B.Sc. I-Semester (Data Science)

List of Practical Programs for Lab Practice
on Python Programming

I. Programs to demonstrate the usage of operators and conditional statements

l.

Write a program that takes two integers as command line arguments and
prints the sum of two integers.

Program to display the information: Your name, Full Address, Mobile
Number, College Name, Course Subjects

Program to find the largest number among ‘n’ given numbers.

Program that reads the URL of a website as input and displays contents of a

webpage.

I1. Programs to demonstrate usage of control structures

S.

6
7.
8
9

Program to find the sum of all prime numbers between 1 and 1000.
Program that reads set of integers and displays 1% and 2" largest numbers.
Program to print the sum of first ‘n’ natural numbers.

Program to find the product of two matrices.

Program to find the roots of a quadratic equation

II1. Programs to demonstrate the usage of Functions and Recursion

10. Write both recursive and non-recursive functions for the following:

a. To find GCD of two integers
b. To find the factorial of positive integer
To print Fibonacci Sequence up to given number ‘n’

To convert decimal number to Binary equivalent Syllabus Approved

by BOS in Statistics w. e. f. 2020-21 Page 7 of 7

11. Program with a function that accepts two arguments: a list and a number ‘n’.
It should display all the numbers in the list that are greater than the given
number ‘n’.

12. Program with a function to find how many numbers are divisible by 2, 3,4,5,6

and 7 between 1 to 1000

IV. Programs to demonstrate the usage of String functions
13. Program that accepts a string as an argument and return the number of
vowels and consonants the string contains.
14. Program that accepts two strings S1, S2, and finds whether they are equal are
not.
15. Program to count the number of occurrences of characters in a given string.

16. Program to find whether a given string is palindrome or not

V. Programs to demonstrate the usage of lists, sets, dictionaries, tuples and files.

17. Program with a function that takes two lists L1 and L2 containing integer

numbers as parameters. The return value is a single list containing the pair

wise sums of the numbers in L1 and L2.

. Program to read the lists of numbers as L1, print the lists in reverse order
without using reverse function. 22. Write a program that combine lists L1
and L2 into a dictionary.

. Program to find mean, median, mode for the given set of numbers in a list.

. Program to find all duplicates in the list.

. Program to o find all the unique elements of a list.

. Program to find max and min of a given tuple of integers.

. Program to find union, intersection, difference, symmetric difference of
given two sets.

. Program to display a list of all unique words in a text file

25. Program to read the content of a text file and display it on the screen line
wise with a line number followed by a colon
26. Program to analyze the two text files using set operations

27. Write a program to print each line of a file in reverse order.

V1. Programs to demonstrate the usage of Object-Oriented Programming

28. Program to implement the inheritance

29. Program to implement the polymorphism VII. Programs to search and sort

the numbers
30. Programs to implement Linear search and Binary search

31. Programs to implement Selection sort, Insertion sort.

PROGRAM -1

I. Program to demonstrate the usage of operators and conditional statements

1. Python Program that takes two integers as command line arguments and

prints the sum of two integers.

a = int(input(‘ 1% number is ©))
b= int(input(‘* 2" number is °))
s=at+b

print (£ sum of 2 integers is {s}")

QOutput:

15t number is 6
2" pumber is 7

Sum of 2 integers is 13

PROGRAM -2

I. Program to demonstrate the usage of operators and conditional statements

2. Python Program to display the information: Your name, address, mobile
number, college name, course, subjects.

def personal _details():

name="Seetha’

age=20’

address=‘Hyderabad’

mobile number=1234567809’

college name=‘Osmania University College for Women, Koti’

course=‘B.Sc.’

print(f’Name is: {name}\n Age is: {age}\n Address is: {address} \n Mobile
number is: {mobile number} \n College name is: {college name}\n Course is:
{course}’)

personal_details()

Qutput:

Name is: Seetha

Age is: 20

Address 1s: Hyderabad

Mobile number is: 1234567809

College name is: Osmania University College for Women, Koti

Course 1s: B.Sc.

PROGRAM -3

I. Program to demonstrate the usage of operators and conditional statements
3. Python Program to find the largest number among ‘n’ given numbers.

max=0
while True:
n= int(input('enter a number 0 to stop'))
if n!=0:
if n>max:
max=n
continue
else:
break

print(f'the maximum is{max}")

QOutput:

Enter a number 0 to stop 12
Enter a number 0 to stop 32

Enter a number 0 to stop 62

Enter a number 0 to stop 0

The maximum is 62

PROGRAM -4

I. Program to demonstrate the usage of operators and conditional statements

4. Python Program that reads the URL of a website as input and displays
contents of a webpage.
import requests
from bs4 import BeautifulSoup
def news():

url=http://hundustantimes.com/top_news

resp= requests.get(url)

if resp.status _code==200:
print(‘successfully opened the webpage”)
print(‘the news are as follows : \n’)
soup=BeautifulSoup(resp.text,”html.parser’)
I=soup.find(‘ul’, {‘class’: ‘searchNews’})
for 1 in L.findAll(‘a’):

print(i.text)

else:

print(‘error’)

news()

Output:
Successfully opened the web page

The news are as follow :-

Govt extends toll tax suspension, use of old notes for utility bills
extended till Nov 14

Modi, Abe seal historic civil nuclear pact: What it means for India

Rahul queues up at bank, says it is to show solidarity with common man

IS kills over 60 in Mosul, victims dressed in orange and marked
'traitors'

Rock On 2 review: Farhan Akhtar, Arjun Rampal's band hasn't lost its
magic

Rumours of shortage in salt supply spark panic among consumers in UP

Worrying truth: India ranks first in pneumonia, diarrhoea deaths among
kids

(Or)
import requests
from bs4 import BeautifulSoup
def news():
url="http://www.hindustantimes.com/top-news'
resp=requests.get(url)
if resp.status code==200:
print("Successfully opened the web page")
print("The news are as follow :-\n")

soup=BeautifulSoup(resp.text,'html.parser")

I=soup.find("ul",{"class":"searchNews"})

for i in L.findAll("a"):

print(i.text)

print("Error")

PROGRAM -5

II. Programs to demonstrate usage of control structures

5. Program to find the sum of all prime numbers between 1 to 1000

max=int(input("Enter the maximum value for find sum of primes:"))

sum=0
for num in range(2,max+1):
1=2
for 1 in range(2,num):
1f(int(num%1==0)):
I=num
break;
#when the number is prime calculate sum
if 1 1s not num:
sum-+=num
print("Sum of all prime numbers 1 to ",max,":",sum)
Qutput:

Enter the maximum value for find sum of primes: 1000

Sum of all prime numbers 1 to 1000 : 76125

PROGRAM -6

II. Programs to demonstrate usage of control structures

6. Program that reads set of integers and display 1% & 2"? largest numbers.

def calc_largest(arr):
second largest = arr[0]
largest val = arr[0]
for i in range(len(arr)):
if arr[i] > largest val:
largest val = arrf[1]

print("the first largest value is:",largest _val)

for 1 in range(len(arr)):
if arr[1] > second_largest and arr[i] != largest val:

second_largest = arrfi]

print("the second largest value is",second largest)
print(calc_largest([20, 30, 40, 25, 10]))
Output:
the first largest value is: 40
the second largest value is 30

None

PROGRAM -7

II. Programs to demonstrate usage of control structures

7. Program to print the sum of first n natural numbers.

s=0
c=1
n=int(input("Enter a number>0 :"))
while c<=n:
st+=c
ct+=1
print(f'the sum is {s}')
Output:
Enter any number>0 : 4

The sum is 10

PROGRAM -8

II. Programs to demonstrate usage of control structures

8. Program to find the product of two matrices.

m=int(input("Enter number of rows for first matrix:"))
p=int(input("Enter number of columns for first matrix:"))
r=int(input("Enter number of columns for second matrix:"))
print('Enter elements of First matrix A :')
a=[[int(input()) for j in range(p)] for i in range(m)]
print('Enter elements of Second matrix B :')
b=[[int(input()) for j in range(r)] for 1 in range(p)]
c=[[0 for j in range(r)] for i in range(m)]
print("The First matrix A is :")
for 1 in range(m):
for j in range(p):
print(ali][j])
foriin a:
print(1)
print("The Second matrix B is :")
for i in range(p):
for j in range(r):
print(b[i][j])
foriinb:
print(i)
print("The Product of two matrices A and B is :")
for 1 in range(m):
for j in range(r):
for k in range(len(c)):
cli][jl=clillj]+(alil[k]*b[k][j])
print(c[i][j])
foriinc:
print(i)
Output:

Enter number of rows for first matrix:2

Enter number of columns for first matrix:2
Enter number of columns for second matrix:2
Enter elements of First matrix A :

Enter elements of Second matrix B :
5

6
7
8

The First matrix A is :

he Second matrix B is :

[5, 6]

[7, 8]

The Product of two matrices A and B is :
19

22

43
50

[19, 22]
[43, 50]

PROGRAM -9

II. Programs to demonstrate usage of control structures

9. Program to find the roots of a quadratic equation.

import math
a=int(input("Enter the coefficient of X*X :"))
b=int(input("Enter the coefficient of X :"))
c=int(input("Enter the constant of the equation :"))
d=b*b-4*a*c
if d<0:
print("This equation has no real roots :")
elif d==0:
x=(-b)/2*a
print("The equation has unique real root :",x)
else:
dd=math.sqrt(d)
x1=(-b+dd)/2*a
x2=(-b-dd)/2*a
print("This equation has two real roots :" ,x1,x2)
QOutput:
Enter the coefficient of X*X : 1
Enter the coefficient of X : 4
Enter the constant of the equation :4

The equation has unique real root : -2.0

PROGRAM -10

II. Programs to demonstrate usage of control structures

10. a) Python Program for both recursive and non-recursive functions for

finding GCD of two numbers.
def gcd (nl1,n2):

result=1

k=2

while k<=n1 and k<=n2:

if n1%k==0 and n2 % k ==0:
result=k
k=k+1
return result

def main():

nl=int(input("enter first no:"))

n2=int(input("enter second no:"))

g=gcd(nl,n2)

print(f'ged is{g}")
if name ==" main_ "

main()
QOutput:
enter first no:34
enter second no:56

gcd 152

PROGRAM -10

II. Programs to demonstrate usage of control structures

10. b) Python Program for both recursive and non-recursive functions to find
the factorial of Positive integer.
number=int(input("Enter a number"))
factorial=1
if number<0:
print("Factorial doesn’t exist for negative number")
elif number==0:
print("The factorial of 0 is 1")
else:
for 1 in range(1,number+1):
factorial=factorial*i
print(f'The factorial of number {number} is {factorial}')
Qutput:
Enter a number 5

The factorial of number 5 is 120

PROGRAM -10

II. Programs to demonstrate usage of control structures

10. ¢) Python Program for both recursive and non-recursive functions to Print
Fibonacci Sequence up to given number ‘n’

nterms = int(input("How many terms? "))
nl,n2=0,1
count =0
if nterms <= 0:
print("Please enter a positive integer")
elif nterms == 1:
print("Fibonacci sequence upto",nterms,":")
print(nl)
else:
print("Fibonacci sequence:")
while count < nterms:
print(nl)
nth =nl +n2
nl =n2
n2 = nth
count += 1

QOutput:

How many terms? 5

Fibonacci sequence

PROGRAM - 10

[I. Programs to demonstrate usage of control structures

10. d) Python Program for both recursive and non-recursive functions to
Convert decimal number to its binary equivalent

def dec_to_bin(n):
if n>=1:
dec_to bin(n//2)
print(n%?2, end=")

number=int(input("enter a decimal number:"))

dec to_bin(number)

Qutput:

Enter a decimal number: 19

10011

PROGRAM - 11

II. Programs to demonstrate usage of control structures

1. Program with a function that accepts two arguments a list and a number

‘n’. It should display all the numbers in the list that are greater than the
given number ‘n’.

def print_greater(11,n):
for num in 11 :
if num>n:
print(num)

print_greater([3,5,69,],3)

Output:
5
69

PROGRAM - 12

II. Programs to demonstrate usage of control structures

2. Program with a function to find how many numbers are divisible by 2,

3.4,5,6 and 7 between 1 to 1000

nl=(]
for x in range(1, 1000):
if (x%2==0) and (x%3==0) and (x%4==0) and (x%6==0) and (x%7==0) and
(x%5==0):
nl.append(str(x))
print ("numbers in between 1 to 1000 divisible by 2,3,4,5,6 and 7 are:",',".join(nl))

Output:
numbers in between 1 to 1000 divisible by 2,3,4,5,6 and 7 are: 420,840

PROGRAM - 13

IV. Program to demonstrate the usage of string functions

3. Program that accepts a string as an argument and return the number of
vowels and consonants the string contains.

def main():
user_string=input("Enter a string:")
vowels=0
consonants=0

for each character in user_string:
if (each_character=="a' or each_character=='¢' or each character=="1' or
each character=="0' or each_character =='u'):
vowels+=1
elif 'a' <each_character<'z':
consonants+=1
print(f'Total number of vowels user entered string is {vowels}")
print(f'Total number of consonants in user entered string is {consonants}")
if name == main "
main()

QOutput:

Enter a string:welcome to faculty development program

Total number of vowels user entered string is 12

Total number of consonants in user entered string is 22

PROGRAM - 14

IV. Program to demonstrate the usage of string functions

4. Program that accepts two strings S1, S2 and finds whether they are
equal are not

def check (S1, S2) :
S1 = ‘listen’

S2 = ‘silent’
if (sorted (S1) == (sorted (S2)) :

print (‘The strings are equal’)
else:

print (‘The strings are not equal’)

Output:
Casel:

S1=listen

S2=silent

The strings are equal
Case2:

S1=cat

S2=bat

The strings are not equal

PROGRAM - 15

IV. Program to demonstrate the usage of string functions

5. Program to count the number of occurrences of characters in a given
string
string = input("please enter your own string:")
char = input("please enter your own character:")
count =0
for I in range (len(string)) :
if (string[I] == char):

count = count+1

print(f'The total number of times {char} has occurred ={count}")

Output:

please enter your own string:datascience

please enter your own character:e
The total number of times e has occurred =2

PROGRAM - 16

IV. Program to demonstrate the usage of string functions

6. Program to find whether a given string is palindrome or not.

def main():
user_string =input ("Enter a string:")
if user_string ==user_string [::-1]:
print (f'User entered string is palindrome')
else:
print (f'User entered is not a palindrome')
if name == main_ "

main()

Qutput:
Case 1:

Enter string: madam

User entered string is palindrome
Case?2:

Enter string: hello

User entered string is not palindrome.

PROGRAM - 17

V. Programs to demonstrate the usage of lists, sets, dictionaries , tuples and files.

7. Program with a function that takes two lists L1, and L2 containing integer
numbers as parameters. The return value is a single list containing the
pair wise sum the numbers in L1 and L2

def sum(L.1,L2):

L3=(]
k=len(L1)
print(f'{k}"
n=0
while n<+k:
L3.append(L1[n]+L2[n])
nt+=1
return L3
L1=]1,2,3]
L2=[4,5,6]
L4=sum(L1,L2)
print(f' {L4}")

Qutput:
3

[5,7,9]

PROGRAM - 18

V. Programs to demonstrate the usage of lists, sets, dictionaries, tuples and files.

8. Program to read the lists of numbers as 11, print the lists in reverse
order without using reverse function.

=]
n = int (input("Enter no of items"))
i=1
while i<=n:
nl=int (input ('enter any no'))
11. append (n1)
i+=1
len=len(11)-1
j=0
while len>=j:
print (f'{l1[len]}")
len-=1

QOutput:

Enter no of items4
enter any noS
enter any no6
enter any no7

enter any no8
8

7
6
5

PROGRAM - 18

V. Programs to demonstrate the usage of lists, sets, dictionaries, tuples and files.

Program that combines lists L1 and L2 into a dictionary.

d1= dict()
11=11,2,3,4,5]
12:['C" la', |n|’ !d') !yl]

for i in range (len(11)):
d1l.update({11[1]:12[i]})

print(f'{d1}")

Output :

{I:'c,2:'a",3:'n'", 4:'d", 5:'y'}

PROGRAM - 19

V. Programs to demonstrate the usage of lists, sets, dictionaries, tuples and files.

9. Program to find Mean, Median and Mode for the given set of numbers in
a list.
#mean calculation
pythonic_machine ages =[19, 22, 34, 26, 32, 30, 24, 24]

def mean(dataset):
return sum(dataset) / len(dataset)

print("mean value:",mean(pythonic_machine ages))

#median calculation
pythonic_machines heights = [181, 187, 196, 196, 198, 203, 207, 211, 215]
after retirement = [181, 187, 196, 198, 203, 207, 211, 215]

def median(dataset):
data = sorted(dataset)
index = len(data) // 2

If the dataset is odd
if len(dataset) % 2 !=0:
return data[index]

If the dataset is even
return (data[index - 1] + data[index]) / 2
print("median value:",median(pythonic_machines_heights))
print("median value of after retirement list:",median(after retirement))
points per game = [3, 15, 23, 42, 30, 10, 10, 12]
sponsorship = ['nike', 'adidas', 'nike', jordan’,
jordan', 'rebook’, 'under-armour’, 'adidas']

#mode calculation
def mode(dataset):
frequency = {}

for value in dataset:
frequency[value] = frequency.get(value, 0) + 1

most_frequent = max(frequency.values())

modes = [key for key, value in frequency.items()
if value == most_frequent]

return modes
print("mode value of points_per game:",mode(points_per game))
print("mode value of sponsorship:",mode(sponsorship))

QOutput:

mean value: 26.375

median value: 198

median value of after_retirement list: 200.5

mode value of points per game: [10]

mode value of sponsorship: ['nike', 'adidas', 'jordan']

PROGRAM - 20

V. Programs to demonstrate the usage of lists, sets, dictionaries, tuples and files.

10. Program to find all duplicates in the list.

L1=[1,2,3,1,2,4,5,6,7,8,7,9, 10, 10]
1=1len (L1)
j=0
k=1
while j<i:

k=j+1

while k<i:

if L1 [j]==LI [k]:
print (f{L1 [j]}, {L1, [k]}")

PROGRAM - 21

V. Programs to demonstrate the usage of lists, sets, dictionaries, tuples and files.
11. Program to find all unique elements of lists

11=1,2,3,1,4,2,5,6,7,8,7]
i=len(11)

dup=True

j=0

k=1

1d=]

while j<i:

k=j+1
while k<i:
if 11[j]==11[k]:
t=11[j]
1d. append(11[;])
1d. append(11[k])
k=k+1
i1
for item in 11:
if item not in 1d:
print(f' {item}")
Output:

PROGRAM - 22

V. Programs to demonstrate the usage of lists, sets, dictionaries, tuples and files.

22. Program to find maximum and minimum K elements of a given tuple of
integers.

def Findel(tup,K):
result =[]
test_tup = list(tup)
temp = sorted(tup)
for 1, val in enumerate(temp):
if1 <K or 1 >= len(temp) - K:
result.append(val)
result = tuple(result)
printing result
print("Max and Min K elements : ",result)

tup=(13, 10, 23,2, 5,6, 12)
K=2
print("The original tuple: ", tup)

Findel(tup,K)

Qutput:

The original tuple: (13, 10, 23, 2,5, 6, 12)
Max and Min K elements : (2, 5, 13, 23)

PROGRAM - 23

V. Programs to demonstrate the usage of lists, sets, dictionaries, tuples and files.

23. Program to find the Union, Intersection, Difference, Symmetric difference
of any two sets.

A =1{0,2,4,6,8}

B={1,2,3,4,5}

print ("Union:", A|B)

print ("Intersection:",A&B)

print ("Difference:", A-B)

print ("Symmetric Difference:", A”B)
Qutput:

Union: {0, 1,2,3,4,5,6, 8}

Intersection: {2, 4}

Difference: {0, 8, 6}
Symmetric Difference: {0, 1, 3, 5, 6, 8}

PROGRAM - 24

V. Programs to demonstrate the usage of lists, sets, dictionaries, tuples and files.

24. Program to display a list of all unique words in a text file

Create data.txt file:

apple is a very big company. An apple a day keeps doctor away. A big fat cat came
across the road beside doctor's office.

The doctor owns apple device.

Program:
text file = open('data.txt', 'r")
text = text_file.read()
#cleaning
text = text.lower()
words = text.split()
words = [word.strip('.,!;()[]") for word in words]
words = [word.replace("'s", ") for word in words]
#finding unique
unique = []
for word in words:
if word not in unique:
unique.append(word)
#sort
unique.sort()
#print
print(unique)
Output:

['a', 'across', 'an', 'apple', 'away', 'beside', 'big', 'came’, 'cat', 'company’, 'day’',

'device', 'doctor’, 'fat', 'is', 'keeps’, 'office', 'owns', 'road’, 'the’, 'very'|

PROGRAM - 25

V. Programs to demonstrate the usage of lists, sets, dictionaries, tuples and files.

25. Program to read the content of a text file and display it on the screen line
wise with a line number followed by a colon.
L=["welcome\n", "to\n", "Datascience\n","FDP\n"]
filel = open(‘'myfile.txt', 'w")
filel.writelines(L)
filel.close()
filel = open(‘'myfile.txt', 't'")
Lines = filel.readlines()
count =0
for line in Lines:

count += 1

print("Line{}: {}".format(count, line.strip()))
Output:

Linel: welcome
Line2: to

Line3: Datascience
Line4: FDP

26. Program to analyze the two text files using set operations (comparing files
line by line)
fl = open("myfile.txt", 'r')
f2 = open("data.txt", 'r")
1i=0
for linel in f1:
i+=1
for line2 in f2:
if linel == line2:
print("Line ", 1, ": IDENTICAL")
else:
print("Line ", 1, ":")
print("\tFile 1:", linel, end=")
print("\tFile 2:", line2, end=")
break
fl.close()
2.close()
OUTPUT:
Line 1:

File 1: welcome

File 2: Apple is a very big company. An apple a day keeps doctor away. A

big fat cat came across the road beside doctor's office.
Line 2:
File 1: to

File 2: The doctor owns apple device.

PROGRAM - 27

V. Programs to demonstrate the usage of lists, sets, dictionaries, tuples and files.

27. Program to print each line of a file in reverse order.

textfile = open("story.txt")

lines = textfile.readlines()

for line in reversed(lines):
print(line)

create story.txt file:

spiderman into the spider verse is a good movie.
It is animated.

I watched at with my siblings.
Output:

I watched it with my siblings

It is animated.

Spiderman into the Spider Verse is a good movie.

PROGRAM - 28

VI. Program to demonstrate the usage of Object Oriented Programming.
28. Program to implement the inheritance.

class A:
def init_ (self,x):
self.x=x
def show(self):
print (f' {self.x}")
class C:
def init (self,z):
self.z=z
def show(self):
print(f' {self.z}")
class B(A,C):
def it (self,x,zy):
A.x=x
C.z=z
self.y=y
def output(self):
print(f' invoked from a class A'")
A.show(self)
print(finvoked from a class C')
C.show(self)
print(fx={self.x},y={self.y},z={self.z}")
def main():
obj=B(4,6,10)
obj.output()
if name == main_ "
main()

QOutput:
invoked from a class A

4

invoked from a class C
6

x=4,y=10,z=6.

PROGRAM - 28

VI. Program to demonstrate the usage of Object Oriented Programming.

29. Program to implement the Polymorphism.

class shape:
def area(self):
pass
class rect(shape):
def init (self,w,h):
self.w=w
self.h=h
def area(self):
print(farea of rectangle is {self.w*self.h}")
class square(shape):
def it (self}s):
self.s=s
def area(self):
print(f'area of a square is {self.s**2}")
objl=rect(2,3)

objl.area()
obj2=square(3)
obj2.area()

QOutput:

area of rectangle is 6

area of square is 9

PROGRAM - 30

VI. Program to demonstrate the usage of Object Oriented Programming.

30. Program to implement Linear Search

def def read key item():
key item = int(input("Enter the key item to search: "))

return key item

def linear_search(search_key):
list of items =[10, 20, 30, 40, 50]
found = False
for item_index in range(len(list_of items)):
if list of items[item index] == search_key:
found = True
break
if found:
print(f {search_key} found at position {item_ index+1}")
else:
print("Item not found in the list")
def main():
key in_list=read key item()
linear_search(key in_list)
if name ==" main ":
main()
Output
enter the key item to search:50

50 found at position 5

PROGRAM - 30

VI. Program to demonstrate the usage of Object Oriented Programming.

30 Program to implement Binary search program

L=[3,6,10,15,56,61,82,99,101]
low=0
high =len(L)-1
found = False
k=int(input('enter element to search"))
while low<=high:
mid=((low+high)//2)
print(f' {mid}")
if k==L[mid]:
print(flelement{k} exists at {mid+1} position')
found=True
break
elif k<L[mid]:
high=mid-1
else:
low=mid+1
if found== False:

print(fkey{k} does not exists in the list')

QOutput:

enter element to search 56

4

element56 exists at 5 position.

PROGRAM -31

VI. Program to demonstrate the usage of Object Oriented Programming.

31. Program to implement selection sort, insertion sort

def selectionSort(array, size):
for step in range(size):
min_idx = step
for i in range(step + 1, size):
to sort in descending order, change > to < in this line
select the minimum element in each loop
if array[i] < array[min_idx]:
min_idx =1
put min at the correct position
(array[step], array[min_idx]) = (array[min_1dx], array[step])
data=[-2, 45,0, 11, -9]
size = len(data)
selectionSort(data, size)
print('Sorted Array in Ascending Order:")
print(data)

QOutput;

Sorted Array in Ascending Order:
[-9,-2,0, 11, 45]

PROGRAM -31

VI. Program to demonstrate the usage of Object Oriented Programming.

31 Program to implement Insertion sort in Python

def insertionSort(array):
for step in range(1, len(array)):
key = array[step]
j=step-1
Compare key with each element on the left of it until an element smaller than it is found
For descending order, change key<array[j] to key>array([j].
while j >= 0 and key < array[j]:
array[j + 1] = array[j]
j=j-1
Place key at after the element just smaller than it.
array[j + 1] = key
data=19, 5, 1, 4, 3]
insertionSort(data)

print('Sorted Array in Ascending Order:')

print(data)

Output:
Sorted Array in Ascending Order:

[1,3,4,5,9]

