
 1

IIMC Prashanth Kumar K(Head-Dept of Computers)

B.Sc (Computer Science)
Programming in Java

Unit-II

Package is a Java’s way of grouping a variety of classes and/or interfaces together.
Upon importing a package in a program, it will be able to access the classes defined

in that package.

Creating packages is way of achieving the reusability in Java. The grouping is usually
done according to functionality. With the help of packages, we can use classes from
other programs without physically copying them into the program under
development. Packages concept is similar to "class libraries" in other languages.

By organizing our classes into packages we achieve the following benefits:

1. The classes contained in the packages of other programs can be easily reused.

2. In packages, classes can be unique compared with classes in other packages. That
is, two classes in two different packages can have the same name. They may be
referred to by their name, comprising the package name and the class name.

3. Packages provide a way to "hide" classes thus preventing other programs or
packages from accessing classes that are meant for internal use only.

4. Packages also provide a way for separating "design" from "coding". First we can
design classes and decide their relationships, and then we can implement the Java
code needed for the methods. It is possible to change the implementation of any
method without affecting the rest of the design.

java.lang This package has primary classes and interfaces essential for
java program. It consists of wrapper classes, strings, threads,
etc. The classes defined in this package are imported by default.

java.util (utility) in this package utility classes like data structures are
available. This package contains useful classes and interfaces
like stack, linked list, hash table, arrays. etc.

java.io This package has file handling classes which can be used to
perform input output related tasks

java.awt Abstract window tool kit. This package helps to develop GUI. It

1. What is a package?

2. Explain the process of using Java API Packages & System Packages

 2

IIMC Prashanth Kumar K(Head-Dept of Computers)

consists of classes for windows, buttons, lists and etc.

java.applet Classes for creating and implementing Applets.

There are two ways of accessing the classes stored in packages:

 Using fully qualified class name
 Import package and use class name directly.

1. Using fully qualified class Name:

This is done by using the package name containing the class and then

appending the class name to it using dot operator.

Ex: java.util.Vector

2. Import package and use class name directly:

a) Importing a particular class in a package: import java.util.Vector;

b) Importing all the classes in a package: import java.util.*;

Creating Package:

Creating a package is quite easy. First declare the name of the package using the

‘package’ key word followed by a package name. This statement defines a name

space in which classes are stored. It is followed by package definition. Here is an

example.

Package first package // package declaration

Public class Firstclass // class definition

{

Body of the class

}

Here the package name is first package. The class Firstclass now a part of the

package. The listing would be saved as a file called Firstclass.java. It is located in a

directory named firstpackage. When the source file is compiled, Java will create a

class file and store it in the same directory.

Creating the package involves the following steps:

1. Declare the package at the beginning of a file using the form

Package Packagename;

2. Define the class that is to be put in the package and declare it public.

3. Create a subdirectory under the directory where the main source files are stored.

3. Explain the creation and accessing of a Package.

 3

IIMC Prashanth Kumar K(Head-Dept of Computers)

4. Store the listing as the classname.java file in subdirectory.

5. Compile the file. This creates .class file in subdirectory.

Java also supports the concept of package hierarchy. Specifying multiple names in a
package statement separated by periods does this.

The general form of a multileveled package statement is shown here

Package pkg1.pkg2;

Accessing a Package:

A Java system package can be accessed either using a fully qualified class name or
through the

‘import’ statement. Import statement is used when

1. There are too many references to a particular package.

2. When the package name is too long.

The general form of ‘import’ statement for searching a class is as follows

import package1[.package2] [.package3].class name;

where package1 is the name of the top level package, package2 is the name of
package inside package1 and so on. Finally, ‘class name’ is specified explicitly.

Example:

import firstPackage.SecondPackage.Myclass ;

Another Approach : import.packagename.*;

Packagename can denote a single package or a hierarchy of packages. The star(*)

indicates that the compiler should search this entire package hierarchy.

Consider the following package:

package p1;
public class A
{
Body of the class

}

The package p1 contains one public class by name A. Suppose we want to add
another class B to this package. This can be done as follows:

1. Define the class and make it public

2. Place the package statement

package p1;

public class B

4. How to add a class to a Package?

 4

IIMC Prashanth Kumar K(Head-Dept of Computers)

{

Body of B

}

3. Store this in B.java under the directory p1.

4. Compile B.java file. This will create a B.class and place it in the directory p1.

Now, the package p1 will contain both the classes A and B.
A statement like
 import p1.* ;
will import both of them.

A java source file can have only one class declared as public, we cannot put two
or public classes together in a .java file. This is because of the restriction that the
file name should be same as the name of the public class with .java extension.

If we want to create a package with multiple public classes in it, then steps are as
follows.

1. Decide the name of the class.

2. Create a subdirectory with this name under the directory where main source

files are stored.

3. Create classes that are to be placed in the package in separate source files

and declare the package statement, package packagename at the top of each

source file.

4. Switch to subdirectory earlier and compile each source file. When completed,

the package would contain .class files of all the source files.

String is a set of characters. Java provides a class named “String” to handle
strings. The “String” class has several built-in functions to support different
operations on strings. Though String is a class, the instantiation of the objects need
not be done using the keyword ‘new’. The string value can be directly assigned to
String object. A java String is not a character array and it is not terminated by null
character.

String can be initialized in many ways.
· String s1 = “IIMC”;
· String s2 = new String(“ABC”);
· String s3 = new String(new char[] {‘a’,’b’,’c’});

1)toLowerCase():-

 This method converts the string into LowerCase and this method returns

string type.

Syntax;- String s1=”Bsc”;
 String s2;
 s2=s1.toLowerCase();

2)toUpperCase();
 It converts the string to Uppercase. It also returns String type.

Ex:- String s2,s1=”system”;

5. Explain String methods in Java.

 5

IIMC Prashanth Kumar K(Head-Dept of Computers)

 s2 =s1.toUpperCase();
3)length();

 This method returns length of a string that means number of character of a

string.

 Ex:- String s1=”computer”:
 int l=s1.Length();
4)replace():

 It replaces all appearances of x with y in s1 string.

Syntax:- s1.replace(‘x’,’y’);
5)trim():-

 This method remove white spaces at the beginning and ending of the string

s1.

Ex:- s2=s1.trim();
6)equals():-

 This method returns true if two strings are same otherwise it returns false.

This is case sensitive.

 Ex:- s1.equals(s2);
7)equalsIgnoreCase():-

 It returns true if both string are true. If ignores the case of characters.

Ex:- s1.equalsIgnoreCase(s2);
8)charAt():-

 This method returns the character at the specified position n.

Syntax:- s1.charAt(n)
9) compareTo():-

 It returns negative if s1<s2, or it returns positive if s1>s2 or it returns zero if

s1 is equal to s2.

 It is used as follows:-

S1.compareTo(s2);
10)concat():-

 This method concatenates two strings.

Ex:- s1.concat(s2);

11)substring(n):-
 This method gives substring starting from nth character.

Ex:- s1.substring(5) returns characters starting from 5th character till the end of s1.
12)substring(n.m):-

 It gives substring starting from nth character upto mth character(not

including mth character).

Ex:- s1.substring(5,10) returns the characters of s1 starting from 5th to 9th
positions.

13)indexOf():-
 It gives the position of the first occurance of ‘x’ in the string s1.

Ex:- s1.indexOf(‘x’);
Ex:- The following program illustrated the methods of String class.

 6

IIMC Prashanth Kumar K(Head-Dept of Computers)

StringBuffer class:-

 String class creates strings of fixed-length, StringBuffer class creates strings

of flexible length that can be modified in terms of both length and content.

 We can insert characters and substrings in the middle of a string or append

another string to the end, where StringBuffer class is used.

 The following declaration shows to create a string using StringBuffer class.

StringBuffer sb=new StringBuffer(“Hello”);
 The following methods are used with String Buffers class.

1)length():-
 This returns the number of characters in the String Buffer object.

Ex:- StringBuffer sb=new StringBuffer(“Welcome”);
 Sb.length();
2)append():-

 It appends the string s2 to s1 at the end.

Ex:- s1.append(s2);
3)insert():-

 It inserts the string s2 at the position n of the string.

Ex:- s1.insert(n.s2);
4)toString():-

 It converts the StringBuffer object into a String object

5)reverse():-
 This method reverses the sequence in the StringBuffer.

sb.reverse();
6)indexOf():-

 It returns the first occurrence of substring str in the StringBuffer object.

Syntax:- indexOf(str);

Ex:- StringBuffer sb=new StringBuffer(“this is a book”);
 int n=sb.indexOf(“is”);
it returns 2nd position. That means the first occurrence of ”is” in the sb object.
7)setCharAt():-

 This method modifies the nth character to x.

Ex:- s1.setCharAt(n,’x’);

Differences between String and StringBuffer are listed below.

1. StringBuffer objects must ne instantiated using ‘new’. But, Strings can be

instantiated without using ‘new’.

2. StringBuffer objects are mutable (self changeable). Where as, String objects
are immutable.

6. Explain StringBuffer class in Java.

7. How does String class differ from StringBuffer class?

 7

IIMC Prashanth Kumar K(Head-Dept of Computers)

3. StringBuffer provides functions like setCharAt(), deleteCharAt() and etc.

4. StringBuffer allocates extra 16 bits of memory

5. StringBuffer can be treated as a dynamic string.

Wrapper classes can be used to convert primitive data types like int, float,
long, and double to objects. These classes are contained in the java.lang package.
The classes Byte, Double, Float, Integer and Short extend the abstract class Number.
All the wrapper classes are public final ie cannot be extended.

All the wrapper classes have two constructor forms.
 A constructor that takes the primitive type and creates an object eg

Character(char), Integer(int).
 A constructor that converts a String into an object eg Integer("1"). But, this

type of constructor is not available with Character class.

The methods of the wrapper classes are all static so we can use them without
creating an instance of the matching wrapper class. Once assigned a value, the value
of a wrapper class cannot be changed. The wrapper classes are just that classes,
they are not primitives and instances of the wrappers can only be manipulated in the
same way as any class.

The following table lists simple data types and their corresponding wrapper classes.

Simple Type Wrapper class

boolean Boolean

char Character

double Double

float Float

int Int

long Long

byte Byte

short Short

It is common to make mistakes while developing as well as typing a program.
A mistake might lead to an error causing to program to produce unexpected results.
Errors are the wrongs that can make a program go wrong. In computer terminology
errors may be referred to as bugs. An error may produce an incorrect output or may
terminate the execution of the program abruptly or even may cause the system to
crash. It is therefore important to detect and manage properly all the possible errors.

Types of Errors: Errors may broadly be classified into two categories:

• Compile-time errors
• Run-time errors

Compile-Time Errors: All syntax errors will be detected and displayed by the Java
compiler and therefore these errors are known as compile-time errors. Whenever the
compiler displays an error, it will not create the .class file. It is necessary to fix these

errors to get it compiled. It becomes an easy job to a programmer to correct these
errors because Java compiler tells us where the errors are located.

8. Explain Wrapper Classes.

9. What is an Error? Explain the different types of Errors

 8

IIMC Prashanth Kumar K(Head-Dept of Computers)

The most common errors are:
• Missing semicolons

• Missing (or mismatch of) brackets in classes and methods
• Misspelling of identifiers and keywords
• Missing double quotes in strings
• Use of undeclared variables Incompatible types in assignments / initialization
• Bad references to objects
• Use of = in place of = = operator

Run-Time Errors: Sometimes, a program may compile successfully creating the .class file
but may not run properly. Such programs may produce wrong results due to wrong logic
or may terminate due to errors such as stack overflow.
Most common run-time errors are:

• Dividing an integer by zero

• Accessing an element that is out of the bounds of an array

• Trying to store a value into an array of an incompatible class or type

• Trying to cast an instance of a class to one of its subclasses

• Passing a parameter that is not in a valid range or value for a method

• Trying to illegally change the state of a thread

• Attempting to use a negative size for an array

• Using a null object reference to access a method or a variable.
• Converting invalid string to a number

• Accessing a character that is out of bounds of a string

Exception: An exception is a condition that is caused by a run-time error in the

program. When the Java interpreter encounters an error such as dividing an integer
by zero, it creates an exception object and throws it (i.e., informs us that an error
has occurred).

If the object is not caught and handled properly, the interpreter will display
an error message and will terminate (stop) the program. If we want the program to
continue with the execution of the remaining code, then we should try to catch the
exception object thrown by the error condition and then display an appropriate
(proper) message for taking corrective actions. This task is known as Exception
Handling.

The purpose of exception handling mechanism is to provide a means to detect

(find) and report an exceptional circumstance so that appropriate can be taken. The
mechanism suggests incorporation (to include) of a separate error handling code that
performs the following tasks:

 Find the problem (Hit the exception)
 Inform that an error has occurred (Throw the exception)
 Receive the error information (Catch the exception)
 Take corrective actions (Handle the exception)

10. Explain Exception in Java.

 11. Explain Pre-defined Exceptions in Java.

 9

IIMC Prashanth Kumar K(Head-Dept of Computers)

Some common exceptions that we must watch out for catching are listed below:

 ArithmeticException – Caused by math errors such as division by zero
 ArrayIndexOutOfBoundsException – Caused by bad array indexes

 ArrayStoreException – Caused when a program tries to store the wrong type of
data in an array

 FileNotFoundException – Caused by an attempt to access a nonexistent file
 IOException – Caused by general I/O failures, such as inability to read from a

file
 NullPointerException – Caused by referencing a null object
 NumberFormatException – Caused when a conversion between strings and

number fails
 OutOfMemoryException – Caused when there’s not enough memory to allocate

a new object.
 SecurityException – Caused when an applet tries to perform an action not

allowed by the browser’s security setting
 StackOverflowException – Caused when the system runs out of stack space.

Exception Handling: If the object is not caught and handled properly, the
interpreter will display an error message and will terminate (stop) the program. If we

want the program to continue with the execution of the remaining code, then we
should try to catch the exception object thrown by the error condition and then
display an appropriate (proper) message for taking corrective actions. This task is
known as Exception Handling.

 The basic concept of exception handling are throwing an exception and
catching it.

Java uses a keyword try to preface a block of code that is likely to cause an error
condition and throw an exception. A catch block defined by the keyword catch catches
the exception thrown by the try block and handles it appropriately. The catch block is
added immediately after the try block. The following syntax illustrates the use of simple
try and catch statements:

12. Explain the process of Exception Handling in Java.

 10

IIMC Prashanth Kumar K(Head-Dept of Computers)

………………………….

try

{

 statement; // generates an exception

}

catch (Exception-type e)

{

 statement; // process the exception

}

……………………………..

……………………………….

try & catch: The try block can have one or more statements that could
generate an exception. If any statement generates an exception, the remaining
statements in the block are skipped and execution jumps to the catch blocks that is
placed next to the try block.

The catch block too can have one or more statements that are necessary to
process the exception. Remember that every try statement should be followed by at

least one catch statement; otherwise compilation error will occur.
The catch statement works like a method definition. The catch statement is

passed a single parameter, which is reference to the exception object thrown (by the
try block). If the catch parameter matches with the type of exception object, then
the exception is caught and statements in the catch block will be executed.
Otherwise, the exception is not caught and the default exception handler will cause
the execution to terminate.

class ZeroTest

{

public static void main(String as[])

{

int a=5;

int b=0;

try

{

System.out.println(“Division=”+ (a/b));

}

catch(ArithmeticException e)

{

System.out.println(“Division by zero is not possible”);

}

}

}

It is possible to have more than one catch statement in the catch block. When
an exception in a try block is generated, the Java treats the multiple catch
statements like case in a switch statement. The first statement whose parameter

13. Write a program to handle division by zero exception.

14. How many catch blocks can we use with one try block?

 11

IIMC Prashanth Kumar K(Head-Dept of Computers)

matches with the exception object will be executed, and the remaining statements
will be skipped.

Java does not require any processing of the exception at all. We can simply
have a catch statement with an empty block to avoid program abortion.
Example: catch (Exception e);
The catch statement simply ends with a semicolon, which does nothing. This

statement will catch an exception and then ignore it.

Syntax:

………………………

try

{

 statement; // generates an exception

}

catch (Exception-Type-1 e)

{

 statement; // process exception type 1

}

catch (Exception-Type-2 e)

{

 statement; // process exception type 2

}

catch (Exception-Type-N e)

{

 statement; // process exception type N

}

…………………………….

There may be times when we would like to throw our own exceptions. We can do this
by using the keyword throw as follows: throw new Throwable_subclass;

Example: throw new ArithmeticException();

throw new NumberFormatException();

import java.lang.Exception;

class MyException extends Exception

{

MyException(String message)

{

super(message);

}

}

class TestMyException

{

public static void main(String args[])

{

int x = 5, y = 1000;

15. Explain throwing our own exception in Java.

 12

IIMC Prashanth Kumar K(Head-Dept of Computers)

try

{

float z = (float)x/(float)y;

if(z < 0.01)

{

throw new MyException("Number is too small");

}

}

catch(MyException e)

{

System.out.println("caught my exception");

System.out.println(e.getMessage());

}

finally

{

System.out.println("I am always here");

}

}

}

Thread is a task or flow of execution that can be made to run using time-

sharing principle. It is important to remember that 'threads running in parallel' does

not really mean that they actually run at the same time. Since all the threads are

running on a single processor, the flow of execution is shared between the threads.

The Java interpreter handles the switching of control between the threads in such a

way that it appears they are running concurrently.

16. What is Thread?

 13

IIMC Prashanth Kumar K(Head-Dept of Computers)

A Thread is similar to a program that has a single flow of control. It has a

beginning, a body and an end, and executes commands sequentially. A normal java

programming is a single-threaded program. That means, every java program will

have atleast one thread.

 Modern operating systems such as Windows 98, XP, Vista and Windows 7 can

execute several programs simultaneously. This ability is known as Multi-Tasking. In

other words, this is called as Multi-Processing.

 In Java Terminology, this is called as Multi-Threading. It is a conceptual

programming paradigm where a program (process) is divided into two or more sub-

programs (processes), which can be implemented at the same time in parallel. It is a

powerful programming tool that makes Java distinctly different from its other

programming languages.

Light-weight Process: A thread is similar to a separate process, in that it can run
independently of other threads. But it is lightweight, since the operating system
doesn't have to give it its own memory space, and it shares memory with the other
threads in the process. It runs within the context of a program because threads or

sub-programs of a main application program.

Heavy-weight Process: In heavyweight processes in between threads that belong
to different programs. They demand separate memory.

Creating threads in java is simple. Threads are implemented in the form of
objects that contain a method called run().The run() method is the heart of any
thread. It is the only method in which the thread’s behavior can be implemented.

public void run ()

{

 ... // Thread code

}

The run() method should be invoked by an object of the concerned thread. This can
be achieved by creating the thread and initiating it with the help of another method
called start().

A new thread can be created by two ways:

17. What is the concept of Multi-Threading?

18. Explain the process of creation of Threads.

 14

IIMC Prashanth Kumar K(Head-Dept of Computers)

 By creating a Thread class: Define a class that extends Thread class and
override its run() method with the code required by the thread.

 By converting a class to thread: Defines a class that implements
Runnable interface. The Runnable interface has only one method run(),
that is to be defined in the method with the code to be executed by the

thread.

Extending Thread Class: we create a thread class that extends Thread class and
override its run() method with the code required by the thread.

To do this consider following steps:

 Declare the class that extends the Thread class.

public class MyThread extends Thread

{

}

 Implements the run() method that is responsible for executing the sequence

of code that the thread will execute.

 public void run()

{

 //Thread code

}

 create a thread object and call the start() method to initiate the thread
execution

MyThread mt=new MyThread();

mt.start();

Example:

public class MyThread extends Thread

{

 public void run()

 {

 System.out.println("Hello from a thread!");

 }

 public static void main(String args[])

 {

MyThread mt=new MyThread();

mt.start();

19. How to extend Thread class?

 15

IIMC Prashanth Kumar K(Head-Dept of Computers)

 }

}

Impelementing Runnable interface: we define a class that implements Runnable
interface. The Runnable interface has only one method , run(), that is to be
implemented by the class.

It includes the following steps:

 Declare a class that implements Runnable interface.

class MyThread implements Runnable

{

}

 Implement the run() method.

public void run()

{

 //Thread code

}

 Create a thread by defining an object that is instantiated from this "runnable"
class or create it within that class.

MyThread mt=new MyThread();

mt.start();

Example:

public class MyThread implements Runnable

{

 public void run()

 {

 System.out.println("Hello from a thread!");

 }

 public static void main(String args[])

 {

MyThread mt=new MyThread();

mt.start();

 }

}

20. How to implement Runnable interface?

 16

IIMC Prashanth Kumar K(Head-Dept of Computers)

Stopping a thread:

Whenever we want to stop a thread from running further, we may do so by calling

its stop() method. This causes a thread to stop immediately and move it to its
dead state. It forces the thread to stop abruptly before its completion i.e. it causes
premature death. To stop a thread we use the following syntax:

 mt.stop();

Blocking a Thread:

A thread can also be temporarily suspended or blocked from entering into the
runnable and subsequently running state by using either of the following thread
methods:

 sleep(t) // blocked for ‘t’ milliseconds
 suspend() // blocked until resume() method is invoked

 wait() // blocked until notify () is invoked

These methods cause the thread to go into the blocked (or not-runnable) state. The
thread will return to the runnable state when the specified time is elapsed in the
case of sleep(), the resume() method is invoked in the case of suspend(), and the
notify() method is called in the case of wait().

During the life time of a thread, there are many states it can enter. They include:

1. Newborn state

2. Runnable state
3. Running state
4. Blocked state
5. Dead state

A Thread is always in one of these five states. It can move from one state to
another via a variety of ways as follows:

21. What are the two methods by which we may stop threads?

22. Write about the Life Cycle of Thread.

 17

IIMC Prashanth Kumar K(Head-Dept of Computers)

Newborn State: When we create a thread object, the thread is born and is said to
be in newborn state. The thread is not yet scheduled for running. At this state, we
can do only one of the following things with it:

• Schedule it for running using start() method.

• Kill it using stop() method.
If scheduled, it moves to the runnable state If we attempt to use any other

method at this stage, an exception will be thrown.

Runnable State: The runnable state means that the thread is ready for execution
and is waiting for the availability of the processor. That is, the thread has joined the
queue of threads that are waiting for execution. If all threads have equal priority,
then they are given time slots for execution in round robin fashion, i.e., first-come,
first-serve manner. After its turn, the thread joins the queue again and waits for

next turn. This process of assigning time to threads is known as time-slicing.
However, if we want a thread to relinquish control to another thread to equal
priority before its turn comes, we can do so by using yield() method.

 18

IIMC Prashanth Kumar K(Head-Dept of Computers)

Running State: Running means that the processor has given its time to the thread
for its execution. The thread runs until it gives up control on its own or taken over
by other threads. When the thread is in its running state, we can ensure that the
control is in run() method of the thread.
 It has been suspended using suspend() method. A suspended thread can be

revived by using the resume() method. This approach is useful when we want
to suspend a thread for some time due to certain reason, but do not want to kill
it.

 It has been made to sleep. We can put a thread to sleep for a specified time

period using the method sleep(time) where time is in milliseconds. This means
that the thread is out of the queue during this time period. The thread re-enters
the runnable state as soon as this time period is elapsed.

 It has been told to wait until some event occurs. This is done using the wait()

method. The thread can be scheduled to run again using the notify() method.

Blocked State: A thread is said to be blocked when it is prevented from entering
into the runnable state and subsequently the running state. This happens when the
thread is suspended, sleeping, or waiting in order to satisfy certain requirements. A
blocked thread is considered “not runnable” but not dead and therefore fully qualified
to run again.

Dead State: Every thread has a life cycle. A running thread ends its life when it has
completed executing its run() method. It is a natural death. However, we can kill it
by sending the stop message to it at any state thus causing a premature death to it.
A thread can be killed as soon it is born, or while it is running, or even when it is in
“not runnable” (blocked) condition.

23. Write a note on various Thread methods.

 19

IIMC Prashanth Kumar K(Head-Dept of Computers)

1. start() : This method is used to start a new thread. When this method is called
the thread enters the runnable state and this automatically invokes the run()
method .

void start()

2. run(): This method is the most important method in the thread like its heart and
soul. It contains the statements that define the actual task of the Thread. It should
be overridden in our class in the class of extending Thread class or implement in the
case of implementing Runnable interface.

void run()

{

// Thread Code

}

3. sleep(): This method is used to block the currently executing thread for the
specific time. After the elapse of the time the thread automatically comes into
runnable state.

void sleep(long time-in-milliseconds)

4. stop(): This method is used to stop the running thread even before the
completion of the task.

void stop()

5. wait() method: This method is used to block the currently executing thread until
the thread invokes notify() or notifyall() methods.

void wait()

6. suspend() method: This method is used to block the currently executing thread
until the thread invokes resume() method.

void suspend()

7. resume(): This method is used to bring the thread from blocked state to
runnable state when it is blocked by suspend() method.

void resume()

8. yield(): This method is used to bring the blocked thread to runnable state. If we
want a thread to give a chance to run before its turn comes, we can use the yield()

method.

void yield()

9. setPriority(): This method is used to set the priority of the thread. The priority
is an integer value that ranges from 1 to 10. The default setting is NORM_PRIORITY
whose value is 5. The other constants are: MIN_PRIORITY (= 1) and MAX_
PRIORITY (= 10).

 20

IIMC Prashanth Kumar K(Head-Dept of Computers)

setPriority(int priority)

10. getPriority(): This method is used to get the priority of the thread. It returns
integer value.

int getPriority()

In Java, each thread is assigned a priority, which affects the order in which it is
scheduled for running. The threads of the same priority are given equal treatment by
the Java scheduler and, therefore, they share the processor on a first-come, first-
serve basis. Java permits us to set the priority of a thread using the setPriority()
method as follows:

ThreadName.setPriority(intNumber);

The intNumber is an integer value to which the thread's priority is set. The Thread
class defines several priority constants:

 MIN_PRIORITY = 1

 NORM_PRIORITY = 5

 MAX_PRIORITY = 10

The intNumber may assume one of these constants or any value between 1 and 10.

The default setting is NORM_PRIORITY. Most user-level processes should use
NORM_PRIORITY, plus or minus 1. Whenever multiple threads are ready for
execution, the Java system chooses the highest priority thread and executes it.

class A extends Thread

{

 public void run()

 {

 System.out.println("Thread A Started");

 for(int i=1;i<=5;i++)

 {

 System.out.println("Thread A -> No = " +i);

 }

 System.out.println("Exit from Thread A ");

 }

}

class B extends Thread

{

 public void run()

 {

 System.out.println("Thread B Started");

 for(int i=1;i<=5;i++)

 {

 System.out.println("Thread B -> No = " +i);

 }

 System.out.println("Exit from Thread B ");

24. How do we set priorities of Thread? (Mar 2010) (Mar 2011)

 21

IIMC Prashanth Kumar K(Head-Dept of Computers)

 }

}

class C extends Thread

{

 public void run()

 {

 System.out.println("Thread C Started");

 for(int i=1;i<=5;i++)

 {

 System.out.println("Thread C -> No = " +i);

 }

 System.out.println("Exit from Thread C ");

 }

}

class ThreadPriority

{

public static void main(String args[])

{

 A obja=new A();

 B objb=new B();

 C objc=new C();

 objc.setPriority(Thread.MAX_PRIORITY);

 objb.setPriority(obja.getPriority()+1);

 obja.setPriority(Thread.MIN_PRIORITY);

System.out.println("start thread A");

obja.start();

System.out.println("start thread B");

objb.start();

System.out.println("start thread C");

objc.start();

 }

}

Threads use their own data and methods provided inside their run() methods.
But if we wish to use data and methods outside the thread’s run() method, they may
compete for the same resources and may lead to serious problems. For example, one

thread may try to read a record from a file while another is still writing to the same
file. Depending on the situation, we may get strange results. Java enables us to
overcome this problem using a technique known as synchronization.

Synchronization can be achieved by two ways:

 Synchronized method

 Synchronized block

25. Explain Thread Synchronization.

 22

IIMC Prashanth Kumar K(Head-Dept of Computers)

Synchronized method: In case of Java, the keyword synchronized helps to solve
such problems by keeping a watch on such locations. For example, the method that
that will update a file may be declared as synchronized as shown below:

synchronized void update()

{

………….. // code here is synchronized

}

Synchronized block: When we declare a method synchronized, Java creates a
"monitor" and hands it over to the thread that calls the method first time. As long as
the thread runs, no other thread can enter the synchronized section of code. A
monitor is like a key and the thread that holds the key can only open the lock.

synchronized (lock-object)
{
.......... // code here is synchronized

}

