of the directory, i.e., beans is mentioned after the Jar fi le
name. This directory contains CalculateBean.class which we want to include in the Jar. The
verbose mode is “on” so all operations are shown on the console.

Note If you want to make use of this JAR instead of the beans/CalculateBean.class (placed in
/WEB-INF/classes/beans/CalculateBean.class) in the JavaBeans.jsp page example, place
the Calculator.jar in the following folder: webapps/login/WEB-INF/lib/Calculator.jar and
remove the beans folder from the /WEB-INF/classes directory. Now you can use the same
JavaBeans.jsp page as it is.

16.7.2 Viewing the Contents of a JAR File
The command for viewing the contents of a JAR fi le is

 jar -tf jar-fi le

 t option indicates that you want to view the contents of the Jar fi le.
f option signifi es that the Jar fi le whose contents are to be viewed is specifi ed.

Figure 16.27 shows both creation and viewing of the Jar fi les together.

Fig. 16.27 Creation and Viewing of JAR File

Introduction to Advanced Java 607

16.7.3 Extracting the Contents of JAR
The –xf command is used to extract the contents of the archive. The contents of the JAR will
be extracted in the current directory.
 jar –xf jar-fi le-name

x option stands for extracting the contents.
f options signifi es that the JAR-fi le whose contents need to be extracted is specifi ed.

16.7.4 Manifest Files
Manifest fi le (.mf) is a special fi le that can contain information about the fi les contained in a
Jar fi le. A manifest fi le could be used to tell which classes in the JAR are bean classes, or which
is the main class (starting point) in the JAR, etc. A manifest fi le is automatically created (if not
provided) when a JAR is created and there will be only one manifest fi le in a JAR as shown.
 META-INF/MANIFEST.MF

The default manifest fi le will contain the following:
 Manifest-Version: 1.0
 Created-By: 1.7.0_09 (Oracle Corporation)

The manifest’s entries are in “header : value” pairs. The fi rst line indicates that manifest fi le
conforms to version 1.0 of the manifest specifi cation and is created by the 1.7.0_09 version of
the JDK.

Modifying a Manifest File
The m command-line option is used to add custom information to the manifest during creation
of a Jar fi le. In order to modify the manifest, you will have to create a text fi le fi rst containing
the information that you wish to add to the manifest. The general syntax for the command is
as follows:
 jar cfm jar-fi le manifest-fi le input-fi le(s)

Note Make sure you add a carriage return or new line at the end of manifest fi le otherwise the last
statement will not be passed. As well as, the order of m and f options and their arguments
must match exactly. If options are -fm then the JAR-fi le-name must appear before the mani-
fest fi le and if –mf options are specifi ed, the situations will be reverse. For example,

 The correct statements

jar –cvfm Calculator.jar manifest.txt beans
jar –cvmf manifest.txt Calculator.jar beans

 The wrong statement

jar –cvfm manifest.txt Calculator.jar beans

For example, Fig. 16.28 shows how to add manifest fi le to the jar. Also note the order of options
and the arguments. Figure. 16.29 shows a sample manifest.txt fi le.

608 Programming in Java

Fig. 16.28 Adding Manifest to Jar

Fig. 16.29 A sample manifest.txt File

Application Bundled in JAR
If an application is bundled in a Jar, then there should be some way to indicate which class
within the JAR fi le is the main class from where your application will start. This information is
provided in the manifest fi le by adding the following header in it:
 Main-Class: classname

classname is the name of the class which contains the main method (public static void
main(Stringargs[])) as the execution of any Java applications begin from main method. Once
this manifest is added to the JAR, the application bundled in JAR can be executed as
 java -jar JAR-name

Note The ‘e’ option (e stands for entry point) can also be used to create or override the
manifest’s Main-Class header. It is used to specify the applications starting point without
editing or creating the manifest fi le. For example, this command creates x.jar where the Main-
Class attribute value in the manifest is set to MyMain:

jar cfe x.jar MyMain MyMain.class

If the starting point or main class is in a package, the following command may be invoked. For
example, App is the package which contains MyMain.class.

 jar cfe x.jar App.MyMain App/MyMain.class

16.8 REMOTE METHOD INVOCATION

Distributed computing allows parts of the system to be residing in separate machines located in
different places. It allows business logic and data to be accessed from remote locations anytime

Introduction to Advanced Java 609

anywhere by any one. RMI helps in accomplishing this by allowing objects running on one
machine to be accessed by the clients running in different machines.
 Remote method invocation (RMI) is Java’s implementation of remote procedure call (RPC)
for distributed computing. It is based on client/server concept. RPC is, as the name suggests,
a client invoking a procedure on the remote server by passing arguments and expecting some
return. RMI is a Java client (running in one JVM) invoking a procedure on a remote Java server
(running in same/different JVM). RMI is not language-independent, whereas CORBA (common
object request broker architecture) is language-independent. Language independency means a
Java program can communicate with a program written in any language like C or C++. The low
level details of communication are hidden from the programmer. Actually, a protocol named JRMP
(Java Remote Method Protocol) that works over TCP/IP takes care of the communication between
client and server. Sockets are also used for communication, as they are used for transferring and
receiving data, whereas RMI transfers control by invoking procedure on the server.

16.8.1 RMI Networking Model
RMI client/server applications are used over TCP/IP networking model. In TCP/IP, it is the
application layer’s responsibility to deal with presentation as well as session layer issues. So
the RMI provides the functionality for these layers, as shown in Fig. 16.30. The presentation
layer’s functionality at client and server is handled by stub and skeleton, respectively. Remote
reference layer (RRL) handles the session layer functionality by managing the session among
client and server.

Stub and Skeleton
Stub is a client-side proxy class, whereas skeleton is a server-side proxy class generated by the
special compiler, rmic (rmicompiler). Both these classes are generated from the server (.class)
class after it has been compiled by the rmic. (The newer version of JRMP protocol has made
skeleton class obsolete and now it is not generated by the rmic. The functionality of skeleton is
handled by it automatically. For learning purpose, we should know the functions performed by
both Stub and Skeleton.)
 Actually the term proxy has been used because the client talks to stub, assuming it to be the
server, whilst its purpose is to pass the client’s request to the server and the server’s response to
the client (vice versa for skeleton). Apart from this, the other functionalities performed by stubs
are

  Marshalling arguments and unmarshalling return values.
  Informs the RRL that a call should be invoked on the server.
  Informs the RRL that the call is complete.

 The functions performed by skeleton are
  Marshalling return values and unmarshalling arguments.
  Invoking the actual remote object implementation.

Parameter marshalling and unmarshalling deals with how parameters are sent to the server
and responses are returned to the client. Actually networks are heterogeneous in nature.
By heterogeneous, we mean machines of different make, different architecture, and different
protocols are used in a network. For example, a machine ‘A’ which stores integers in one’s
compliment form and character in ASCII code wants to communicate with a machine ‘B’ which

610 Programming in Java

uses 2’s compliment for integers and EBCDIC code for characters. If communication is allowed
to proceed without any conversion in between, then whatever A transmits can have some other
meaning when it is interpreted by B. For the communication to be unambiguous, the stubs at the
client marshal the parameters, i.e., convert the parameters into a network byte order (standard
conversion order used on networks) and at the server, the skeletons unmarshal the parameters,
i.e., convert the network byte order into host-specifi c order (which is the interpretation used on
the server).

Fig. 16.30 RMI Over TCP/IP

16.8.2 Creating an RMI Application
The following steps will show how to create an RMI client/server application:

  An interface needs to be created which would contain the defi nition of the methods that
can be invoked remotely.

  Create a Server class that provides the implementation of the methods in the interface.
  Generate Stubs using rmic.
  A client to invoke the remote methods.
  Run RMI registry.
  Run server and client.

Note For testing the RMI application, we will run client/server and the registry on the local machine.,
We have created separate directories for client and server, namely rmiclient and rmiserver,
respectively.

Introduction to Advanced Java 611

Creating an Interface Example 16.10 shows an interface which contains the defi nitions of the
methods that can be invoked from client remotely. The clients are provided with these interfaces
to let them know about the names of the methods, their return types, and their parameters.

Example 16.10 Interface Declaration

import java.rmi.*;
public interface Calculation extends Remote
{
 public double remainder(double a, double b) throws RemoteException;
 public double cube(double a) throws RemoteException;
}

 The mandatory requirement for such interfaces is that the interface should be a sub-interface
of Remote interface. Remote interface is a part of java.rmi package, so it has to be imported.
This interface is empty and is used to denote that the methods of this interface can be invoked
remotely. Also note that all the methods in the interface should specify an exception to be thrown,
i.e., RemoteException as shown above. The interface has to be public.

Server Class
The Server class should implement the Calculation interface defi ned above. The Server class
is shown in Example 16.11.

Example 16.11 RMI Server
 L1 import java.rmi.*;
 L2 import java.rmi.server.*;
 L3 public class Server extends UnicastRemoteObject implements Calculation {
 L4 public Server() throws RemoteException
 {
 L5 super();
 }
 L6 public double remainder(double a, double b) throws RemoteException
 {
 L7 return a % b;
 }
 L8 public double cube(double a) throws RemoteException
 {
 L9 return a * a * a;
 }
 L10 public static void main(String args[]) throws Exception
 {
 L11 try {
 L12 Server s = new Server();
 L13 System.out.println("Object created");

612 Programming in Java

 L14 Naming.rebind("rmi://localhost/Calculator",s);
 L15 System.out.println("Object Registered");
 }
 catch(Exception e)
 {
 System.out.println(e);
 }
 }}

Explanation
L2 For creating server, the package java.rmi.
server has to be imported.
L3 The Server class should inherit the Unicas-
tRemoteObject class to create itself an RMI server.
This Server class also inherits the Calculation
interface and provides the implementation of the
methods (remotely available) in the interface.
L4–5 Constructor for the class has been defi ned
and the superclass constructor has been called. The
superclass constructor throws RemoteException,
so the constructor of Server class throws a
RemoteException.

L6–7 Method has been overridden; remainder
(double a, double b). This methods turns the
remainder of a/b.
L8–9 Method has been overridden; cube(double
a).This methods returns a * a * a.
L10 main() method defi ned.
L11 try block defi ned within main().
L12 Object of Server class is created.
L14 A static method rebind of the Naming class is
used to bind the server object to the registry services
with a name. The fi rst argument is the URL and the
second argument is the server object to be bound.
The URL has the following syntax:

 protocol://host machine:[optional port no]/name of the service.
 Protocol is rmi
 Hostname mentions the name of the machine where registry is running i.e. localhost
 By default it runs on port 1099
 Name is the name by which server objects are registered.

This method may throw a RemoteException as well as a MalformedURLException. Apart from this,
the Naming class provides two other methods: bind and unbind.
 The static void bind(String name, Remote obj) method binds the server object with a name
into the registry. If the name is already bound, then it throws an AlreadyBoundException. This is
different from rebind method which overwrites the association of name into the registry.
 The static voidunbind(String name) removes the association of name in the registry service.
RMI Registry RMI registry helps to locate a remote object whose methods it wishes to invoke.
RMI registry is a name service which keeps an association of simple names to their corresponding
remote objects. It runs on the same machine as that of RMI server.
 Every object that wishes to publicize its methods must register itself by a name on the registry
service. Clients look up the registered name in the registry service and get a reference to the
remote object in return. Then use that reference to invoke the remote methods of the server.

Introduction to Advanced Java 613

Stub The stub class is generated by a special rmicompiler (rmic). The Server class is fi rst
compiled and then, the rmic is used on the compiled Server class. Do not mention server. class
while using rmic for generating stub class. The stub class generated has the following name:
Server_Stub.class. In general, its name is <name of the Server Class>_Stub.class. This class
has to be provided to the client. As we have kept the client in a directory ‘rmiclient’, this stub
has to be copied into the client’s directory.
Client The client is created in a directory ‘rmiclient’. The interface as well as the stub generated
from the Server class must be included in this directory.

Example 16.12 RMI Client

import java.rmi.*;
public class Client{
public static void main(String args[]) throws Exception
{
 Calculation c = (Calculation)Naming.lookup("rmi://localhost/Calculator");
 System.out.println("Remainder of 3.2 % 3.2: " +c.remainder(3.2,3.2));
 System.out. println("Cube of 3.2: " +c.cube(3.2));
}}

 The method Naming.lookup (String name) is used to lookup the named service. This
method returns a Remote object. If the named service could not be found, then it throws
NotBoundException. If Registry could not be contacted, a RemoteException occurs. If the URL
argument is not properly formatted, a MalformedURLException results.

Executing RMI Server and Client
Registry, server, and client are run in three separate DOS shells. The outputs at the client and
server DOS shells are shown below:

 C:\javabook\programs\CHAP15~1\rmiserver>java Server
 Object created
 Object Registered

 C:\javabook\programs\chap 15\rmiclient>java Client
 Remainder of 3.2 % 3.2: 0.0
 Cube of 3.2: 32.76800000000001

16.9 INTRODUCTION TO EJB

EJB is a server side distributed component of the J2EE architecture that primarily provides
business logic besides interacting with other server side components. EJB developers need to
focus only on coding business logic leaving the system level services to be handled by EJB server
such as multiple threading, object pool, security, instance management, connection pooling, and
transactions. EJB is based on the concept that in a distributed computing environment, database-

614 Programming in Java

related logic should be independent of the business logic that relies on the data. Figure 16.31
would give a clear understanding of where EJB fi ts in the entire scenario and how servlets and
JSP would interact with EJB resources. The servlets and JSP use Java naming and directory
interface to look up EJB.

16.9.1 Types of EJB
There are three types of EJB: entity beans, session beans, and message driven beans as shown
in Fig. 16.32.

Fig. 16.31 J2EE Multitier
 Architecture

Fig. 16.32 Types of EJB

Entity Bean
An entity bean models real world objects/entities. These entities represent business concepts
that include a customer or a product. Entity bean is used to manage a collection of data (also
known as persistent data) which is retrieved from a database. An entity bean may insert, update
or delete data from the database. This persistent data may be managed in two ways resulting
in two types of entity beans: BMP (Bean Managed Persistence) and CMP (Container Managed
Persistence). An entity bean must implement the javax.ejb.EntityBean interface. Entity beans,
like session beans, are also transactional in nature and they can be shared among different clients.
 In container-managed persistence entity beans, persistence is automatically managed by the EJB
container. The bean developer instead of coding the persistence logic relies on the deployment
descriptor to specify attributes whose persistence needs to be managed by the container. The
container synchronizes the state of the bean with the database. In other words, it maps the
attributes of the bean to the database thus performing the insert, update, and delete operations
automatically.
 In the bean-managed persistence entity beans, the developer codes the logic to manipulate the
database. All interactions with the database take place according to the directions given by the
EJB container. The EJB container informs the entity bean when to perform an operation: when
to insert, update, or delete its data from the database.

Introduction to Advanced Java 615

Session Beans
Session beans contain business logic and are used for managing processes or tasks. A session
bean provides service to the client and it exists for the entire client server session. Unlike entity
beans which represent an entity into the database, a session bean does not represent anything into
the database. However, it can access the database. An entity bean has persistent state whereas
a session bean does not have a persistent state as it is used for modeling interactions between
clients and server. Session beans are aware about transactions. Instances of session beans are
not shared among clients. Unlike entity beans, session beans have a client-dependent identity.
A session beans has to implement the javax.ejb.SessionBean interface.
 Session beans, however, can be either stateful or stateless. A stateful session bean maintains
or retains state across interactions between client and server. A stateful bean is able to retain
state between successive calls from a client to a session bean. Therefore, a call can access data
from the previous method call. This state is not written to a database, so they are not persistent
but the session beans can communicate with the databases.
 Stateless session beans are those that do not maintain any state between client and the session
bean. A bean can be specifi ed as stateful or stateless in the bean’s deployment descriptor.

Message-driven Beans
Message-driven beans can be considered as a special kind of stateless session bean which can
receive messages from Java messaging service (JMS) and perform actions. They implement
business logic in response to JMS messages. MDB was introduced in EJB 2.0 specifi cations
and can be called only implicitly by sending messages to it. Every message-driven bean will
have to inherit the javax.ejb.MessageDrivenBean interface. Unlike the session and entity beans,
message-driven beans are asynchronous in nature. The clients in session and entity beans are
blocked (i.e., synchronous nature) until the container completes the execution of the bean
methods. During this execution, the (session/entity) bean is unable to accept any messages from
any messaging service. And hence EJB introduced the message-driven bean. A client needs to use
a messaging service like JMS in order to send messages to the MDB. The MDB are registered
against JMS destinations. When the messaging service receives the message for a destination,
the EJB container invokes MDB associated with that destination. Hence, it is a local object and
does not require home or remote interfaces.

16.9.2 EJB Architecture
Every human behaves differently at different places. For example, the way you behave/interact/
roam/sit in your home will be different from the way you behave or interact in your offi ce.
So simply you have two interfaces one for your home and other for outsider (Remote). EJB
architecture also specifi es two kinds of interfaces for session and entity beans: Home interface
(javax.ejb.EJBHome) and Remote interface (javax.ejb.EJBObject). The Home interface contains
methods for creating, fi nding, and destroying remote objects. The Remote interface contains
business methods that are exposed to the clients. The EJB container manages interaction between
the EJB and other components using the Home and the Remote interface. The local clients residing
on the same JVM as that of EJB use the Home interface for interacting with the EJB. Remote

616 Programming in Java

clients use the Remote interface to interact with the EJB through an application which is RMI and
IIOP complaint. EJB 2.0 specifi cations added local (javax.ejb.EJBLocalObject) and Localhome
(javax.ejb.EJBLocalHome)interfaces in addition to Remote and Home interface. So according to
EJB 2.0, Local and LocalHome interface is used by local client, i.e., clients on the same JVM
and Remote interface for clients outside the JVM. What Home interface does for a remote client,
LocalHome does the same for a local client and likewise for local and remote interfaces.

16.10 HELLO WORLD—EJB EXAMPLE

We will be creating a stateless session bean to demonstrate how EJB can be created and used. To
create this beans we will be using Eclipse Juno for Java Enterprise Edition and JBoss version 5
application server. As stated by EJB 2.0 specifi cations a session or entity bean will have remote,
home, local, and local home interfaces. Apart from this there will be a bean class and a client
to invoke the bean. The bean is deployed using deployment descriptors. All other activities are
taken care of by the EJB container. We will demonstrate the example with the snapshots of
Eclipse to show the creation of this bean and its associated interfaces.

EJB Container is used for managing the EJB objects and EJB homes for the beans. It also helps
in managing their resources and provides services to bean instances at run time. We are using
Jboss-5.1.0.GA-jdk6 application server which contains an EJB container. It can be unzipped in
a folder and used with Eclipse as shown in Fig. 16.33. (We have already added this server in
our eclipse that is why you are able to see JBossv5.0 at localhost [Stopped] in the Servertab
done. It has to be started before we run our EJB.)
 To add a server in Eclipse, click on the Server tab and right click in that tab. Go to the New
option, and you will be displayed an option: Server. Click on it to add a new server as shown in
Fig. 16.33(a).

Fig. 16.33(a) Adding a Server

Introduction to Advanced Java 617

 As you can see in Fig. 16.33(b), different versions of JBoss are displayed. You can choose a
version and proceed further. If the Demo EJB bean is created then it may also ask you to deploy
that bean after this step or else it can be done later as well.

Fig. 16.33(b) Adding a Server

 First of all, create an EJB Project in the project explorer window like DemoHello shown in
Fig. 16.34. (Do not forget to specify the EJB module version while creating EJB Project. We
are using version 2.0). Before writing our interfaces and bean classes we have to add libraries to
our EJB project. Right click on the DemoHello EJB project and click on BuildPath  Confi gure
Build Path. In the Libraries Tab, click on Add Library, choose server runtime and add the server
(i.e., JBoss in our case) you had earlier added to Eclipse.

Fig. 16.34(a)

618 Programming in Java

Fig. 16.34(b)

Fig. 16.34(c)

Introduction to Advanced Java 619

Fig. 16.34(d)

 Now we will create the Remote interface for our fi rst EJB to it. Right click on ejbModule
package that was created in the DemoHello folder in Project Explorer window, Go to New and
click on Interface. This interface will defi ne the business methods that clients can access. As you
can see, we are creating a Hello Enterprise bean. The method that client can call is defi ned here,
i.e., sayHello(). This interface should inherit the javax.ejb.EJBObject, which in turn inherits
the java.rmi.Remote. Figure 16.35 shows the snapshot of DemoRemote.java interface.

Fig. 16.35 Remote Interface for the Bean

620 Programming in Java

 Let us create the Home interface. This interface is responsible for defi ning the create method. This
interface should inherit the javax.ejb.EJBHome, which in turn inherits the java.rmi.Remote. Figure
16.36 shows a snapshot of the DemoHelloHome.java. The EJB container provides implementation
of the Home interface and creates Home objects for the bean. The references to these Home objects
can be obtained by the clients through JNDI. The client can send request to the home object to
create an EJB object (which inherits the Remote interface) and invoke the business methods. In
order to invoke the business methods, EJB object delegates the request to the enterprise bean
and the response is sent back to the client.

Fig. 16.36 Home Interface for the Bean

 As we will be accessing the bean remotely only, we do not require the local and localhome
interface but for your reference we have provided the code for these interfaces.
Local interface for the EJB is defi ned (similar to the DemoRemote interface). It inherits the
EJBLocalObject interface.
 package com.ejb;
 import javax.ejb.EJBLocalObject;
 public interface DemoHelloLocal extends EJBLocalObject
 {
 public String sayHello();
 }
LocalHome interface for the EJB (similar to the DemoHelloHome interface). The only thing that
changes is the return type of the sayHello method and it inherits the EJBLocalHome interface.
 package com.ejb;
 import javax.ejb.CreateException;
 import javax.ejb.EJBLocalHome;
 public interface DemoHelloLocalHome extends EJBLocalHome
 {
 public DemoHelloLocal create() throws CreateException;
 }
The Bean Class is defi ned to implement the bean’s business methods specifi ed in the remote
interface apart from some other methods according to the bean that we are creating, i.e., either
session or entity bean. As we are creating a session bean, this class should inherit the javax.
ejb.SessionBean interface. The following snapshot shows the DemoBean.java. The methods

Introduction to Advanced Java 621

that have been overridden are: ejbCreate(), ejbActivate(), ejbPassivate(), ejbRemove(), and
setSessionContext().Apart from these, the sayHello() method defi ned in the DemoRemote
interface is also overridden and implemented here. When the client calls the sayHello(), it is
this method that is executed and the contents are returned to the client. The following snapshot
in Fig. 16.37 shows the DemoBean.java class. A short description of the session bean method is
shown in Table 16.12.

Fig. 16.37 Bean Class

 In order to invoke EJB, we need a Remote client. This Remote client uses the JNDI, locate
the beans on the net. It provides a uniform API for performing naming and directory services.
The following snapshot in Fig. 16.38 shows the TestClient.java. Note that it has been created
in a separate directory. This client makes use of javax.naming.InitialContext class (inherits
the context interface) and it serves as a starting point for resolving names. This class is used by
the client for looking up the enterprise bean. The constructor of this class accepts Hashtable of
environmental properties. So a Hashtable object is instantiated and properties are put in it using
the put method. javax.naming.Context is an interface which represent naming context. Three
properties are set as shown in Table 16.13.

Table 16.12 Session Bean Method

ejbCreate Used for initializing your session.
ejbPassivate Called when the bean is swapped to disk.
ejbActivate Called when the bean is swapped back from disk.
ejbRemove Called before a bean is removed from memory.
setSessionContext A session context is associated with a bean which it can

use to query about its state.

622 Programming in Java

Fig. 16.38 Remote Client
Table 16.13 Properties of javax.naming.context

Context.INITIAL_CONTEXT_FACTORY Specifi es the initial context factory (directory services provider) to
be used for the bean. For example, org.jnp.interfaces.naming-
ContextFactory. Note that it has to be a fully qualifi ed name.

Context.URL_PKG_PREFIXES Specifi es the list of packages to use while loading context factories.
For example, org.jboss.naming:org.jnp.interfaces.

Context.PROVIDER_URL Specifi es the URL of the directory services, i.e., localhost in our
case.

 Deployment Descriptors specify information about how beans will be managed at runtime.
These descriptors are specifi ed in an xml fi le. The following xml fi le (as shown in Fig. 16.39)
shows ejb-jar.xml fi les which specify the name, remote, home interface, and the enterprise
bean class. The session bean as well as the transaction type is also specifi ed.

Fig. 16.39 ejb-jar.xml Deployment Descriptor File

Introduction to Advanced Java 623

Figure 16.40 shows another descriptor fi le, i.e., Jboss.xml which is specifi c to the container.
Please note that the ejb-name in the ejb-jar.xml and jboss.xml must match.

Fig. 16.40 jboss.xml Deployment Descriptor for the Container

 You are all set to run the EJB. Start your server and deploy the DemoHello to it as shown in
Figs 16.41 to 16.44.

Fig. 16.41 Deploy the Bean

Go to TestClient.java and right click on it and select Run As  Java application. Go to Console
tab besides the Server tab, to see the output (see Figs 16.43 and 16.44).

624 Programming in Java

Fig. 16.42 Add the Bean to the Server

Fig. 16.43 Run the Bean

Introduction to Advanced Java 625

Fig. 16.44 Output

SUMMARY
Core Java deals with basic programming constructs
and the classes needed for creating a standalone
application. Advanced Java deals with classes that
are used for creating Internet-based server-side
applications. In this chapter, we have learnt about some
of the concepts of advanced Java such as servlets,
JSP, JDBC, RMI, Java beans, and enterprise Java
beans. Servlets are used for generating responses
for clients, based on the requests received. JDBC
API deals with a variety of databases for storing and

manipulating data within them. Java RMI is the solution
for RPC, where a Java program on a remote machine
can be called from a Java client program. Basically,
RMI helps in distributed computing. A Java server page
is an easy solution to generate dynamic contents for
the client. Java beans helps in creation of reusable
software components which can be used by server
side technologies. EJB is a server side distributed
component architecture which is used for creating
enterprise wide server side applications.

EXERCISES

Objective Questions
 1. Which packages contain the JDBC API?
 (a) java.jdbc (b) java.sql
 (c) javax.jdbc (d) javax.sql
 2. Which class is used to establish a database

connection?
 (a) Class (b) DriverManager
 (c) Statement (d) ResultSet
 3. Which of the following is a precompiled state-

ment?
 (a) Statement
 (b) PreparedStatement

 (c) CallableStatement
 (d) Connection
 4. Which of the following is used for calling stored

procedures?
 (a) Statement
 (b) PreparedStatement
 (c) CallableStatement
 (d) Connection
 5. Which of the following methods return a connec-

tion object?
 (a) getConnection()
 (b) getConnection(String databaseURL)

626 Programming in Java

 (c) getConnect()
 (d) execute()
 6. RMI is communication between
 (a) Java program to Java program
 (b) Java to C
 (c) Java to any language
 (d) Java to C++
 7. What Servlet class is used for handling HTTP

requests?
 (a) ServletResponse
 (b) ServletRequest
 (c) HttpServlet
 (d) GenericServlet
 8. Which Servlet class is used for handling FTP

requests?

 (a) ServletResponse (b) ServletRequest
 (c) HttpServlet (d) GenericServlet

 9. Which method is used to extract cookies from a
request?

 (a) getCookies() (b) getData()
 (c) getHeaders() (d) getParameter()

 10. Which methods are used to extract all names/
value pairs from an http request?

 (a) getParameter() and getParameterValues()
 (b) getParameter() and getParameterNames()
 (c) getParameterNames() and getParameter-

Values()
 (d) getParameter() and getParameterValues()

Review Questions
 1. What is the difference between Statement,

PreparedStatement, and CallableStatement?
 2. Explain the different types of JDBC drivers.
 3. Explain the lifecycle of a servlet.
 4. Differentiate get and post requests.
 5. Explain the role of registry services in RMI.
 6. Explain the following:
 (a) Http redirects
 (b) Cookie
 (c) Stubs and skeletons
 (d) ResultSet
 (e) ResultSet metadata

 7. Explain all the steps used for establishing a
connection to a database.

 8. Explain how JSP is similar or different from
servlets.

 9. What is Jar fi le? How are they created?
 10. What is a Java Bean? Explain the various

properties of a bean.
 11. Explain the role of EJB with its different types.
 12. Explain the role of manifest fi le in a jar fi le.
 13. What are the JDBC transaction? Explain what

are the different ways of creating transactions
in JDBC.

 14. What are scrollable ResultSets?

Programming Exercises
 1. Write a program to connect to a database and

retrieve all the data. The database type (Access
or Oracle), driver name, database name, DSN,
etc. have to be fed by the user.

 2. Write a servlet program that fetches all the
data from client and stores it in a database
successfully.

 3. Write a remote calculator program that adds,
subtracts, multiplies, divides, and gives the
remainder as well. These operations should be
invoked remotely by a client method.

 4. Write a servlet that automatically redirects the
client to another page.

 5. Write a servlet that ensures authenticated users
have access to important pages. The user name
and password should be stored in a database
and whenever a user tries to access the servlet,
fi rst he/she is authenticated.

 6. Write a servlet to store the user’s browsing
preferences like color in a cookie and should be
displayed in that color.

 7. Rewrite the Programming Exercise 5 by using
JSP instead of servlets.

Introduction to Advanced Java 627

 8. Create a jar fi le which will store beans. This bean
should be able to read all form elements of HTML
page. (e.g. personal details of a user) and store
them into a database, through JSP.

 9. Create a GreatUser EJB which will greet the uses
based on time ‘for example’, Good Morning John,
Good AfterNoon John or Good Evening John,
etc.

Answers to Objective Questions
 1. (b), (d) 2. (b) 3. (b) 4. (c)
 5. (b) 6. (a) 7. (c) 8. (d)
 9. (a) 10. (c)

16.5 INTRODUCTION TO JAVA SERVER PAGES
Java server pages(JSP), in contrast to servlets, is basically a page that contains
embedded within html tags. Servlet is a Java program where html tags are embedd

16.6 JAVA BEANS

Java beans provides a standard format for writing Java classes. Java bean is a reusabl
component. Once it is designed and created, it can be used over and over again in man
applications as per their requirements. Java Beans can be used by IDE and other Jav
create new applications. The information of these beans is automatically discovere
manipulated without explicitly coding them again. A Java bean may be as simple as a
Java class which follows certain guidelines like:

16.3 SERVLETS
Servlets are Java server-side programs that accept client’s request (usually http reques
them and generate (usually http response) responses. The requests originate from cl
browser and are routed to a servlet located inside an appropriate webserver. Servle
within a servlet container which resides in a webserver like Apache Tomcat. The newwithin a servlet container which resides in a webserver like Apache Tomcat. The new16.8 REMOTE METHOD INVOCATION

Distributed computing allows parts of the system to be residing in separate machines
different places. It allows business logic and data to be accessed from remote location
anywhere by any one. RMI helps in accomplishing this by allowing objects runnin
machine to be accessed by the clients running in different machines.

Features of the Book

Programming Exercises
 1. Write a program to connect to a database and

retrieve all the data. The database type (Access
or Oracle), driver name, database name, DSN,
etc. have to be fed by the user.

 2. Write a servlet program that fetches all the
data from client and stores it in a database
successfully.

 4. Write a servlet that automatically redirects the
client to another page.

 5. Write a servlet that ensures authenticated users
have access to important pages. The user name
and password should be stored in a database
and whenever a user tries to access the servlet,

14.14 PRACTICAL PROBLEM: CITY MAP APPLET

CityMap

and stadium.

Example 14.18 CityMap.java

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class CityMap2 extends Applet
 {
 Button b1,b2,b3,b4,b5;

Review Questions
 1. What is the difference between Statement,

PreparedStatement, and CallableStatement?
 2. Explain the different types of JDBC drivers.
 3. Explain the lifecycle of a Servlet.
 4. Differentiate get and post requests.
 5. Explain the role of registry services in RMI.

 6. Explain the following:
 (a) Http Redirects
 (b) Cookie
 (c) Stubs and skeletons
 (d) ResultSet
 (e) ResultSet metadata
 7. Explain all the steps used for establishing a

connection to a database.

Practical program-
ming examples to
showcase how the
concepts discussed
in a particular chapter
are implemented in
practice

A variety of end-chapter
exercises that include
both subjective as well
as objective questions

Key notes in the text
highlight important
concepts

connection to a database.Objective Questions
 1. Which packages contain the JDBC API?
 (a) java.jdbc (b) java.sql
 (c) javax.jdbc (d) javax.sql
 2. Which class is used to establish a database

connection?
 (a) Class (b) DriverManager
 (c) Statement (d) ResultSet

 4. Which of the following is used for calling stored
procedures?

 (a) Statement
 (b) PreparedStatement
 (c) CallableStatement
 (d) Connection
 5. Which of the following methods return a Connec-

ti bj t?

Note Higher priority threads will always preempt the lower priority threa
how the priorities of threads set by the JVM are mapped to the
happen that a higher priority might not be considered higher by the
actually depends on the operating system and it varies from OS to

To compile a program: javac filename.java
To run a program: java classname

1. Introduction, Compiling, and Executing a Java Program
 class GreetUser
 {
 public static void main(String args[])
 {
 System.out.println("Hello, " +args[0] + " How are you today?");
 }
 }

Output
 C:\javabook\LabSyllabi> java GreetUser John
 Hello, John How are you today?

2. Program with Data Types and Variables
 class Test
 {
 public static void main(String[] args)
 {
 byte b1=2,b2=3;
 /* byte b3 = b1 + b2; Will not compile*/
 int b3 = b1 + b2; /* Will compile*/
 System.out.println("Addition of two byte variables is an int, Result= "+b3);
 int c = 66;
 System.out.println("Character at Ascii value: "+c+ " is " +(char)c);
 fl oat f = 4.28f;
 System.out.println("suffi x F or f for a fl oat variable "+f);
 double d = 1e308;
 System.out.println("double variable: "+ d);
 }
 }

Output
 C:\javabook\programs\LabSyllabi > java Test
 Addition of two byte variables is an int, Result= 5
 Character at Ascii value: 66 is B
 suffi x F or f for a fl oat variable 4.28
 double variable: 1.0E308

3. Program with Decision Control Structures: if, nested-if, etc
 class Distinct
 {

APPENDIX A: Lab Manual—Java Lab Exercises

Appendix A: Lab Manual—Java Lab Exercises 629

 public static void main(String args[])
 {
 int a=1,b=1,c=3;
 if((a == b) && (a == c))
 {
 System.out.println("No of distinct value = 0");
 }
 else if(((a == b) && (a != c))||((a == c) && (a != b)) || (b==c))
 {
 System.out.println("No of distinct value = 2");
 }
 else
 System.out.println("No of distinct value = 3");
 }
 }

Output
 C:\javabook\programs\LabSyllabi > java Distinct
 No of distinct value = 2

4. Program with Loop Control Structures: do, while, for, etc
 class Pattern
 {
 public static void main(String args[])
 {
 int k,l;
 h for(int i=0;i<7;i++)
 {
 /* A for loop for printing blank spaces. First time 7 blank
 spaces will be printed and henceforth the number of spaces
 will reduce by 1 in every iteration */

 for(int j=7;j>i;j--)
 System.out.print(" ");
 /* ASCII value of A is taken and based value of i the loop
 is executed to print the alphabets. First time the only A will
 be printed as the value of i is 0. Second time AB will
 be printed by this loop and soon. */

 for(k=65;k<=65+i;k++)
 System.out.print((char)(k));

 /*This loop prints the alphabets in reverse order*/
 for(l=k-1;l>65;l--)
 System.out.print((char)(l-1));

 System.out.println();
 }
 }
 }

630 Appendix A: Lab Manual—Java Lab Exercises

Output

If the last for loop is removed then the following output is displayed:

5. Program on Usage of switch-case and if Conditional Statements
 class Zodiac
 {
 public static void main(String args[])
 {
 int a,b;
 a = Integer.parseInt(args[0]);
 b = Integer.parseInt(args[1]);
 int z = 15;
 String
 z1[] = {"Capricorn","Aquarius","Pisces","Aries","Taurus","Gemini",

"Cancer","Leo","Virgo", "Libra","Scorpio","Sagittarius"};
 switch(a)
 {
 case 1:
 if((b < 20))
 {z = 0;}
 else if(b > 19 && b <= 31)
 {z = 1;}
 break;
 case 2:
 if(b < 18)

Appendix A: Lab Manual—Java Lab Exercises 631

 {z = 1;}
 else if(b > 17 && b < 30)
 {z = 2;}
 break;

 case 3:
 if(b < 20)
 {z = 2;}
 else if(b > 19 && b < 31)
 {z = 3;}
 break;

 case 4:
 if(b < 20)
 {z = 3;}
 else if(b > 19 && b < 30)
 {z = 4;}
 break;

 case 5:
 if(b < 21)
 {z = 4;}
 else if(b > 20 && b < 31)
 {z = 5;}
 break;

 case 6:
 if(b < 21)
 {z = 5;}
 else if(b > 20 && b < 30)
 {z = 6;}
 break;

 case 7:
 if(b < 23)
 {z = 6;}
 else if(b > 22 && b < 31)
 {z = 7;}
 break;

 case 8:
 if(b < 23)
 {z = 7;}
 else if(b > 22 && b < 31)
 {z = 8;}
 break;

 case 9:
 if(b < 23)
 {z = 8;}
 else if(b > 22 && b < 30)
 {z = 9;}
 break;

 case 10:
 if(b < 23)
 {z = 9;}
 else if(b > 22 && b < 31)
 {z = 10;}
 break;

632 Appendix A: Lab Manual—Java Lab Exercises

 case 11:
 if(b < 22)
 {z = 10;}
 else if(b > 21 && b < 30)
 {z = 11;}
 break;

 case 12:
 if(b < 22)
 {z = 11;}
 else if(b > 21 && b < 31)
 {z = 0;}
 break;

 default :
 System.out.println("Month is not valid");
 }
 if((z >= 0) && (z <= 11))
 System.out.println("Zodiac sign is: " + z1[z]);
 else
 System.out.println("Date is not valid");
 }
 }

Output
 C:\LABSYL~1 > java Zodiac 6 7
 Zodiac sign is: Gemini

 C:\LABSYL~1 > java Zodiac 12 23
 Zodiac sign is: Capricorn

 C:\LABSYL~1 > java Zodiac 30 35
 Month is not valid
 Date is not valid

6. Program with Classes and Objects
 class Rectangle
 {
 float Length, Width;
 Rectangle()
 {
 Length = 1.0f;
 Width = 1.0f;
 }
 void setLength(float a)
 {
 if((Length > 0) && (Length <= 20))
 Length = a;
 }
 void setWidth(float a)
 {
 if((Width > 0) && (Width <= 20))
 Width = a;
 }
 float getLength()

Appendix A: Lab Manual—Java Lab Exercises 633

 {
 return Length;
 }
 float getWidth()
 {
 return Width;
 }
 float perimeter()
 {
 float p;
 p = 2*(getLength() + getWidth());
 return p;
 }

 float area()
 {
 float p;
 p = getLength() * getWidth();
 return p;
 }
 }

 class Cal
 {
 public static void main(String args[])
 {
 Rectangle rr = new Rectangle();
 rr.setLength(15);
 rr.setWidth(15);
 System.out.println("Perimeter is:" + rr.perimeter());
 System.out.println("Area is:" + rr.area());
 }
 }

Output
 C:\LabSyllabi > java RectangleTest
 Perimeter is:60.0
 Area is:225.0

7. Copy Constructor and Constructor Overloading
 class CopyConDemo {
 int m;
 String n;

 public CopyConDemo (int m, String n) {
 this.m = m;
 this.n = n;
 }

 /*Copy constructor*/
 public CopyConDemo(CopyConDemo c) {
 this(c.getM(), c.getN());
 }

634 Appendix A: Lab Manual—Java Lab Exercises

 int getM() {
 return m;
 }

 void setM(int m){
 this.m = m;
 }
 void setN(String n){
 this.n = n;
 }

 String getN() {
 return n;
 }

 public static void main (String args[]){
 CopyConDemo c1 = new CopyConDemo(12, "Original");
 CopyConDemo c2 = new CopyConDemo(c1);
 c2.setN("First Copy");
 System.out.println("Original Object m = " + c1.getM() + "n = " + c1.getN());
 System.out.println("First Copy m = " + c2.getM() + "n = " + c2.getN());
 }
 }

Output
 C:\javabook\programs\LabSyllabi > java CopyConDemo
 Original Object m = 12 n = Original
 First Copy m = 12 n = First Copy

8. A Program on Function Overloading
 class MOverload{

 public void add(int a, int b)
 {
 int addition = a + b;
 System.out.println("addition of two numbers = " + addition);
 }

 void add(int a,int b,float c) {
 float addition = a + b + c;
 System.out.println("addition of three numbers = " + addition);
 }

 public static void main(String args[]) {
 MOverload o = new MOverload();
 double result;
 o.add(5,6);
 o.add(5,6,7.5f);
 }
 }

Appendix A: Lab Manual—Java Lab Exercises 635

Output
 C:\javabook\programs\LabSyllabi > java MOverload
 addition of two numbers = 11
 addition of three numbers = 18.5

9. Implementing Inheritance
 (a) Single inheritance

 class MotorVehicle
 {
 String modelName;
 int modelNumber;
 float modelPrice;
 MotorVehicle(String mname, int mnumber, float mprice)
 {
 modelName = mname;
 modelNumber = mnumber;
 modelPrice = mprice;
 }

 void display()
 {
 System.out.println("Model Name is : " + modelName);
 System.out.println("Model Number is : " + modelNumber);
 System.out.println("Model Price is : " + modelPrice);
 }
 }
 class Car extends MotorVehicle
 {
 int discountRate;
 Car(String mname, int mnumber, float mprice, int dr)
 {
 super(mname,mnumber,mprice);
 discountRate = dr;
 }
 //implementing Polymorphism: Method Overriding
 void display()
 {
 super.display();
 System.out.println("The discount rate is :" + discountRate);
 }
 void discount()
 {
 float discount = modelPrice * discountRate/100;
 float priceAfterDiscount = modelPrice - discount;
 System.out.println("The discount is : " + discount);
 System.out.println("The Price after discount rate is : " + priceAfterDiscount);
 }
 public static void main(String args[])
 {
 Car c = new Car("Mercedes E series",2000, 3200000f, 10);
 c.display();
 c.discount();
 }
 }

636 Appendix A: Lab Manual—Java Lab Exercises

Output
 C:\javabook\programs\LabSyllabi > java Car
 Model Name is : Mercedes E series
 Model Number is : 2000
 Model Price is : 32000 00.0
 The discount rate is : 10
 The discount is : 320000.0
 The Price after discount rate is : 2880000.0

 (b) Multiple inheritance

 Multiple inheritance is implemented in Java using interfaces.

 (c) Multilevel inheritance

 class A
 {
 int n;
 A(int n)
 {
 this.n = n;
 }
 void show()
 {
 System.out.println("class A variable n = " + n);
 }
 }

 class B extends A
 {
 B(int n)
 {
 super(n);
 }
 void show()
 {
 super.show();
 System.out.println("class B is a subclass of A");
 }
 }
 class C extends B
 {
 C(int n)
 {
 super(n);
 }
 void show()
 {
 super.show();
 System.out.println("class C is a subclass of B");
 }

 }

 final class D extends C
 {
 D(int n)
 {

Appendix A: Lab Manual—Java Lab Exercises 637

 super(n);
 }
 void show()
 {
 super.show();
 System.out.println("final class D is a subclass of C");
 }

 }
 class MultiLevelInheritanceTest
 {
 public static void main(String args[])
 {
 D d1 = new D(12);
 d1.show();
 }
 }

Output
 C:\javabook\programs\LabSyllabi > java MultiLevelInheritanceTest
 class A variable n = 12
 class B is a subclass of A
 class C is a subclass of B
 final class D is a subclass of C

 (d) Use of Abstract Classes
 abstract class Shape
 {
 abstract void numberOfSides();
 }

 class Trapezoid extends Shape
 {
 void numberOfSides()
 {
 System.out.println("The number of sides in a Trapezoid is four");
 }
 }
 class Triangle extends Shape
 {
 void numberOfSides()
 {
 System.out.println("The number of sides in a Traingle is three");
 }
 }
 class Hexagon extends Shape
 {
 void numberOfSides()
 {
 System.out.println("The number of sides in a Hexagon is six");
 }
 }
 class ShapeDemo
 {
 public static void main(String args[])
 {

638 Appendix A: Lab Manual—Java Lab Exercises

 Trapezoid tp = new Trapezoid();
 tp.numberOfSides();
 Traingle tr = new Traingle();
 tr.numberOfSides();
 Hexagon h = new Hexagon();
 h.numberOfSides();
 }
 }

Output
 C:\javabook\programs\LabSyllabi > java ShapeDemo
 The number of sides in a Trapezoid is four
 The number of sides in a Traingle is three
 The number of sides in a Hexagon is six

10. Implementing Interfaces
(a) Developing user-defi ned interfaces and implementation

 interface Calculator
 {
 public int add(int x,int y);
 public int sub(int x,int y);
 public int multiply(int x,int y);
 public int divide(int x,int y);
 public int remainder(int x,int y);
 }
 class CalculatorDemo implements Calculator
 {
 public int add(int x,int y)
 {
 return(x + y);
 }
 public int sub(int x,int y)
 {
 return(x-y);
 }
 public int multiply(int x,int y)
 {
 return(x * y);
 }
 public int divide(int x,int y)
 {
 return(x / y);
 }

 public int remainder(int x,int y)
 {
 return(x % y);
 }
 public static void main(String args[])
 {
 CalculatorDemo cd = new CalculatorDemo();
 System.out.println("ADD of two no is: " + cd.add(10,10));
 System.out.println("SUB of two no is: " + cd.sub(1,10));

Appendix A: Lab Manual—Java Lab Exercises 639

 System.out.println("MULTIPLICATION of two no is: " + cd.multiply(5,3));
 System.out.println("Divide of two no is: " + cd.divide(50,10));
 System.out.println("REMAINDER of two no is: " + cd.remainder(50,7));
 }
 }

Output
 C:\javabook\programs\LabSyllabi > java CalculatorDemo
 ADD of two no is: 20
 SUB of two no is: -9
 MULTIPLICATION of two no is: 15
 Divide of two no is: 5
 REMAINDER of two no is: 1

 (a) Use of predefi ned interfaces

 class ComparableTest implements Comparable < ComparableTest >
 {
 int no;
 ComparableTest(int n)
 {
 no = n;
 }
 public int compareTo(ComparableTest t)
 {
 return this.no-t.no;
 }
 public String toString()
 {
 return "Object: " + no;
 }
 }

 class Test
 {
 public static void main(String args[])
 {
 ComparableTest t1 = new ComparableTest(12);
 ComparableTest t2 = new ComparableTest(10);
 System.out.println("First object: " + t1);
 System.out.println("Second object: " + t2);
 if((t1.compareTo(t2)) > 0)
 System.out.println("First object is greater than second object");
 else if((t1.compareTo(t2)) < 0)
 System.out.println("second object is greater than first object");
 else
 System.out.println("both are equal");
 }
 }

Output
 C:\javabook\programs\LabSyllabi > java Test
 First object: Object: 12
 Second object: Object: 10
 First object is greater than second object

640 Appendix A: Lab Manual—Java Lab Exercises

11. Handling Strings
 class StringDemo
 {
 public static void main(String args[])
 {
 String s1 = "Java Programming";
 System.out.println("The String is : " + s1.toLowerCase());
 System.out.println("The String is : " + s1.toUpperCase());
 System.out.println("The length of String is : " + s1.length());
 System.out.println("The String starts with j:" + s1.startsWith("j"));

 System.out.println("The String ends with G: " + s1.endsWith("G"));
 System.out.println("The SubString starting from index 3 is:" + s1.substring(3));
 System.out.println("The SubString starting from index 3 till index 6 is: " +
 s1.substring(3,6));

 // converting boolean to String
 boolean b = true;
 String s2 = String.valueOf(b);
 System.out.println("The converted String is : " + s2);

 // converting char to String
 char c = 'a';
 s2 = String.valueOf(c);
 System.out.println("The converted String is : " + s2);
 // converting double to String
 double d = 2.4d;
 s2 = String.valueOf(d);
 System.out.println("The converted String is : " + s2);

 // converting int to String
 int i = 24;
 s2 = String.valueOf(i);
 System.out.println("The converted String is : " + s2);
 }
 }

Output
 C:\javabook\programs\LabSyllabi > java StringDemo
 The String is : java programming
 The String is : JAVA PROGRAMMING
 The length of String is : 16
 The String starts with j: false
 The String ends with G: false
 The SubString starting from index 3 is: a Programming
 The SubString starting from index 3 till index 6 is: a P
 The converted String is : true
 The converted String is : a
 The converted String is : 2.4
 The converted String is : 24

12. Implementing Packages
 package mypack;
 class Trignometry
 {
 static float sine(double degrees)

Appendix A: Lab Manual—Java Lab Exercises 641

 {
 double s;
 s = (Math.sin(Math.toRadians(degrees)));
 return (float)s;
 }

 static float cos(double degrees)
 {
 double s;
 s = (Math.cos(Math.toRadians(degrees)));
 return (float)s;
 }
 static float tan(double degrees)
 {
 double s;
 s = (Math.tan(Math.toRadians(degrees)));
 return (float)s;
 }

 static double cosec(double degrees)
 {
 double s;
 s = (Math.sin(Math.toRadians(degrees)));
 s = 1/s;
 return s;
 }

 static double sec(double degrees)
 {
 double s;
 s = (Math.cos(Math.toRadians(degrees)));
 s = 1/s;
 return s;
 }
 static double cot(double degrees)
 {
 double s;
 s = (Math.tan(Math.toRadians(degrees)));
 s = 1/s;
 return s;
 }

 public static void main(String args[])
 {
 Trignometry an = new Trignometry();
 System.out.println("Sin value of given angle in degree is:" + an.sine(30));
 System.out.println("Cos value of given angle in degree is:" + an.cos(30));
 System.out.println("Tan value of given angle in degree is:" + an.tan(30));
 System.out.println("Cosec value of given angle in degree is:" + an.cosec(30));
 System.out.println("Sec value of given angle in degree is:" + an.sec(30));
 System.out.println("Cot value of given angle in degree is:" + an.cot(30));
 }
 }

642 Appendix A: Lab Manual—Java Lab Exercises

Output
C:\LabSyllabi > java mypack.Trignometry
Sin value of given angle in degree is:0.5
Cos value of given angle in degree is:0.8660254
Tan value of given angle in degree is:0.57735026
Cosec value of given angle in degree is:2.0000000000000004
Sec value of given angle in degree is:1.1547005383792515
Cot value of given angle in degree is:1.7320508075688774

13. Implementing Wrapper Classes
 class WrapperDemo
 {
 public static void main(String args[])
 {
 // converting String to int
 int a = Integer.parseInt(args[0]);
 int b = Integer.parseInt(args[1]);
 System.out.println("Addition: " + (a + b));
 System.out.println("Concatenation: " + args[0] + args[1]);

 // converting int back to String
 String s1 = Integer.toString(a);
 String s2 = Integer.toString(b);
 System.out.println("Addition of String: " + s1 + s2);

 // converting int to Integer objects
 Integer i = Integer.valueOf(a);
 System.out.println("Integer Object: " + i);

 // converting Integer objects to int
 int value = i.intValue();
 System.out.println("Int value in Integer object i is : " + value);

 // some other methods of Integer Wrapper class
 System.out.println("long value in Integer object i is : " + i.doubleValue());

 System.out.println("double value in Integer object i is : " + i.longValue());

 System.out.println("float value in Integer object i is : " + i.floatValue());

 System.out.println("byte value in Integer object i is : " + i.byteValue());

 System.out.println("short value in Integer object i is : " + i.shortValue());
 }
 }

Output
 C:\javabook\programs\LabSyllabi > java WrapperDemo 20 10
 Addition: 30
 Concatenation: 2010
 Addition of String: 2010
 Integer Object: 20
 Int value in Integer object i is : 20
 long value in Integer object i is : 20.0

Appendix A: Lab Manual—Java Lab Exercises 643

 double value in Integer object i is : 20
 float value in Integer object i is : 20.0
 byte value in Integer object i is : 20
 short value in Integer object i is : 20

14. Exception Handling Mechanism in Java
 (a) Handling predefi ned exceptions

 class PredefinedExceptionDemo
 {
 void show()
 {
 System.out.println("In Show");
 }
 public static void main(String args[])
 {
 try
 {
 // object not created and trying to call an instance method
 PredefinedExceptionDemo d = null;
 d.show();
 }
 catch(NullPointerException n)
 {
 System.out.println(n);
 }
 }
 }

Output
 C:\LabSyllabi > java PredefinedExceptionDemo
 java.lang.NullPointerException

 (b) Handling user-defi ned exceptions
 package finance;
 class Money
 {
 int paisa,rupees;
 Money(int c,int d)
 {
 if(d > 0 && d <= 99)
 {
 paisa = d;
 }
 else
 {
 System.out.println("Paisa values cannot be greater than 100");
 System.exit(0);
 }
 rupees = c;
 }
 public String toString()

644 Appendix A: Lab Manual—Java Lab Exercises

 {
 return ("Rupees = " + rupees + " Paisa = " + paisa);
 }
 void addition(Money a2) throws MoneyOverflowException
 {
 int r = 0;
 int p = paisa + a2.paisa;
 if(p >= 100)
 {
 p = p –100;
 r + = 1;
 }
 r + = rupees + a2.rupees;
 if(r > 100000)
 {
 throw new MoneyOverflowException("From Addition Method");
 }
 System.out.println("After Addition ::");
 System.out.println("Rupees = " + r + " \t" + "Paisa = " + p);
 }

 // Money Cannot be negative
 void subtract(Money a2)
 {
 int p = 0,r = 0;
 if(rupees <= a2.rupees)
 {
 System.out.println("Money cannot be negative");
 }
 else
 {
 if(paisa > a2.paisa)
 {
 p = paisa–a2.paisa;
 r = rupees–a2.rupees;
 System.out.println("After Subtraction ::");
 System.out.println("Rupees = " + r + " \t" + " Paisa = " + p);
 }
 else
 {
 p = paisa + 100 – a2.paisa;
 r = rupees – 1 – a2.rupees;
 System.out.println("After Subtraction ::");
 System.out.println("Rupees = " + r + " \t" + " Paisa = " + p);
 }
 }
 }

 float getRupees()
 {
 return rupees;
 }
 float getPaisa()
 {
 return paisa;
 }

Appendix A: Lab Manual—Java Lab Exercises 645

 public static void main(String args[])
 {
 int n1 = Integer.parseInt(args[0]);
 int n2 = Integer.parseInt(args[1]);
 int n3 = Integer.parseInt(args[2]);
 int n4 = Integer.parseInt(args[3]);

 Money m1 = new Money(n1,n2);
 Money m2 = new Money(n3,n4);

 System.out.println(m1);
 System.out.println("Rupees = " + m1.getRupees());
 System.out.println("Paisa = " + m1.getPaisa());

 System.out.println(m2);
 System.out.println("Rupees = " + m2.getRupees());
 System.out.println("Paisa = " + m2.getPaisa());
 System.out.println();

 try{
 m1.addition(m2);
 }catch(MoneyOverflowException e){System.out.println(e);}
 m1.subtract(m2);
 }
 }

 class MoneyOverflowException extends Exception
 {
 String desc;
 MoneyOverflowException(String n)
 {
 desc = n;
 }
 public String toString()
 {
 return "MoneyOverflowException generated: " + desc;
 }
 }

Output
 D:\>java finance.Money 24 23 20 45

 Rupees = 24 Paisa = 23
 Rupees = 24.0
 Paisa = 23.0
 Rupees = 20 Paisa = 45
 Rupees = 20.0
 Paisa = 45.0

 After Addition ::
 Rupees = 44 Paisa = 68
 After Subtraction ::
 Rupees = 3 Paisa = 78

 D:\>java fi nance.Money 28 23 24 23
 Rupees = 28 Paisa = 23
 Rupees = 28.0
 Paisa = 23.0
 Rupees = 24 Paisa = 23

646 Appendix A: Lab Manual—Java Lab Exercises

 Rupees = 24.0
 Paisa = 23.0

 After Addition ::
 Rupees = 52 Paisa = 46
 After Subtraction ::
 Rupees = 4 Paisa = 0

15. Concept of Threading
 (a) Creation of thread in Java applications
 class RunThread implements Runnable
 {
 Thread t;
 RunThread()
 {
 t = new Thread(this,"DemoThread");
 t.start();
 t.setPriority(3);
 }
 public void run()
 {
 for(int i = 0;i < 5;i++)
 {
 try {
 System.out.println("Child Thread : " + Thread.currentThread().getName() + " Priority: "

+ t.getPriority());
 Thread.sleep(1000);
 }
 catch(InterruptedException e)
 {
 System.out.println(e);
 }
 }
 }
 }
 class TestPriority
 {
 public static void main(String args[])
 {
 new RunThread();
 for(int i = 0;i < 5;i++)
 System.out.println("Parent Thread: " + Thread.currentThread().getName() + "Priority:"

+ Thread.currentThread().getPriority());
 }
 }

Output
 Parent Thread: mainPriority:5
 Parent Thread: mainPriority:5
 Parent Thread: mainPriority:5
 Parent Thread: mainPriority:5
 Parent Thread: mainPriority:5
 Child Thread : DemoThreadPriority: 3
 Child Thread : DemoThreadPriority: 3
 Child Thread : DemoThreadPriority: 3
 Child Thread : DemoThreadPriority: 3
 Child Thread : DemoThreadPriority: 3

Appendix A: Lab Manual—Java Lab Exercises 647

 (b) Multithreading
 /* A simple withdraw and deposit threaded program*/
 class Deposit
 {
 int money = 0;
 synchronized void submit()
 {
 try{
 Thread.sleep(1000);
 }catch(Exception e) {}
 money = money+100000;
 System.out.println(“Amount Has been deposited. . .”+money);
 fl ag=0;
 notifyAll();
 }
 synchronized int withdraw(int a)
 {
 try{
 System.out.println(“wait for amount to be withdrawn”);
 wait(1000);
 money = money-a;
 }
 catch(Exception e) {}
 notifyAll();
 return money;
 }
 }
 class Thread1 extends Thread
 {
 Deposit s;
 Thread1(Deposit s,String str)
 {
 super(str);
 this.s = s;
 start();
 }
 public void run()
 {
 int amount = s.withdraw(3000);
 System.out.println(“Amount has been submitted and can be withdrawn: “ + amount);
 }
 }
 class Thread2 extends Thread
 {
 Deposit s;
 Thread2(Deposit s,String str)
 {
 super(str);
 this.s = s;
 start();
 }
 public void run()
 {
 s.submit();
 }
 }

648 Appendix A: Lab Manual—Java Lab Exercises

 class TestDeposit
 {
 public static void main(String s[])
 {
 Deposit st = new Deposit();
 Thread1 withdrawThread1 = new Thread1(st,”One”);
 Thread2 submitThread1 = new Thread2(st,”Two”);
 Thread1 withdrawThread2 = new Thread1(st,”Three”);
 Thread2 submitThread2 = new Thread2(st,”Four”);
 }
 }

Output
 D:\javabook\appendixa>java TestDeposit
 wait for amount to be withdrawn
 Amount Has been deposited. . .100000
 wait for amount to be withdrawn
 Amount has been submitted and can be withdrawn: 97000
 Amount Has been deposited. . .197000
 Amount has been submitted and can be withdrawn: 194000

16. Working with Files
 import java.io.*;
 class Copy
 {
 public static void main(String args[])
 {
 Console cn = System.console();
 String file1,file2;
 System.out.println("Enter the file name to be copied:");
 file1 = cn.readLine();
 System.out.println("Enter the new file name:");
 file2 = cn.readLine();
 try{
 FileInputStream fis = new FileInputStream(file1);
 int n = fis.available();
 FileOutputStream fos = new FileOutputStream(file2,true);
 for(int i = 0;i < n;i++)
 {
 fos.write(fis.read());
 }
 fis.close();
 fos.close();
 }
 catch(FileNotFoundException e)
 {
 System.out.println("FILE not found:" + file1);
 }
 catch(IOException e)
 {
 System.out.println("I/O error:" + e);
 }
 }
 }

Output
 C:\javabook\programs\LABSYL~1 > java Copy
 Enter the file name to be copied:

Appendix A: Lab Manual—Java Lab Exercises 649

 TestDeposit.java
 Enter the new file name:
 Test2.java

17. Implementing Generics
 import java.util.*;
 class A
 {
 public String toString(){return "Class A Object";}
 }
 class B
 { public String toString(){return "Class B object";}

 }
 class DemoGeneric
 {
 public static void main(String args[])
 {
 List < A > v = new ArrayList < A > ();
 List < B > v1 = new ArrayList < B > ();
 v.add(new A());
 v.add(new A());
 // The below statement would raise an error
 // v.add(new B());

 v1.add(new B());
 v1.add(new B());
 // The below statement would raise an error
 //v1.add(new A());

 Iterator en = v.iterator();
 while(en.hasNext())
 {
 Object o = en.next();
 System.out.println(o);
 }

 en = v1.iterator();
 while(en.hasNext())
 {
 Object o = en.next();
 System.out.println(o);
 }
 }
 }

Output
 C:\javabook\programs\LABSYL~1 > java DemoGeneric
 Class A Object
 Class A Object
 Class B object
 Class B object

 1. What is the difference between an interface and
an abstract class?

 An abstract class can have concrete methods (that
depict default behaviour) as well as abstract (no
implementation) instance methods. An interface
can only declare constants and methods, but cannot
provide implementation of the methods. In other
words, all the methods in the interface are implicitly
abstract. In an interface, all members are public
with no implementation. Refer Table 6.1 for all
differences.

 2. What is the purpose of garbage collection in
Java?

 Garbage collection is used to identify and discard
objects that are no longer needed by a program. The
resources (e.g., memory) allocated to an object can
be reclaimed when all references to it are null.

 3. What are pass by reference and pass by value?
 In pass by reference, the addresses of the variables

are passed rather than their value. Pass by value
means a copy of the value is passed whereas in pass
by reference no copy is created. The actual variable
is referenced.

 4. Describe thread synchronization.
 Thread synchronization is used to maintain

consistency of data by preventing concurrent
access of shared resources by multiple threads.
A thread can modify a shared resource (variable
or data structure) while another thread is using or
modifying the same shared structure.

 5. What are the different ways of creating threads
in Java?

 Inherit the runnable interface or thread class.
 6. What is cloning?
 Cloning is basically making a copy of an existing

object.
 7. What is the difference between a vector and an

ArrayList?
 Vector class is synchronized, whereas ArrayList

class is not synchronized.

 8. What is the difference between a constructor
and a method?

 A constructor is a special member function of a
class that is used to initialize the objects. It has the
same name as that of the class, without any return
type, and is invoked using the new operator. For
example,

class Demo
{
 Demo(){} // constructor
}

 A method is an ordinary member function of a class.
It has a name (although not recommended but can
be same as that of the class), a return type (which
may be void) and are invoked using the dot operator.

 For example,

 public void add(int a, int b)

 It is invoked as shown below:

objectName.add(4,5) // for instance method
Classname.add(4,5) // for static methods

 9. Explain the keyword ‘static’ in Java.
 Static members can accessed without creating an

instance of a class. Static cannot be overridden
because they are attached to a class, not an object.
However, a static method can be shadowed by
another static method in a subclass.

 10. Explain the keyword ‘fi nal’ in Java.
 The keyword ‘fi nal’ can be used at three levels:

class, method, and variable. A fi nal class cannot
be inherited, i.e., they cannot be sub classed. Final
method cannot be overridden and you cannot
change the value of a fi nal variable (it is a constant).

 11. What are the different types of cloning objects?
 The different types of cloning objects are deep and

shallow copying.
 12. What will happen if the static modifier is

removed from the main method?
 This method becomes a normal method of the

class and not the main method which is desired by
the JVM to execute the method. So the program
compiles, but shows a runtime error.

APPENDIX B: Interview Questions

Appendix B: Interview Questions 651

 13. What is observer and observable in Java?
 The observer interface and observable class is

based on the observer pattern. This pattern states
that a particular object (i.e., observer) should be
notified when the state of another object (i.e.,
observable object) changes. In other words, the
observer observes the state of another object and
wants itself to be notifi ed about any changes in
that object and the observable object is the one in
which the observer is interested in. For example,
you (observer) are notifi ed about the transaction
updates of your bank account (observable), as
soon as the data (observable) related to the pie
chart or bar chart is updated the graphs (observer)
automatically adjust to the changes and so on.

 14. What is automatic resource management?
 The applications use many resources during their

lifetime by creating their objects, for example,
creating a data base connection for accessing/
updating databases, or creating file objects
for working with files, or creating sockets for
transmission/receiving of data, etc. A common
mistake committed by programmers is that they
often do not close/release the resources occupied by
the programs, after their task is complete. This leads
to many orphaned instances, ineffi cient memory
allocation and garbage collection. Hence, the need
for automatic resource management arises.

 15. How is automatic resource management done in
Java?

 Using try with resources statement

try (resources to be used and automati-
cally released)
{
 // statements within the block
}

 For example,

try (abc a = new abc(); pqr p = new pqr())
{
 // statements within the block
}

 16. Is it possible for an application to have multiple
classes with main method?

 Yes, it is possible.
 17. Is it possible to have multiple main methods in

the same class?
 Yes, but with different signatures (i.e., method

overloading).

 18. What is MVC?
 MVC stands for Model View Controller. The

model object manages the behavior and data of
the application, view takes care of the graphical
or textual representation and controller is used to
interpret the user commands. The model responds
to user requests from the controller by changing its
state which is presented to the user through view.

 19. What is early binding?
 Binding is the process of connecting a method call

to its body. When binding is performed before a
program is executed, it is called early binding.

 20. What is overriding?
 The term overriding means having the same method

name, same signature, one in superclass and other
in subclass.

 21. Can we defi ne a top level class as private or
protected?

 No, a top level class cannot be private or protected,
only public or default access is allowed.

 22. What is runtime class used for?
 The runtime class is used to know the information

about free memory and total memory and is also
used for executing additional processes.

 23. What is refl ection API?
 The refl ection API is used to obtain information

about the class with its various characteristics
like attributes, constructors, methods, packages,
modifi ers (public, private, etc.), interfaces, arrays,
exceptions, and generic types at runtime. It can also
be used to instantiate new objects, call methods,
know about the setter/getter methods of a class and
get or set fi elds. Java refl ection API is available
through java.lang.refl ect package.

 24. How are objects passed in Java—by value or by
reference?

 Java only supports pass by value. So when objects
are passed as arguments in a method, the object
references are assigned to the formal parameters.

 25. What is serialization and deserializaton?
 Serialization is a mechanism by which you can

convert the state of an object into byte stream and
deserialization is the reverse of this process.

 26. What is a socket?
 Sockets are created at both ends of communication,

i.e., at the client as well as the server. Socket is
defi ned by three things: IP Address, port, and the
protocol to be used for communication. IP address
is the unique address assigned to every machine on
the network and port is a unique logical number on

652 Appendix B: Interview Questions

that IP address used for identifying the applications
running on that particular machine. IP address exists
on network layer and port numbers on the transport
layer of the TCP/IP protocol suite. TCP clients are
created with the help of java.net.Socket class and
server with the help of java.net.ServerSocket
class. UDP socket are created using java.net.
DatagramSocket class.

 27. What are wrapper classes?
 Java provides special classes in the java.lang

package which encapsulate the primitive data
types. These are called wrapper classes. They are as
follows: Byte, Short, Integer, Long, Double,
Float, Character, and Boolean.

 28. What is the difference between an error and an
exception?

 An error is an irrecoverable condition which
occurs at runtime, for example, OutOfMemory
error. While exceptions are conditions that occur
because of programming mistakes or bad input,
for example, FileNotFoundException will be
thrown if the specifi ed fi le does not exist or a
NullPointerException will take place if you try
to use a null reference. In most of the cases it is
possible to recover from an exception.

 29. Is it necessary that each try block must be
followed by a catch block?

 No, it is not necessary. try block can be followed
by either a catch block or a fi nally block.

 30. Overloaded methods follow early binding.
Explain.

 When multiple methods with the same name exist
within a class (i.e., case of method overloading)
which method will be executed depends upon the
argument (number, type or order of arguments)
passed to the method. So, this binding can be
resolved by the compiler (at compile time) and
hence overloaded methods follow early binding.

 31. What is a URL?
 URL stands for uniform resource locator. It is a

standard way of locating resources on the Internet,
for example, www.yahoo.com. A URL has some
basic parts:

 (a) Protocol name: http / fi le / mailto, etc.
 (b) Host: www.yahoo.com.
 (c) Port: this is an optional attribute specifi ed

after the host name, for example, www.
yahoo.com:80.

 (d) File: name of the fi le to be accessed, e.g.,
www.yahoo.com/index.html.

 (e) Reference: name of named reference within
the page (i.e., cs), for example, www.yahoo.
com/index.html#cs.

 32. What are anonymous classes?
 An anonymous inner class is a local class that has no

name. They are extensively used in event handling.
 33. What is shadowing?
 Shadowing of fi elds occurs when variable names

are same. It may occur when local variables and
instance variable names collide within a class or
variable names in a superclass and subclass are
same. In case of methods, instance methods are
overridden whereas static methods are shadowed.
The difference between the two is important
because shadowed methods are bound early
whereas instance methods are dynamically (late)
binded.

 34. What is dynamic binding?
 Objects exist at runtime, and hence late binding is

done by the JVM at runtime for resolving which
method will be executed. It is also known as
dynamic binding or runtime binding.

 35. What are nested classes?
 Nested class is a class with a class. Nested classes

are of the following types:
  Non-static inner classes
  Static nested classes
  Local classes
  Anonymous classes
 36. What is a non-static inner class?
 A non-static inner class is a member of the outer

class declared outside the functions within a class.
The non-static inner class is bound to the instance
of the enclosing class and has access to all the
members of the enclosing class even the parent’s
this reference and private.

 37. What are binary literals?
 Binary literals are a combination of 0’s and 1’s.

Java 7 onwards, you can assign binary literals to
variables. Binary literals must be prefi xed with 0b
or 0B (zerob or zeroB). For example,

char bin1 = 0b1010000; // value in
bin1 will be P

 38. What is transient variable?
 Transient variables are those variables which are

not serialized.
 39. Overridden methods follow late binding.

Explain.

Appendix B: Interview Questions 653

 When a method with the same name and signature
exists in superclass as well as sub class (i.e., a
case of method overriding) which method will be
executed (superclass version or subclass version)
will be determined by the type of object from which
it has been called and so it cannot be done by the
compiler. Hence, it is done at runtime and that is
why these methods are late bound by the runtime
environment.

 40. What is a static nested class?
 A static nested class is a static member of a class just

like normal static members of any class. They have
access to all static methods of the enclosing parent
class. The static nested classes cannot directly refer
to instance variables and method of the outer class,
similar to static parts of any class. They can only
do it through an object of the outer class. Unlike
the inner classes, the static nested classes can have
static members.

 41. Which method is used to get and set the label
displayed on a button object?

 setLabel(String txt) –for setting label
 and

 getLabel() — for getting the label

 42. What is the difference between Scrollbar and
ScrollPane?

 ScrollPane is a container whereas Scrollbar is a
component.

 43. What is the difference between String and
StringBuffer?

 String is immutable whereas StringBuffer is
mutable.

 44. Which operators are known as short-circuit
operators?

 && and || are known as short-circuit operators.
 45. Which abstract class is the superclass of all

classes used for writing characters?
 Writer class is the superclass of all classes used

for writing characters.
 46. What is the name of the exception thrown by the

read method defi ned in InputStream class?
 IOException.
 47. What is the name of the class that allows reading

of Java primitives from an input byte stream?
 DataInputStream.
 48. Name the parent of all the classes in Java.
 Object class.

 49. Which abstract class is the superclass of all
classes used for reading bytes?

 InputStream is the superclass of all classes used
for reading bytes.

 50. What is the name of the collection interface that
is used to maintain unique elements?

 Set.
 51. What is scrollable result set?
 The ResultSet, before JDBC 2.1, could be scrolled

in forward direction only. JDBC 2.1 introduced
the concept of moving the cursor in backward
direction also. You can even position the cursor of
a ResultSet object on a specifi c row.

 52. What is a transaction?
 A transaction is a set of statements that if

executed should complete in entirety. If any of the
statement fails to execute in a transaction, the entire
transaction should be rolled back.

 53. What is auto commit?
 Auto commit feature commits the changes made by

SQL statements to the database and is by default set
to true. It can be set using the following method of
the connection object.

 con.setAutoCommit(false);
 54. What is a servlet?
 Servlets are Java server-side programs that accept

client’s request (usually http request), process them
and generate (usually http response) responses. The
requests originate from the client’s web browser and
are routed to a servlet located inside an appropriate
web server. Servlets execute within a servlet
container which resides in a web server like Apache
Tomcat.

 55. What is lifecycle of a servlet?
 The init() method is called only once during the

lifetime of an applet. One time initializations are
done in this method.

 The service method is used for processing the
client’s request and generating responses. The
request may be forwarded by service method
to doGet() or doPost() depending upon the http
request. If it is a get request, doGet() will be called
and if it is a post request, doPost() will be called.
The service method is capable of handling both
types of requests (get and post).

 The destroy method is called by the servlet
container before the servlet is unloaded. So clean-
up activities like closing the database connections
can be done in this method.

654 Appendix B: Interview Questions

 56. What common http methods are used to send
data from http client to a web server?

 The client’s data is sent to the server from the
client’s browser via two methods of http protocols:
get and post.

 57. What are the drawbacks of using get method for
sending data to the server?

 The get method appends data to the URL (of the
servlet handling the request) and passes it to the
server. The drawbacks of this approach are:

  The URLs are of fi xed size and it puts a
restriction on the amount of data that can be
transmitted to the server.

  Moreover, whatever data is sent to the server
is visible in clear text.

 58. What is a cookie?
 Cookies are basically small pieces of information

stored on the client’s machine by the browser. A
cookie contains information like user browsing
preferences, user id and password combinations,
session id, and number of times a user has visited a
page. This information is stored in pairs, i.e., name-
value pairs. This information wrapped in a cookie
object is sent to the client browser by a servlet,
which stores it somewhere in its temporary Internet
fi les. Whenever a request is sent to that particular
server (from where cookie was downloaded), all
the cookies (stored in the client’s machine from that
very server) are attached to the http request and sent
to the server. The server can then fetch the cookies
from the request and then act accordingly.

 59. What is a session?
 A session is used to track the user between

successive requests from the same client to same
server. A session is a kind of conversation between
the server and a client. A conversation is a series of
continuous requests and responses.

 60. What is JSP?
 JSP stands for Java server pages. JSP, in contrast

to servlets, is basically a page that contains Java
code embedded within html tags. Servlet is a Java
program where html tags are embedded in Java
code or html responses are generated through Java.
JSP fi les have an extension .jsp and they execute
within a JSP container present in the web server.
This container actually translates the .jsp into an
equivalent servlet. In other words, JSP is a servlet
in the background.

 61. What is the difference between a JSP and a
servlet?

 JSP offers a signifi cant advantage over servlet. JSP
is embedded in html with some special delimiters
which look like tags. So it is easy to learn. To
work with a servlet you need to learn Java and its
programming styles which is not the case in JSP.
Moreover, JSP pages are automatically recompiled
when required, which is not the case with servlets.
Servlet have to be recompiled in case they are
changed. So as soon as you refresh your JSP page,
changes made to it are refl ected.

 62. What is JavaBeans?
 JavaBeans provides a standard format for writing

Java classes. Java bean is reusable software
component. Once it is designed and created, it
can be used over and over again in many different
applications as per their requirements. Java beans
can be used by IDE and other Java API’s to create
new applications.

 63. What is a Jar fi le?
 JAR stands for Java archive. It is similar to a ZIP

fi le. A JAR tool is provided with Java development
kit (JDK) to perform basic tasks with JAR fi les.

 64. What is a manifest fi le?
 Manifest fi le (.mf) is a special fi le that can contain

information about the fi les contained in a JAR fi le.
A manifest fi le could be used to tell which classes
in the JAR are bean classes, or which is the main
class (starting point) in the JAR, etc.

 65. What is EJB?
 EJB is a server side distributed component of the

J2EE architecture that primarily provides business
logic besides interacting with other server side
components. EJB developers need to focus only
on coding business logic leaving the system level
services to be handled by EJB server which include
multiple threading, object pool, security, instance
management, connection pooling, transactions, etc.
EJB is based on the concept that in a distributed
computing environment, database-related logic
should be independent of the business logic that
relies on the data.

 66. What are the different types of EJB?
 As per EJB 2.0 specifi cation: session, entity, and

message-driven bean.
 67. What is autoboxing and unboxing?
 Java 5.0 introduced a new feature for converting back

and forth between a wrapper and its corresponding

Appendix B: Interview Questions 655

primitive. The conversion from primitives to
wrappers objects is known as boxing, while the
reverse is known as unboxing.

 68. What is Enum type?
 An enumerated type (enum type) is a kind of class

defi nition, wherein we defi ne the type along with the
possible set of enum values which are listed in the
curly braces, separated by commas. All enum types
are the subclasses of the java.lang.Enumclass.
Each value in an enum is an identifi er.

 69. What is an assertion?
 Assertions were added in Java 1.4 to create reliable

programs that are correct and robust. Assertions are
boolean expressions that are used to test/validate
the code. They are basically used during testing
and development phases. Assertions are used by the
programmers to be doubly sure about a particular
condition, which they feel to be true. If you expect
a number to be positive, negative, array/reference
is not null, etc. then you can check these conditions
by asserting them. Assertions in Java are declared
with the help of assert keyword as shown below:

 assert expression1; // assert x
 > 0;

 70. What is a monitor?
 Monitor is an object that is used as a mutually

exclusive lock on the resource to be accessed. A
monitor can be owned by only one thread at a time.
A thread enters the monitor as soon as it acquires the
lock. All the other threads cannot enter the locked
monitor, unless it is unlocked or the fi rst thread exits
the monitor. During this period, other threads are
waiting for the lock on the monitor. If a thread exits
the monitor, it can again enter the same monitor at
some later stage.

 71. Which class was introduced in Java 6 for reading
user input?

 java.io.Console.

 72. Java 7 onwards, what values can be passed in a
switch in a switch…case statement?

 int, byte, short, char, enum type, String
or (one of the four) wrapper classes. It can also
be an expression that returns an int, byte, short,
char or String.

 73. Name the heavyweight classes in javax.swing
package.

 JFrame, JApplet, JDialog, and JWindow.
 74. What are the differences between AWT and

swing?

AWT SWING
Heavyweight Lightweight

Look and feel is OS based Look and feel is OS
independent

Not pure Java-based Pure Java-based
Platform specifi c limitation
for some components

Fewer platform limitation
for components

Faster Slower
Applet portability: mostly
web browser supports for
applet

Applet portability: A plug-in
is required

Does not support features
like icons and tool-tips

Supports features like icons
and tool-tips

 75. What is pluggable look and feel?
 Java provides pluggable look and feel. You can

change the look and feel of the GUI displayed to the
user. The look and feel is provided by the following
packages and their sub-packages:

 javax.swing.plaf
 javax.swing.plaf.basic
 javax.swing.plaf.metal
 javax.swing.plaf.multi
 javax.swing.plaf.synth
 javax.swing.plaf.nimbus (intro
 duced in Java 6 update 10)

 76. Is there a join in Java?
 join() method exists for threads in Java. The

purpose of a join method is to wait for a thread (on
which it has been invoked) to fi nish.

 77. Is it necessary to apply public privileges on a
method that is overridden from an interface?

 Yes, because the methods in an interface are
implicitly public.

 78. What is basic purpose of throw keyword?
 throw keyword is used to throw an exception. For

example,

 throw new MyException();

 79. What is the basic purpose of the keyword
throws?

 throw is added to the method signature to let the
caller know about what exceptions the called
method can throw. It is the responsibility of the
caller to either handle the exception (using try…
catch mechanism) or it can also pass the exception
(by specifying throws clause in its method
declaration). If all the methods in a program pass
the exception to their callers (including main()),

656 Appendix B: Interview Questions

then ultimately the exception passes to the default
exception handler.

 80. What is platform independence?
 Platform independence means that a Java compiled

code can run on any platform provided the Java
runtime environment exits on that platform.

 81. What is an applet?
 Applet is the Java program meant to be embedded

in a webpage.
 82. What is the purpose of repaint method?
 repaint() method is used to paint the applet again.

In other word, it invokes a call to the paint method
of the applet on an event.

 83. What is a class?
 Class is a collection of object with similar attributes

and behavior. It is also defi ned as a new or user
defi ned data type.

 84. What is an object?
 Objects are instances of a class.
 85. What is abstraction?
 In programming, we manage complexity by

concentrating only on the essential characteristics
and suppressing implementation details. Abstraction
focuses on the essential characteristics rather than
the details.

 86. What is encapsulation?
 The process of binding the data procedures into

objects to hide them from the outside world is
called as encapsulation. It provides us the power
to restrict anyone from directly altering our data.
Encapsulation is also known as data hiding.

 87. What is the basic purpose of fi nalize method?
 Before an object gets garbage collected, the garbage

collector gives the object an opportunity to clean
up itself through a call to the object’s fi nalize()
method. This process is known as fi nalization. All
occupied resources (sockets, fi les, etc.) can be freed
in this method. The fi nalize() method is a member
function of the predefi ned java.lang.Object class.
A class must override this method to perform any
clean up if required by the object.

 88. What is polymorphism?
 Poly means many and morph means forms. So

basically it means more than one implementations.
One name many implementations is the key idea
behind polymorphism.

 89. What are the various ways of achieving poly-
morphism in Java?

 Method overloading, method overriding, and
constructor overloading are the various ways of
achieving polymorphism in Java.

 90. What are checked and unchecked exceptions?
 Checked exceptions are monitored by the compiler

whether you have handled them in your program or
not. Unchecked exceptions (or runtime exceptions)
are not checked by the compiler.

 91. What is a thread?
 Threads are parts of a process running concurrently.

Threads are used for achieving multitasking.
 92. What are generics used for?
 This feature was added in Java 5 with an aim

to provide strict type checking at compile time.
Generic feature also allows same class to be used
by many different collections of objects such as
string, and integer. It would be much better to check
at compile-time what goes into a collection so that
no exception occurs at run time. If we could ensure
only objects of a particular type should go into the
collection then most runtime problem can be solved
and that is where generics help.

 93. What is an iterator interface used for?
 Iterator interface is used for iterating through the

elements of a collection.
 94. Can constructors specify the throws clause?
 Yes.
 95. Can switch…case statement accept string?
 Yes, Java 7 onwards.
 96. What is aggregation?
 It is a part-of relationship among objects. When

a particular object is a part of another object then
we say that it is aggregation. For example, car is
an aggregation of many objects: engine, door, etc.

 97. Can an interface inherit another interface?
 Yes
 98. What to declare a class if it does not override all

methods of an interface?
 abstract
 99. Which class is the superclass of all errors and

exceptions in Java?
 Throwable class is the superclass of all errors and

exceptions in Java.
 100. What is RMI?
 RMI stands for remote method invocation. RMI is

one of the ways by which distributed computing
can be achieved. The concept of RMI is to invoke
an object that resides in one JVM by another object
residing in another JVM.

This page has been reformatted by Knovel to provide easier navigation.

INDEX

Index Terms Links

2-D array 112 113 115

IDE 39

A

Abstract class 147 160

Abstract methods 147 148

Access protection 168

ActionListener interface 405

Actual parameter 86

Adapter classes 410 412

AdjustmentEvent class 397

AdjustmentListener interface 406

Aggregation 9 132

Annotation 24

Anonymous classes 119

Applet 354 356–360 362

 Class 355

 Methods 362

 State diagram 360

 Life cycle 359

 Structure 356

 Tag 366

Appletviewer 39

Apt 38

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Array 105 106 107 110

 Assigning values 107

 Creation 106

 Declaring 106

 Initialization 107

 One-dimensional 105

 Two-dimensional 110

ArrayList 319

Assertion 217 218

Associativity 55

Audio clips 372

Autoboxing 24 173

AutoCloseable 210 211

AWT 429 495 496 497

 Class 430

AWTEvent 430

B

Basic properties 597

Batch updates 561

Bean managed persistence 614

Binary literals 26 45

Boolean literal 47

BorderLayout 430 462 464

Bounded wildcards 306

Bound properties 598

BoxLayout 509

Break statement 69

Buffered byte stream 270

Buffered character stream 272

Buffered input/output 271

Button 430 434 435

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

ByteBuffer 277

Bytecode 16 17

 Verifier 19

Byte stream 261

C

Canvas 430

CardLayout 430 465 467 468

Casting 57 59 60

Character stream 269

Char literals 47

Checkbox 430 438 439 440

 441

CheckboxGroup 430

CheckboxMenu Item 430

Child threads 227

Choice 430

Choice boxes 448

Class declaration in Java 77

Classes 74 76

Class loader 19

Class method 76 100

Classpath 35 163

Class/static variables 97

Class variables 76

Cloneable interface 285

Cloning 285

CMP (container managed persistence) 614

Collection 296 297

 Interface 297

Collections API 25

Collections class 318

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Color 430

Color class 380 381

Command-line arguments 118

Compaction 96

Compilation 17

Component 9 430

ComponentListener interface 406

Composition 9

Conditional statements 62 185

Constrained properties 599

Constructor 90-93

 Chaining 104

 Overloading 94

 Parameterized 93

Containers 430 432

 Class 455

ContainerListener Interface 406

Continue statement 70

Conversion 60

Cookies 576

CopyOption 279

Cursor 540

D

Data encapsulation 76

Data hiding 4

 Dynamic binding 5

 Late binding 5

 Method invocation 5

 Runtime polymorphism 5

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Data types 42 43

 Boolean 43

 Byte 43

 Char 43

 Double 43

 Float 43

 Int 43

 Long 43

 Short 43

 tdouble 43

Deep copy 285 290 292

DefaultMutableTreeNode 518

DefaultTreeModel 517

Deployment descriptors 622

Dialog 431

Dialog box 525 527

Diamond operator 27

Dimension 431

Directory structure 34

doFilter method 585

Draw String() 361

Dynamic binding 139

E

Echo 118

Echo client 348

Eclipse 39

Enumerated type 183 184

Enumeration 186 320

Enum type 183

Escape sequences 47

Event classes 395

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Event delegation model 395

Event generator 394 433

Event handler 394

Event handling 395

Event listeners 395 404

Eventsource 395

Exception 200 201

 Checked 201

 Classes 202

 Encapsulation 216

 Enrichment 216

 Expression 55

 Handling 202

 Hierarchy 202

 Unchecked 201

F

Field 21

FileChannel 277

FileDialog 431

Files 269 278

Fill 475 476

Filter 585

FilterChain 586

Final 146

Finalization 97

Finally block 209

FlowLayout 431 459 461

FocusEvent class 402

FocusListener interface 405

Font 431

Font class 382 383

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

FontMetrics 386 387 388 431

for-each 115

Fork and join 27

Formal parameter 86

Frame 431 456

G

Garbage collection 20

Garbage collector 96

Gel 39

Generic classes 307 308

Generics 25 301 304 305

getCodeBase() 369

getContentPane() 498

getDocumentBase() 369

getState() 238

Global variables 21

Graphics 431

 Class 377 379

GridBag constraints 431

GridBagLayout 431 471 474 475

 476 477

 Anchor 472

 Fill 472

 gridheight 472

 gridwidth 472

 gridx 472

 gridy 472

 insets 472

 ipadx 472

 ipady 472

 weightx 473

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

GridBagLayout (Cont.)

 weighty 473

GridLayout 431 469

gridx 475 476

gridy 475 476

H

HashMap class 315

HashSet 312

Hexadecimal literals 46

Hidden fields 575

Home interface 615

HttpSession 577

I

Identifier 44 45

 Constant 45

 Interface 45

 Method 45

 Package 45

if…else 62

Image 431

Implements 158

Indexed properties 597

Inheritance 132 133 134 151

 Hierarchical 134

 Hybrid 134

 Multilevel 133

 Multiple 134

 Single 133

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Inner class 119 413 414 415

 Anonymous 414 415

Inner frame 539

InputStream 257

Insets 431

Instance method 76 84 86 87

 100

Instance variables 78 87 97

Integer literals 46

Interface 156 157 158 160

 319

InternalFrameAdapter 540

InternalFrameEvent 540

Interpretation 17

interrupt() 238

inter-thread communication 248

I/O package 276

ipady 476

isAlive() 243

ItemEvent class 402 403

ItemListener interface 405

Iterator 320

J

JApplet 497 500

jar 39 605

Java 13

 History 13

java.awt 430

java.awt.event 395

Java beans 597

javadoc 38

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

javah 39

java.io.File 258

java.lang 169

Java messaging service (JMS) 615

java.nio.file 278

javap 39

java.util 296

Java Virtual Machine 15

javax.ejb.EntityBean 614

javax.ejb.MessageDrivenBean 615

javax.ejb.SessionBean 615

JCheckBox 502 505

JColorChooser 530 531

JCreator 40

jdb 39

JDesktopPane 539

JDK 37 38

JEditorPane j 546

JFileChooser 529 530

JFrame 497

JGlass 497

JInternalFrame 539

JLayeredPane 497

JList 510 511 512

JMenuBar 497

join() 243

JOptionPane 527

JPanel 501

JPopupMenu pum 546

JRadioButton 502 506

JRootPane 497

JScrollPane 510 512

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

jspDestroy() 589

jspInit(),_jspService() 589

JSP elements 590

 Actions 590

 Directives 590

 Expression, scriptlets, and declarations 590

JSP Life Cycle 589

JSplitPane 513

JTabbedPane 514 515 516

JTable 521 523 525

JTextField 508

JToggleButton 502 506

JTree 516 519

K

KeyEvent class 398 399

KeyListener interface 404

Keywords 45

 Extends 135

 Super 141 144

 this 103

L

Label 431 437

Layout managers 506

 BoxLayout 506

 SpringLayout 506

Layouts 458

Legacy classes 319

Linked list 309

List 431 446

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

List boxes 444

List class 445

List interface 298

ListModel 510

Literals 45

Local classes 119

Local variables 97

Logging 219 220

Look and feel 532 535

Loop 65-68

 while 66

 do-while 67

 for 65

 for-each 68

M

Manifest files 607

MapMode 277

MappedByteBuffer 277

Maps 315

Mark and sweep 96

MediaTracker 375 431

Member class 413

 Instance 413

 Static 413

Memory management 20

Menu 431 480

MenuBar 431 479

MenuBar class 479

Menu class 478

MenuItem 431 480

MenuShortcut 431 480

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Metadata 24

Method 21 82 83

 Declaration 83

 Type 82

Method overloading 87 88

Method overriding 137 141

Methods 91

Modifiers 83

MouseEvent class 400

MouseInfo 431

MouseListener interface 404

MouseMotionAdapter 411

MouseMotionListener 407

MouseMotionListener interface 405

MouseWheelListener interface 405

Multi catch 212

Multiple catch 204

Multiple inheritance 156

Multithreaded server 347 348

Multithreaded sockets 346

Multithreading 20 224 225 243

N

Naming convention 44

Narrowing conversion 59

Nested classes 119 124

NetBeans 40

Network interface 349

NimbusLookAndFeel 532

nio 276 278

Non-static inner classes 119

Null literals 47

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Null pointers 28

Numeric literals 26 45

O

Object 21 75 76 79

 80

 Declaring 79

 Initializing 80

 Instantiating 79

Object oriented 16

Object-oriented analysis and design (OOAD) 6

 Aggregation 8

 Inheritance, aggregation, composition 8

Object-oriented modeling 2

 inheritance 4

 base class 4

 subclass 4

Object-oriented programming 2

 Abstraction 3

 Classes 3

 Encapsulation 4 11

 Objects 3

 OOAD using UML 6

 Polymorphism 5

Observable 323

 Class 322

Observer 323

Observer and observable 322

Observer interface 322

Octal literals 46

OOP 9

 Applications 9

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Operators 48 49 50 51

 52 53 54

 Arithmetic 48 49

 Assignment 48

 Binary 48

 Bitwise 52

 Boolean 51

 Logical 51

 Overloading 28

 Relational 50

 Shift 53

 Ternary 54

 Unary 54

OutputStream 257

Overloaded constructors 95

Overriding 149

P

Packages 28 161 162 164

 165

paint() 364

Panel 431 455 456

Param Tag 367

Parser methods 172

Paths 278

Platform independence 16

Point 431

Port numbers 337

Precedence rules 55 56

Primitives 172

Primordial class loader 17

Procedural language 2 5

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

PropertyChangeListener 600

PropertyChangeSupport 599

PropertyVetoException 541

Q

Queue interface 299

R

Radio button 441 442

Random class 320 321

Reference counting 96

References 21

Reflection API 328 329

Registration 394

Remote interface 615

Repaint() 366

Re-throwing 213 214

Reusability 4

Runnable interface 231

Runtime binding 139

Runtime class 326

S

Sandbox 19

Scrollable ResultSet 559

Scrollbar 431 483 484 485

ScrollPane 431

SeekableByteChannel 278

Serialization 283

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Servers 340

 Concurrent 340

 Iterative 340

Session API 577

Session management 574

SET 311

setBackground() 362

setForeground() 362

Set interface 300

Shadowing 142 149

Shallow copy 285

showStatus() 362

Socket class 338

Sockets 337

SortArray.text 109

Split pane 513

StandardCopyOption 279

Static import 166 167

Static initialization block 101

Static members 100

Static methods 99

Static nested class 119 122

Static variable 21 98

Stealth project 13

 Java bytecode 14

 Java virtual machine (JVM) 14

 JDK 15

 JRE 15

Stream 256

String 176 177 178

 Class 177 178

 Manipulation 176

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

String (Cont.)

 Methods 176

StringBuffer 179

String class 174

Subclass 132

Subpackages 164

Superclass 132 141 143

Swing 429 495 496 502

 Features 496

switch-case 63 64

Synchronization 245

Synchronizing 246

SynthLookAndFeel 532

T

TCP client 338

TCP/IP model 337

TCP/IP protocol suite 336

TCP server 340

TextArea 431 451 452

TextComponent 431

TextEvent class 403

TextField 431 451 453 454

TextListener interface 405

Thread 246–249

 Class 226

 Group 228

 Priority 240

 Resuming 246 247

 Suspending 246 247

 Communication 249

 Thread.State 234

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Thread (Cont.)

 Blocked 236

 Not runnable 236

 Terminated 237

 Timed_Waiting 236

 Waiting 236

Throw 206 207

Tracing 96

Transactions 560

TreeExpansionEvent 518

TreeExpansionListener 518

TreeMap class 317

TreeSet class 314

try…catch 203

try-with-resources 210 211

Type conversion 57

U

UDP client 342 343

UDP server 343

UML 6

UML notation 135

Unboxing 24 173

update() 365

URL class 344

URL rewriting 576

User-defined exception 215

V

Variable 42

Variable arguments 117

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Vector 319

VetoableChangeListener 599

VetoableChangeSupport 599

W

weightx 476

weighty 476

White spaces 44

Window 431 456

WindowListener interface 405

Wrapper class 170 171

X

XML 537

	Front Matter
	Dedication
	About the Authors
	Preface to the First Edition
	Prefaces
	Preface to the Second Edition

	Table of Contents
	1. Introduction to OOP
	1.1 Introduction
	1.2 Need of Object-Oriented Programming
	1.2.1 Procedural Languages
	1.2.2 Object-Oriented Modeling
	1.2.2.1 Attributes
	1.2.2.2 Behavior

	1.3 Principles of Object-Oriented Languages
	1.3.1 Classes
	1.3.2 Objects
	1.3.3 Abstraction
	1.3.4 Inheritance
	1.3.5 Encapsulation
	1.3.6 Polymorphism

	1.4 Procedural Language vs OOP
	1.5 OOAD Using UML
	1.6 Applications of OOP
	Summary
	Exercises

	2. Getting Started with Java
	2.1 Introduction
	2.2 History of Java
	2.3 Java's Journey: From Embedded Systems to Middle-Tier Applications
	2.4 Java Essentials
	2.5 Java Virtual Machine
	2.6 Java Features
	2.6.1 Platform Independence
	2.6.2 Object Oriented
	2.6.3 Both Compiled and Interpreted
	2.6.3.1 Interpretation
	2.6.3.2 Compilation
	2.6.3.3 Java Approach

	2.6.4 Java is Robust
	2.6.5 Java Language Security Features
	2.6.5.1 Java Security Model
	2.6.5.2 Sandbox - Definition

	2.6.6 Java is Multithreaded
	2.6.7 Other Features
	2.6.7.1 Automatic Memory Management
	2.6.7.2 Dynamic Binding
	2.6.7.3 Good Performance
	2.6.7.4 Built-in Networking
	2.6.7.5 No Pointers
	2.6.7.6 No Global Variables

	2.7 Program Structure
	2.7.1 How to Execute a Java Program?
	2.7.2 Why Save as Example.java?
	2.7.3 Explanation

	2.8 Java Improvements
	2.8.1 Java 5.0 Features
	2.8.1.1 Autoboxing and Unboxing
	2.8.1.2 Enhanced for Loop
	2.8.1.3 Enumerated Types
	2.8.1.4 StringBuilder Class
	2.8.1.5 Static Import
	2.8.1.6 Metadata
	2.8.1.7 Formatted I/O and VarArgs
	2.8.1.8 Graphics System Improvements
	2.8.1.9 New Concurrency Features
	2.8.1.10 Generics

	2.8.2 Java 6 Features
	2.8.2.1 Collections API
	2.8.2.2 Input/Output
	2.8.2.3 Jar and Zip Enhancements
	2.8.2.4 Enhancements Common to Java Web Start and Java Plug-in
	2.8.2.5 Enhanced Network Interface
	2.8.2.6 Splash Screen

	2.8.3 Java 7 Features
	2.8.3.1 String in switch...case Statement
	2.8.3.2 Unicode 6.0.0 Support
	2.8.3.3 Binary Literals and Numeric Literals with Underscores
	2.8.3.4 Automatic Resource Management
	2.8.3.5 Improved Exception Handling
	2.8.3.6 nio 2.0 Non-Blocking I/O - New File System API

	2.8.4 Brief Comparison of Different Releases

	2.9 Differences between Java and C++
	2.10 Installation of JDK 1.7
	2.10.1 Getting Started with the JDK
	2.10.2 JDK Installation Notes
	2.10.2.1 Step 1: Run the JDK Installer
	2.10.2.2 Installed Directory Structure
	2.10.2.3 Step 2: Update Path and Classpath Variables
	2.10.2.4 Setting the Classpath
	2.10.2.5 Step 3: Testing the Installation

	2.10.3 Exploring the JDK
	2.10.3.1 Tools in JDK
	2.10.3.2 Basic Tools

	2.11 Integrated Development Environment
	Summary
	Exercises

	3. Java Programming Constructs
	3.1 Variables
	3.2 Primitive Data Types
	3.3 Identifier
	3.3.1 Rules for Naming
	3.3.2 Naming Convention
	3.3.3 Keywords

	3.4 Literals
	3.5 Operators
	3.5.1 Binary Operators
	3.5.1.1 Assignment Operators
	3.5.1.2 Arithmetic Operators
	3.5.1.3 Relational Operators
	3.5.1.4 Boolean Logical Operators
	3.5.1.5 Bitwise Operators

	3.5.2 Unary Operators
	3.5.2.1 Increment and Decrement Operators

	3.5.3 Ternary Operators

	3.6 Expressions
	3.7 Precedence Rules and Associativity
	3.8 Primitive Type Conversion and Casting
	3.9 Flow of Control
	3.9.1 Conditional Statements
	3.9.1.1 if...else
	3.9.1.2 switch-case

	3.9.2 Loops
	3.9.2.1 for Loop
	3.9.2.2 while Loop
	3.9.2.3 do-while Loop
	3.9.2.4 for-each Loop

	3.9.3 Branching Mechanism
	3.9.3.1 break Statement
	3.9.3.2 continue Statement

	Summary
	Exercises

	4. Classes and Objects
	4.1 Classes
	4.2 Objects
	4.2.1 Difference between Objects and Classes
	4.2.2 Why Should We Use Objects and Classes?

	4.3 Class Declaration in Java
	4.3.1 Class Body
	4.3.1.1 Instance Variables

	4.4 Creating Objects
	4.4.1 Declaring an Object
	4.4.2 Instantiating an Object
	4.4.3 Initializing an Object

	4.5 Methods
	4.5.1 Why Use Methods?
	4.5.2 Method Type
	4.5.3 Method Declaration
	4.5.4 Instance Method Invocation
	4.5.5 Method Overloading

	4.6 Constructors
	4.6.1 Parameterized Constructors
	4.6.2 Constructor Overloading

	4.7 Cleaning Up Unused Objects
	4.7.1 Garbage Collector
	4.7.2 Finalization
	4.7.3 Advantages and Disadvantages

	4.8 Class Variables and Methods - static Keyword
	4.8.1 Static Variables
	4.8.2 Static Methods
	4.8.3 Static Initialization Block

	4.9 this Keyword
	4.10 Arrays
	4.10.1 One-Dimensional Arrays
	4.10.1.1 Creation of Array
	4.10.1.2 How to Use for Loops with Arrays?

	4.10.2 Two-Dimensional Arrays
	4.10.3 Using for-each with Arrays
	4.10.4 Passing Arrays to Methods
	4.10.5 Returning Arrays from Methods
	4.10.6 Variable Arguments

	4.11 Command-Line Arguments
	4.12 Nested Classes
	4.12.1 Inner Class
	4.12.2 Static Nested Class
	4.12.3 Why Do We Create Nested Classes?

	4.13 Practical Problem: Complex Number Program
	Summary
	Exercises

	5. Inheritance
	5.1 Inheritance vs Aggregation
	5.1.1 Types of Inheritance
	5.1.2 Deriving Classes Using extends Keyword

	5.2 Overriding Method
	5.3 super Keyword
	5.4 final Keyword
	5.5 Abstract Class
	5.6 Shadowing vs Overriding
	5.7 Practical Problem: circle and cylinder Class
	Summary
	Exercises

	6. Interfaces, Packages, and Enumeration
	6.1 Interfaces
	6.1.1 Variables in Interface
	6.1.2 Extending Interfaces
	6.1.3 Interface vs Abstract Class

	6.2 Packages
	6.2.1 Creating Packages
	6.2.1.1 Saving, Compiling, and Executing Packages
	6.2.1.2 Setting the Classpath
	6.2.1.3 Subpackages

	6.2.2 Using Packages
	6.2.2.1 Static Import

	6.2.3 Access Protection

	6.3 java.lang Package
	6.3.1 java.lang.Object Class
	6.3.2 Java Wrapper Classes
	6.3.2.1 Wrapper Classes: Constructors and Methods
	6.3.2.2 Ordinary Methods
	6.3.2.3 Parser Methods
	6.3.2.4 Autoboxing and Unboxing of Wrappers

	6.3.3 String Class
	6.3.3.1 String Manipulation
	6.3.3.2 String Methods

	6.3.4 StringBuffer Class
	6.3.5 StringBuilder Class
	6.3.6 Splitting Strings

	6.4 enum Type
	6.4.1 Using Conditional Statements with an Enumerated Variable
	6.4.2 Using for Loop for Accessing Values
	6.4.3 Attributes and Methods within Enumeration

	6.5 Practical Problem: Banking Example
	Summary
	Exercises

	7. Exception, Assertions, and Logging
	7.1 Introduction
	7.1.1 Exception Types

	7.2 Exception Handling Techniques
	7.2.1 try...catch
	7.2.2 throw Keyword
	7.2.3 throws
	7.2.4 finally Block
	7.2.5 try-with-resources Statement
	7.2.6 Multi catch
	7.2.7 Improved Exception Handling in Java 7

	7.3 User-Defined Exception
	7.4 Exception Encapsulation and Enrichment
	7.5 Assertions
	7.6 Logging
	Summary
	Exercises

	8. Multithreading in Java
	8.1 Introduction
	8.2 Multithreading in Java
	8.3 java.lang.Thread
	8.4 main Thread
	8.5 Creation of New Threads
	8.5.1 By Inheriting the Thread Class
	8.5.2 Implementing the Runnable Interface

	8.6 Thread.State in Java
	8.7 Thread Priority
	8.8 Multithreading - Using isAlive and join
	8.9 Synchronization
	8.9.1 Synchronized Methods
	8.9.2 Synchronized Statements

	8.10 Suspending and Resuming Threads
	8.11 Communication between Threads
	8.12 Practical Problem: Time Clock Example
	Summary
	Exercises

	9. Input/Output, Serialization, and Cloning
	9.1 Introduction
	9.1.1 java.io.InputStream and java.io.OutputStream

	9.2 java.io.File Class
	9.3 Reading and Writing Data
	9.3.1 Reading/Writing Files Using Byte Stream
	9.3.2 Reading/Writing Console User Input
	9.3.3 Reading/Writing Files Using Character Stream
	9.3.4 Reading/Writing Using Buffered Byte Stream Classes
	9.3.5 Reading/Writing Using Buffered Character Stream Classes

	9.4 Randomly Accessing a File
	9.5 Reading and Writing Files Using New I/O Package
	9.6 Java 7 nio Enhancements
	9.7 Serialization
	9.8 Cloning
	Summary
	Exercises
	Project Work

	10. Generics, java.util, and other API
	10.1 Introduction
	10.2 Generics
	10.2.1 Using Generics in Arguments and Return Types
	10.2.2 Wildcards
	10.2.3 Bounded Wildcards
	10.2.4 Defining Your Own Generic Classes

	10.3 Linked List
	10.4 Set
	10.4.1 HashSet Class
	10.4.2 TreeSet Class

	10.5 Maps
	10.5.1 HashMap Class
	10.5.2 TreeMap Class

	10.6 Collections Class
	10.7 Legacy Classes and Interfaces
	10.7.1 Difference between Vector and ArrayList
	10.7.2 Difference between Enumerations and Iterator

	10.8 Utility Classes: Random Class
	10.8.1 Observer and Observable

	10.9 Runtime Class
	10.10 Reflection API
	Summary
	Exercises

	11. Network Programming
	11.1 Introduction
	11.1.1 TCP/IP Protocol Suite

	11.2 Sockets
	11.2.1 TCP Client and Server
	11.2.1.1 How to Run the Client and Server?

	11.2.2 UDP Client and Server

	11.3 URL Class
	11.4 Multithreaded Sockets
	11.5 Network Interface
	Summary
	Exercises

	12. Applets
	12.1 Introduction
	12.2 Applets
	12.3 Applet Structure
	12.4 An Example Applet Program
	12.4.1 How to Run an Applet?

	12.5 Applet Life Cycle
	12.6 Common Methods Used in Displaying the Output
	12.7 paint, update, and repaint
	12.7.1 paint Method
	12.7.2 update Method
	12.7.3 repaint Method

	12.8 More about APPLET Tag
	12.9 getDocumentBase and getCodeBase Methods
	12.10 AppletContext Interface
	12.10.1 Communication between Two Applets

	12.11 How to Use an Audio Clip?
	12.12 Images in Applet
	12.12.1 MediaTracker Class

	12.13 Graphics Class
	12.13.1 An Example Applet Using Graphics Class

	12.14 Color Class
	12.15 Font Class
	12.16 FontMetrics Class
	12.17 Practical Problem: Digital Clock
	Summary
	Exercises

	13. Event Handling in Java
	13.1 Introduction
	13.2 Event Delegation Model
	13.3 java.awt.event Package
	13.3.1 Event Classes
	13.3.1.1 ActionEvent Class
	13.3.1.2 AdjustmentEvent Class
	13.3.1.3 KeyEvent Class
	13.3.1.4 MouseEvent Class
	13.3.1.5 FocusEvent Class
	13.3.1.6 ItemEvent Class
	13.3.1.7 TextEvent Class

	13.4 Sources of Events
	13.5 Event Listeners
	13.6 How Does the Model Work?
	13.7 Adapter Classes
	13.7.1 How to Use Adapter Classes?
	13.7.2 Adapter Classes in Java

	13.8 Inner Classes in Event Handling
	13.9 Practical Problem: Cartoon Applet
	13.9.1 Smiling Cartoon with Blinking Eyes Part 1
	13.9.2 Smiling Cartoon with Blinking Eyes Part 2
	13.9.3 Smiling Cartoon Part 3

	Summary
	Exercises

	14. Abstract Window Toolkit
	14.1 Introduction
	14.1.1 Why AWT?
	14.1.2 java.awt Package

	14.2 Components and Containers
	14.2.1 Component Class
	14.2.2 Components as Event Generator

	14.3 Button
	14.4 Label
	14.5 Checkbox
	14.6 Radio Buttons
	14.7 List Boxes
	14.8 Choice Boxes
	14.9 TextField and TextArea
	14.10 Container Class
	14.10.1 Panels
	14.10.1.1 How to Use Panels?

	14.10.2 Window
	14.10.3 Frame

	14.11 Layouts
	14.11.1 FlowLayout
	14.11.2 BorderLayout
	14.11.3 CardLayout
	14.11.4 GridLayout
	14.11.5 GridBagLayout
	14.11.5.1 gridx and gridy
	14.11.5.2 gridwidth and gridheight
	14.11.5.3 fill
	14.11.5.4 ipadx and ipady
	14.11.5.5 insets
	14.11.5.6 anchor
	14.11.5.7 weightx and weighty

	14.12 Menu
	14.13 Scrollbar
	14.14 Practical Problem: City Map Applet
	Summary
	Exercises

	15. Swing
	15.1 Introduction
	15.1.1 Features of Swing
	15.1.2 Differences between Swing and AWT

	15.2 JFrame
	15.3 JApplet
	15.4 JPanel
	15.5 Components in Swings
	15.6 Layout Managers
	15.6.1 SpringLayout
	15.6.2 BoxLayout

	15.7 JList and JScrollPane
	15.8 Split Pane
	15.9 JTabbedPane
	15.10 JTree
	15.11 JTable
	15.12 Dialog Box
	15.13 JFileChooser
	15.14 JColorChooser
	15.15 Pluggable Look and Feel
	15.16 Inner Frames
	15.17 Practical Problem: Mini Editor
	Summary
	Exercises

	16. Introduction to Advanced Java
	16.1 Introduction to J2EE
	16.2 Database Handling Using JDBC
	16.2.1 Load the Driver
	16.2.1.1 Type 1: JDBC ODBC Bridge Driver
	16.2.1.2 Type 2: Native-API/Partly Java Driver
	16.2.1.3 Type 3: Net-Protocol Driver
	16.2.1.4 Type 4: Pure Java Driver

	16.2.2 Establish Connection
	16.2.3 Create Statements
	16.2.4 Execute Query
	16.2.5 Iterate ResultSet
	16.2.6 Scrollable ResultSet
	16.2.7 Transactions

	16.3 Servlets
	16.3.1 Lifecycle of Servlets
	16.3.2 First Servlet
	16.3.2.1 How to Run the Servlet?

	16.3.3 Reading Client Data
	16.3.4 HTTP Redirects
	16.3.5 Cookies
	16.3.6 Session Management
	16.3.6.1 Hidden Fields
	16.3.6.2 URL Rewriting
	16.3.6.3 Cookies
	16.3.6.4 Session API

	16.4 Practical Problem: Login Application
	16.5 Introduction to Java Server Pages
	16.5.1 JSP Life Cycle
	16.5.2 Steps in JSP Page Execution
	16.5.3 JSP Elements
	16.5.3.1 Directives
	16.5.3.2 Expressions
	16.5.3.3 Scriptlets
	16.5.3.4 Declarations
	16.5.3.5 Actions

	16.5.4 Placing Your JSP in the Webserver

	16.6 Java Beans
	16.6.1 Properties of a Bean
	16.6.1.1 Basic Properties
	16.6.1.2 Indexed Properties
	16.6.1.3 Bound Properties
	16.6.1.4 Constrained Properties

	16.6.2 Using Beans through JSP
	16.6.2.1 Accessing Bean Properties in JSP
	16.6.2.2 Setting Bean Properties through JSP

	16.6.3 CalculateBean Example
	16.6.3.1 Directory Structure for the Example

	16.7 JAR Files
	16.7.1 Creating a JAR File
	16.7.2 Viewing the Contents of a JAR File
	16.7.3 Extracting the Contents of JAR
	16.7.4 Manifest Files
	16.7.4.1 Modifying a Manifest File
	16.7.4.2 Application Bundled in JAR

	16.8 Remote Method Invocation
	16.8.1 RMI Networking Model
	16.8.1.1 Stub and Skeleton

	16.8.2 Creating an RMI Application
	16.8.2.1 Server Class
	16.8.2.2 Executing RMI Server and Client

	16.9 Introduction to EJB
	16.9.1 Types of EJB
	16.9.1.1 Entity Bean
	16.9.1.2 Session Beans
	16.9.1.3 Message-Driven Beans

	16.9.2 EJB Architecture

	16.10 Hello World - EJB Example
	Summary
	Exercises

	Features of the Book
	Appendices
	Appendix A: Lab Manual - Java Lab Exercises
	A.1 Introduction, Compiling, and Executing a Java Program
	A.2 Program with Data Types and Variables
	A.3 Program with Decision Control Structures: if, nested-if, etc.
	A.4 Program with Loop Control Structures: do, while, for, etc.
	A.5 Program on Usage of switch-case and if Conditional Statements
	A.6 Program with Classes and Objects
	A.7 Copy Constructor and Constructor Overloading
	A.8 A Program on Function Overloading
	A.9 Implementing Inheritance
	A.9.1 Single Inheritance
	A.9.2 Multiple Inheritance
	A.9.3 Multilevel Inheritance
	A.9.4 Use of Abstract Classes

	A.10 Implementing Interfaces
	A.10.1 Developing User-Defined Interfaces and Implementation
	A.10.2 Use of Predefined Interfaces

	A.11 Handling Strings
	A.12 Implementing Packages
	A.13 Implementing Wrapper Classes
	A.14 Exception Handling Mechanism in Java
	A.14.1 Handling Predefined Exceptions
	A.14.2 Handling User-Defined Exceptions

	A.15 Concept of Threading
	A.15.1 Creation of Thread in Java Applications
	A.15.2 Multithreading

	A.16 Working with Files
	A.17 Implementing Generics

	Appendix B: Interview Questions
	Index
	#
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

