
 1

IIMC Prashanth Kumar K(Head-Dept of Computers)

B.Sc (Computer Science)
Programming in Java

Unit-I

OOPS stands for Object Oriented Programming System. It is the most popular

approach followed by programming languages. Java is one such language which
follows OOPS.

OOP treat data as a critical element in the programming development and

does not allow it to flow freely around the system. It ties data more closely to the
functions. OOP allows decomposition of a problem into a number of entities called
objects and build data and functions around these objects. The data of an object can
be accessed only by the functions of one object can access the functions of other
objects. OOP allows us to decompose a problem into a number of entities called
“Objects” and then build data and methods.

Some of the important features of Object-oriented programming are:

 Emphasis is on data rather than procedure.
 Programs are divided into what are known as objects.
 Data structures are designed such that they characterize the objects.
 Functions that operate on the data of an object are tied together in the data

structure.
 Data is hidden and cannot be accessed by external functions.
 Objects may communicate with each other through functions.
 Follows bottom-up approach in program design.

It supports the following concepts:

Objects: Objects are the basic runtime entities in an object-oriented system. They
may represent a person, a place, a bank account or any thing that the program can
handle.

Classes: A class is a collection of objects of similar type. The entire set of data and
code of an object can be made a user-defined data type using the concept of a class.
A class may be thought of as a data type and an object as a variable of that type.
Once a class has been defined, we can create any number of objects belonging to
that class.

Data Abstraction: Abstraction refers to the act of representing essential features
without including the background details or explanation. Classes use the concept of
abstraction such as size, weight and cost and the methods that operate on these

attributes. It is a mechanism used to create new data types that include several
related operations to be performed on it and attributes to suit the requirements of an
application.

Data Encapsulation: Encapsulation means “combining”. This feature allows
combining several related properties (attributes) and functions (methods) into a
single unit as its members. The wrapping up of data and methods into a single unit

(class) is known as “Encapsulation”. The members of that unit are accessible to its
instances depending up on their accessibility conditions. The data is not accessible to

1. Explain the main concepts of Object Oriented Programming.

 2

IIMC Prashanth Kumar K(Head-Dept of Computers)

the outside world and only those methods, which are wrapped in the class, can
access it.

Inheritance: This feature is used to derive the properties of an existing object.
Inheritance is the process by which objects of one class acquire the properties of
objects of another class.

Polymorphism: It means “many forms”. Different behavior of functions or operators
or objects at different situations can be called as “polymorphism”. Polymorphism can
be exhibited in three different ways: Function Overloading, Operator overloading and
Dynamic binding.

Benefits of OOP:
Object-Oriented Programming contributes to the solution of many problems
associated with the development and quality of software products.

The advantages of OOP are:

 Through inheritance we can eliminate redundant code and extend the use of
existing classes.

 We can build programs from the standard working modules that communicate
with one another, rather than having to start writing the code from scratch.

 Data hiding helps the programmer to build secure programs that cannot be
invaded by code in other parts of the program.

 It is possible to have multiple objects to coexist without any interference.
 It is easy to map objects in the problem domain to those objects in the

program.
 It is easy to partition the work in a project based on objects.
 The data-centered design approach enables us to capture details of a model

in implementable form.
 Object-oriented systems can be easily upgraded from small to large systems.

 Message passing techniques for communication between objects make the
interface descriptions with external systems much simpler.

 Software complexity can be easily managed.

Java has many advanced features when compared to other programming languages.

 Compiled and Interpreted
 Platform-Independent and Portable
 Object-Oriented

 Robust and Secure
 Distributed
 Familiar, Simple and Small
 Multithreaded and Interactive
 High Performance
 Dynamic and Extensible

Compiled and Interpreted: First, Java compiler translates source code into
bytecode instructions. Bytecodes are not machine instructions and therefore, in the

2. List the benefits of Java/OOP.

3. Explain the features of Java.

 3

IIMC Prashanth Kumar K(Head-Dept of Computers)

second stage, Java interpreter generates machine code that can be directly executed
by the machine that is running the Java program. We can thus say that Java is both
a compiled and an interpreted language.

Platform-Independent and Portable: Java programs can be easily moved from
one computer system to another, anywhere and anytime. Changes and upgrades in

operating systems, processors and system resources will not force any changes in
Java programs. This is the reason why Java has become a popular language for
programming on Internet.

Object-Oriented: Java is a true object-oriented language. Almost everything in
Java is an object. All program code and data reside within objects and classes. Java
comes with an extensive set of classes, arranged in packages, that we can use in our
programs by inheritance. The object model in Java is simple and easy to extend.

Robust and Secure: Java is a robust language. It provides many safeguards to
ensure reliable code. It has strict compile time and run time checking for data types
and errors. It provides automatic garbage-collection. Java also allows exception
handling to catch runtime errors.

Java systems not only verify all memory access but also ensure that no viruses are
communicated with an applet. The absence of pointers in Java ensures that
programs cannot gain access to memory locations without proper authorization.

Distributed: Java is designed as a distributed language for creating applications on
networks. It has the ability to share both data and programs. Java applications can
open and access remote objects on Internet. This enables multiple programmers at
remote locations to collaborate and work together on a single project.

Simple, Small and Familiar: Java is a small and simple language. Familiarity is
another important feature of Java. To make the language look familiar to the existing
programmers, it was modeled on C and C++ languages. Java uses many constructs

of C and C++ and therefore, Java code "looks like a C++" code. In fact, Java is a
simplified version of C++.

Multithreaded and Interactive: Multithreaded means handling multiple tasks
simultaneously. Java supports multithreaded programs; This means that we need not
wait for the application to finish one task before beginning another. For example, we
can listen to an audio clip while scrolling a page and at the same time download an

applet from a distant computer.

High Performance: Java architecture is designed to reduce overheads during
runtime. Further, the incorporation of multithreading enhances the overall execution
speed of Java programs.

Dynamic and Extensible: Java is a dynamic language. Java is capable of

dynamically linking in new class libraries, methods, and objects. Java programs
support functions written in other languages such as C and C++. These functions are
known as native methods. This facility enables the programmers to use the efficient
functions available in these languages.

 4

IIMC Prashanth Kumar K(Head-Dept of Computers)

Let us consider the sample Java code:

class SampleOne

{
 public static void main (String args[])

 {

 System.out.println ("Java is better than C++.");

 }

}

Class Declaration

The first line

 class SampleOne

declares a class, which is an object-oriented construct. As stated earlier, Java is a
true object-oriented language and therefore, everything must be placed inside a
class. class is a keyword and declares that a new class definition follows.
SampleOne is a Java identifier that specifies the name of the class to be defined.

Opening Brace

Every class definition in Java begins with an opening brace "{" and ends with a
matching closing brace "}", appearing in the last line in the example. This is similar
to C++ class construct. (Note that a class definition in C++ ends with a semicolon.)

The Main Line

The third line

 public static void main (String args[])

defines a method named main. Conceptually, this is similar to the main() function
in C/C++. Every Java application program must include the main() method. This is
the starting point for the interpreter to begin the execution of the program. A Java
application can have any number of classes but only one of them must include a
main method to initiate the execution.

This line contains a number of keywords, public, static and void.

Public:
The keyword public is an access specifier that declares the main method
as unprotected and therefore making it accessible to all other classes. This
is similar to the C++ public modifier.

Static:

Next appears the keyword static, which declares this method as one that
belongs to the entire class and not a part of any objects of the class. The
main must always be declared as static since the interpreter uses this
method before any objects are created.

Void:
The tyep modifier void states that the main method does not return any
value (but simply prints some text to the scree.)

4. Explain main method in Java?

 5

IIMC Prashanth Kumar K(Head-Dept of Computers)

All parameters to a method are declared inside a pair of parentheses. Here, String
args[] declares a parameter named args, which contains an array of objects of the
class type String.

The Output Line

The only executable statement in the program is

 System.out.println ("Java is better than C++.");

This is similar to the printf() statement of C or cout << construct of C++. Since
Java is a true object oriented language, every method must be part of an object. The

println method is a member of the out object, which is a static data member of
System class.

This line print the string
Java is better than C++.
to the screen. The method println always appends a newline character to the end of
string. This means that any subsequent output will start on a new line. Note the

semicolon at the end of the statement. Every Java statement must end with a
semicolon.

Java Program Structure: A Java program may contain many classes of which only
one class defines a main method. Classes contain data members and methods that
operate on the data members of the class. Methods may contain data type
declarations and executable statements. To write a Java program, we first define
classes and then put them together. A Java program may contain one or more
sections as shown below:

Documentation Section Suggested

Package Statement Optional

Import Statements Optional

Interface Statements Optional

Class Definitions Optional

main Method Class

{

Main Method Definition

}

Essential

Documentation Section: The documentation section comprises a set of comment
lines giving the name of the program, the author and other details. Comments
explain why and what of classes and how of algorithms. This would greatly help in
maintaining the program. Java uses a new style of comment /**....*/ known as
documentation comment. This form of comment is used for generating
documentation automatically.

5. Explain the structure of Java Program.

 6

IIMC Prashanth Kumar K(Head-Dept of Computers)

Package Statement: The first statement allowed in a Java file is a package
statement. This statement declares a package name and informs the compiler that
the classes defined here belong to this package. Example:

package student;

The package statement is optional. That is, our classes do not have to be part of
package.

Import Statements: The next thing after a package statement (but before any
class definitions) may be a number of import statements. This is similar to the
include statement in C. Example:

import student.test;

This statement instructs the interpreter to load the test class contained in the
package student. Using import statements, we can have access to classes that are
part of other named packages.

Interface Statements: An interface is like a class but includes a group of method
declarations. This is also an optional section and is used only when we wish to
implement the multiple inheritance features in the program.

Class Definitions: A Java program may contain multiple class definitions. Classes
are the primary and essential elements of a Java program. These classes are used to

map the objects of real-world problems. The number of classes used depends on the
complexity of the problem.

Main Method Class: Since every Java stand-alone program requires a main
method as its starting point, this class is the essential part of a Java program. A
simple Java program may contain only this part. The main method creates objects of

various classes and establishes communications between them. On reaching the end of
main, the program gets terminated.

Implementation of a Java application program involves a series of steps. They
include:

1. Creating the program
2. Compiling the program
3. Running the program

Creating the Program: We can create a program using any text editor like
notepad. But, we need to make sure that the program name should be saved with
the extension “.java”. Advisably, the name of the program should match with the
name of the public class or a class that has main() method.

Example: assumed that the program name is “Test.java”

class Test

{

6. How to implement a Java Program?

 7

IIMC Prashanth Kumar K(Head-Dept of Computers)

public static void main(String as[])

{

System.out.println(“Java Program”);

}

}

Compiling the program: Java program involves two steps for its execution: one
compilation and the other execution. We use “javac” tool to compile java program.
This yields byte code file whose extension is “.class”. This is an intermediate file and
not directly executable.

Syntax: javac Test.java

Running the Program: Now, java program is interpreted by the tool “java” which
as an interpreter. This is different for different machines. This tool generates
executable code for the machine in use. Thus one can view the output of the java
program.

Syntax: java Test

The complete steps to run a java program are listed below:

1. Type the program in the DOS editor or notepad. Save the file with a .java
extension.
2. The file name should be the same (advisably) as the class, which has the main
method.

3. To compile the program, using javac compiler, type the following on the command
line: Example: javac Test.java
4. After compilation, run the program using the Java interpreter.
 Example: java Test
5. The program output will be displayed on the command line.

All language compilers translate source code into machine code for a specific
computer. But, Java compiler produces an intermedia code known as bytecode for a
machine that does not exist. This machine is called the Java Virtual Machine and it

exists only inside the computer memory. It is a simulated computer within the
computer and does all major functions of a real computer

The virtual machine code is not machine specific. The machine specific code is
generated by the Java Interpreter by acting as an intermediary between the virtual
machine and the real machine. The Java API acts as the intermediary between the

operating system and the Java Framework. The virtual machine code is not machine
specific. The machine specific code (known as machine code) is generated by the Java
interpreter by acting as an intermediary

7. Write short notes on JVM.

 8

IIMC Prashanth Kumar K(Head-Dept of Computers)

between the virtual machine and the real machine. The interpreter is different for
different machines.

Command line arguments are the parameters passed to the executable java program in
the form of strings. Command line arguments are collected in main function itself. The
argument is an array of strings and can collect the list of strings. File name is not
included in the list of arguments as in C language. This is very useful to receive quick
inputs.

class Test

{

public static void main(String args[])

{

System.out.println(“Number of arguments=”+as.length);

for(int i=0;i<as.length;i++)</as.length;i++)

System.out.println(as[i]);

}

}

Execute the above program as follows.

java Test 1 2 3

The above command produces the following output:

Number of arguments=3

1

2

3

Data-type: Data-type specifies what type of value a variable can store. It also
specifies its size. Every variable in Java has a data-type. Java language is rich in its
data types. The categories of different data-types are shown below. The two main

types are Primitive and non-primitive types.

8. What are Command-Line Arguments? How are they used in Java?
 (Oct 2011) (Mar 2012)

9. What are the different data types in Java?

 9

IIMC Prashanth Kumar K(Head-Dept of Computers)

1. Integer type: An integer type of variables can hold integer constants. Java

supports four types of integer data types. They are byte, short, int and long. The
following table shows size in bytes and range of values each data type can represent.
Integer can be converted to long type by typing ‘L’ after them.

TYPE MEMORY
(bytes)

VALUES

byte

short

int

long

1

2

4

8

-128 to 127

-32768 to 32767

-231 to 231-1

-263 to 263-1

2. Floating point type: This data type is used to represent numbers containing
fractional values. They are two types of data-types under this category, namely, float
and double. float type number are single precision numbers while double type
number are double precision numbers. By default float are double precision and can
converted to single precision by adding ‘f’ at the end. Double precision types are
used when greater precision is required in storage of floating point. Floating point
data types have special NaN (Not a Number) value for undefined numbers like 0/0
etc.

TYPE SIZE MAXIMUM VALUE MINIMUM VALUE

float

double

4 bytes

8 bytes

3.4e-038

1.7e-308

3.4e+038

1.7e+308

3. Character type: Java provides a data type called char to hold character values. It
is of size 2 bytes and assumes single character. The character value must be
enclosed in single quotes.

4. Boolean type: It can have only two values, either ‘true’ or ‘false’. Its keyword is

‘boolean’ and use only 1 bit. All comparison operators return boolean type values.
The words ‘true’ and ‘false’ cannot be used as identifiers.

 10

IIMC Prashanth Kumar K(Head-Dept of Computers)

Type casting is a process to convert one data type to another. It makes the variable

compatible temporarily. We often encounter situations where there is a need to store
a value of one type into a variable of another type. In such situations, we must cast
the value to be stored by preceding it with the type name in parentheses. Casting is
often necessary when a method returns a type different than the one we require.

Four integer types can be cast to any other type except boolean. Casting into a
smaller type may result in a loss of data. Similarly, the float and double can be

cast to any other type except boolean. Again, casting to smaller type can result in a
loss of data. Casting a floating point value to an integer will result in a loss of the
fractional part. If the following order is used for type casting, it guarantees in no loss
of information.

byte  char  short  int  long  float  double

for example

• byte value can be converted to int or double
• int value can be converted to long or float

The syntax for casting is: type variable1 = (type) variable2;

Type casting can be of two types:

Implicit type Casting (Automatic Conversion): when constants and variables of
different types are mixed in an expression they are converted to the same type. This
conversion is done implicitly by the C compiler. The C compiler converts all the
operands to the type of the largest operand. For example if an expression involves

int and float, int type gets converted to float type.

Example:

float x=32;

The value of the x will be ’32.0’, because of implicit conversion of value from int to
float

Explicit type Casting: if a user forcefully changes the data type into other allowable
data type it is said to be explicit type casting.

Example:

int to float:
float x;
x=5/2 /* value of x will be 2.0 */
x=(float)5/2; /* value of x will be 2.5 */

float to int:

int x;

10. Explain Type Casting.

 11

IIMC Prashanth Kumar K(Head-Dept of Computers)

x= 3.2 /* causes error */
x=(int)3.2 /* x will be 3 */

The character pair ? : is a ternary operator available in Java. This operator is used to
construct conditional expressions of the form:

 Exp1? Exp2 : Exp3

Where Exp1, Exp2 and Exp3 are expressions. Exp1 is evaluated first. If it true, then
Exp2 is evaluated otherwise Exp3 is evaluated. Only one expression among Exp2 and
Exp3 is evaluated.

Conditional control structure (Branching):

a) if: If structure is also called as conditional statement. In If, statements get

executed only when the condition is true. It omits the condition based
statements when the condition is false. Braces are not necessary if only one
statement is related to the condition.

if (condition) {

statements

}

b) if else: Statements in if block get executed only when the condition is true
and statements in else block get executed only when the condition is false.

if (condition) {

Statements

}

else {

Statements

}

(c). if-else if:

 Statements get executed in loops only when the corresponding conditions
are true. Statements in the final else block get executed when all other conditions

11. Explain Conditional operator.

12 . Explain different forms of if –statements.

 12

IIMC Prashanth Kumar K(Head-Dept of Computers)

are false. The control checks a condition only when all the afore-mentioned
conditions are false.

if (x > 0)

System.out.println(“positive”);

else if (x < 0)

System.out.println(“negative ”);

else

System.out.println(“zero”);

(d). nested if: Writing if in another if is nested-if. Inner if is processed only when

outer if’s condition is true. Hence, statements in inner-if get executed only when

condition1 and condition2 are true.

if statement: if statement is a powerful decision making statement and is used to
control the flow of execution of statements. It is basically a two-way decision
statement and is used in conjunction with an expression.

It allows the computer to evaluate the expression first and then depending on
whether the value of the expression is true or false. It transfers the control to a
particular statement. This point of program has two paths to follow, one for the true
condition and the other for the false condition.

 The if statement is implemented in four forms:
1. Simple if statement
2. if…else statement
3. Nested if…else statement
4. else if ladder

switch statement: The complexity of a program increases when the number of
alternatives increases in if statement. The program becomes difficult to read and
follow. It may confuse even the designer.

 Java has a built-in multi way decision statement known as switch. The switch
statement tests the value of a given variable against a list of case values and when a
match is found, a block of statements associated with that case is executed.

 The general form of the switch statement is as below:
switch(expression)
{
 case value1: stat1;
 break;

 case value2: stat2;
 break;

13. In what way switch statement differs from if statement? (Mar 2011)

 13

IIMC Prashanth Kumar K(Head-Dept of Computers)

 .
 .
 .
 .
 .
 case valuen: statn;

 break;
 default: defaultstat;
}

 The expression is an integer or character expression. value1,value2,…valuen
are know as case labels. There is no need to put braces around these blocks but it is
important to note that case labels end with a colon.
 When the switch statement is executed, the value of the expression is
successively compared against the values value1,value2,…valuen. If a case is found
whose value matches with the value of the expression, then the block of the
statements that follow the case are executed. The break statement at the end of
each block signals the end of a particular case and causes an exit from the switch
statement. The default is an optional case. When preset, it will be executed if the
value of the expression does not match with any of the case values.

class div7
{
 public static void main(String[] args)
 {
 int i=0,sum=0;
 for(int n=101;n<200;n++)
 {
 if(n%7==0)
 {
 sum=sum+n;
 i=++i;
 System.out.println(n);
 }
 }
System.out.println("No of integers divisible by 7 which are >100 and <200 are:" + i);

System.out.println("Sum of integers divisible by 7 which are >100 and <200 are:" + sum);
 }
}

While: The while is an entry-controlled loop statement. The test condition is

evaluated and if the condition is true, then the body of the loop is executed. After
execution of the body, the test condition is once again evaluated and if it true, the
body is executed once again. This process of repeated execution of the body
continues until the test condition finally becomes false and the control is transferred
out of the loop. On exit, the program continues with the statement immediately after
the body of the loop.

14. Write a program to find the number of and sum of all integers greater
than 100 and less than 200 that are divisible by 7.

15. Compare while and do…while.

 14

IIMC Prashanth Kumar K(Head-Dept of Computers)

 The body of the loop may have one or more statements. The braces are
needed only if the body contains two or more statements. However, it is a good
practice to use if the body has only statement.

while(condition)
{

Body of the loop;

}

do…while: The while makes a test condition before the loop is executed. Therefore,
the body of the loop may not be executed at all if the condition is not satisfied at the
very first attempt. On some occasions it might be necessary to execute the body of
the loop before the test is performed. Such situations can be handled with the help
of the do…while statement.

do
{

Body of the loop;

}while(condition);

On reaching the do statement, the program proceeds to evaluate the body of the

loop first. At the end of the loop, the test condition in the while statement is
evaluated. If the condition is true, the program continues to evaluate the body of the
loop once again. This process continues as long as the condition is true. When the
condition becomes false, the loop will be terminated and the control goes to the
statement that appears immediately after the while statement. Since the test
condition is evaluated at the bottom of the loop, the do…while construct provides an
exit-controlled loop and therefore the body of the loop is always executed atleast
once.

The for loop is entry-controlled loop that provides a more concise loop control

structure. The general form of for loop is:

for(initialization; test condition;increment/decrement)
{

Body of the loop;

}
The execution of for statement is as follows:

1. Initialization of the control variables is done first, using assignment
statements such as i=1 and count=0. These variables are known as loop-control
variables.
2. The value of the control variable is tested using the test condition. The test
condition is a relational expression such as i<10 that determines when the loop

will exit. If the condition is true, the body of the loop is executed; otherwise the

16. Explain for statement. (Mar 2010)

 15

IIMC Prashanth Kumar K(Head-Dept of Computers)

loop is terminated and the execution continues with the statement that
immediately follows the loop.
3. When the body of the loop is executed, the control is transferred back to the
for statement after evaluating the last statement in the loop. Now, the control
variable is incremented/decremented using an assignment statement such as
i=i+1 and the new value of the control variable is again tested to see whether it

satisfies the loop condition. If the condition is satisfied, the body of the loop is
again executed. This process continues till the value of the control variable fails
to satisfy the test condition.

break: an early exit from a loop can be accomplished by using the break statement.
When the break statement is encountered inside a loop, the loop is immediately
exited and the program continues with the statement immediately following the loop.
When the loops are nested, the break would only exit from the loop containing it.
That is, the break will exit only a single loop.

class PrimeNumber
{
 public static void main (String args[])
 {
 int n=10,i;
 i=2;
 while(i<n)
 {
 if(n%i= =0)
 {
 system.out.println(“Number is not prime”);
 break;
 }
 i++;
 }
 if(n==i)
 System.out.println(“Given no is prime”);
 }
}

continue: Java supports similar statement called the continue statement. However,
unlike the break which causes the loop to be terminated, the continue as the name

implies causes the loop to be continued with the next iteration after skipping any
statements in between.

class Demo
 {
 public static void main(String args[])
 {
 int i;
 for(i=1;i<=10;i++)
 {
 if(i<5)
 continue;
 System.out.println(i);
 }
 }
}

In the above program we are redirecting the flow of execution back to the next
iteration of the loop till i<5. When i value changes from 1 to 4(i=1,2,3,4) continue

17. Differentiate between break and continue.

 16

IIMC Prashanth Kumar K(Head-Dept of Computers)

statement will be executed and System.out.println is not executed. Whenever i value
will become 5 i values will be displayed.

import java.io.*;
class reverse
{
 public static void main(String[] args) throws IOException
 {
 int i,k;
 System.out.println("Enter a number to reverse");
 BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
 String s=br.readLine();
 i=Integer.parseInt(s);
 System.out.print("Reversed Number:");
 while(i>0)
 {
 k=i%10;
 System.out.print(k);
 i=i/10;
 }

 }

}

import java.io.*;
class sum
{
 public static void main(String[] args) throws IOException
 {
 int i,k,sum=0;
 System.out.println("Enter a number");
 BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
 String s=br.readLine();
 i=Integer.parseInt(s);
 while(i>0)
 {
 sum=sum+i%10;
 i=i/10;
 }
 System.out.println("Sum of the digits:" + sum);
 }
}

Class: A class is a user-defined data type with a template that serves to define its
properties. Once the class type has been defined, we can create variables of that
type using declarations that are similar to the basic type declaration. These variables
are termed as instance of classes.

The basic form a class definition is:

class classname [extends superclass]
{

19. Write a program to compute the sum of the digits of a given number.

20. Distinguish between a class and an object. (Oct 2012)

18. Write a program using while loop to display reverse the digits of the
given number.

 17

IIMC Prashanth Kumar K(Head-Dept of Computers)

 [fields declaration]
 [methods declaration]
}

The keyword extends indicates that the properties of the superclass are extended to
the subclass.

Object: An instance of a class is called Object.

Objects in Java are created using new operator. The new operator creates an
object of the specified class and returns a reference to that object.

Rectangle r;
R=new Rectangle();

 Both statements can be combined into one as below:
Rectangle r=new Rectangle();

 A class with is a Java function. The general form of method is:

type methodname(parameter list)
{

 Body of the method
}

Method declaration have four basic parts:

 The name of the method
 The type of the value the method returns
 A list of parameters
 The body of the method.

The type specifies the type of the value the method would return. This could be a
simple data type such as int, float,char and so on. It could be even void, if the
method doesn’t return any value. The parameter list is always enclosed in
parenthesis. This list contains variable names and types of all values which are
given as input. In case where no input data is required, the declaration must

retain empty parenthesis. The body actually describes the operations to be
performed.

class Rectangle
{
 int length;
 int width;

 void getdata(int x,int y)
 {
 length=x;
 width=y;
 }
}

21. How is a method defined?

 18

IIMC Prashanth Kumar K(Head-Dept of Computers)

Java supports a special type of method called Constructor that enables an
object to initialize itself when it is created.

class Rectangle
{
 int length;
 int width;

 Rectangle(int x,int y)
 {
 length=x;
 width=y;
 }

}

Special Characters:

 Constructors have the same name as the class itself.
 They don’t have any return type, not even void. This is because they

return the instance of the class.

Copy Constructor is a constructor that takes the object of same class as argument.
If all the properties of an object which has to be assigned to another object, this is
advisable.

Box b1=new Box(5);

Box b2=new Box(b1);

Java classes can be reused in several ways. This is basically done by creating

new classes, reusing the properties of existing ones. The mechanism of deriving a
new class from old one is called inheritance. The old class is known as base class or
super class or parent class and the new one is called the subclass or derived
class or child class.

The inheritance allows subclasses to inherit all the variables and the methods
of their parent classes.

Inheritance may take different forms:
 Single inheritance (only one super class)
 Multiple inheritance (several super class)
 Hierarchical inheritance (one super class, many subclasses)
 Multilevel inheritance (derived from a derived class)

Single inheritance: If a class is derived from another class, it can be called as

single inheritance.

22. What is a Constructor?

24. Explain about inheritance in Java.

23. What is the need for copy Constructor?

 19

IIMC Prashanth Kumar K(Head-Dept of Computers)

Hierarchical inheritance: If two or more classes are derived from a class, it can be
called as hierarchical inheritance.

Multiple inheritance:If a class is derived from two or more classes, it can be called
as multiple inheritance. Java does not support this type of inheritance.

Multilevel inheritance: (Oct 2012) If a class is derived from the class, which is
derived from another class; it can be called as multilevel inheritance.

Defining a subclass: A subclass is defined as follows:
class subclass extends superclass
{
 Variable declarations;
 Methods declarations;
}

http://3.bp.blogspot.com/-2ma_qdDIsWk/TpeQ7bMcEFI/AAAAAAAAANw/4UYlOpkdb1M/s1600/c.jpg

 20

IIMC Prashanth Kumar K(Head-Dept of Computers)

 The keyword extends signifies that the properties of the superclass are
extended to the subclass. The subclass will now contain its own variables and
methods as well those of the superclass. This kind of situation occurs when we want
to add some more properties.

Method overloading:-

Methods are created with the same name but different parameter list and different
definitions. This is called method overloading.

 Method overloading is used when objects are required to perform similar task

but using different. Input parameters.

 When we call a method in an object, java matches up the method name first

and then the number of parameters and then type of parameters to decide

which one of the definitions to execute. This process is known as

polymorphism.

 In the below example, constructor overloading is used.

class Room

{

float length;

float breadth;

Room(float x,float y)

{

length=x;

breadth=y;

}

Room(float x)

{

length=breadth=x;

}

Int area()

{

Return length*breadth;

}

Method overriding:-

 A method defined in a super class can be inherited by its subclass and is used
by the objects created by its subclass. Method inheritance enables us to define and
use methods repeatedly in subclasses without having to define the methods again in
the subclass. However, there may be occasions when an object to respond to the
same method but have different behavior when that method is called. That means,

the super-class method should be override. This is possible by defining a method in
the subclass that has the same name, same arguments and same return type as a

25. Difference between Overloading and Overriding methods. (Mar 2010)

 21

IIMC Prashanth Kumar K(Head-Dept of Computers)

method in the super-class. When that method is called, the method defined in the
subclass is invoked and executed instead of the one in the super-class. This is known
as overriding.

class A
{
int i, j;
A(int a, int b) {
i = a;
j = b;
}
void show() {
System.out.println("i and j: " + i + " " + j);
}
}

class B extends A {
int k;
B(int a, int b, int c) {
super(a, b);
k = c;
}
void show() {
System.out.println("k: " + k);
}
}

class OverrideMethod {
public static void main(String args[]) {
B b = new B(1, 2, 3);
b.show();
A a=new A(10,20);
a.show();
}
}

 All methods and variables can be overridden by default in subclasses. A class
that cannot be sub classed is called final class. This is achieved in Java using the
keyword final as follows:

final class A
{

Body of the class

}

Making a method final ensures that the functionality defined in the method will never
be altered in any way. Similarly, the value of a final variable can never be changed.

27. When do we declare a method or class as abstract?

26. When do we declare a method or class as final? (Mar 2011)

 22

IIMC Prashanth Kumar K(Head-Dept of Computers)

 Java allows the programmer to override a method compulsory. This can be
done using the keyword abstract in the method defined.

abstract class Shape
{
……..

……..
abstract void draw();
………
……..
}

When a class contains atleast one abstract method, it should be declared as abstract.
When using the abstract classes, we must satisfy the following conditions:

 We cannot use abstract classes to instantiate objects directly. For example
Shape s=new Shape() is illegal because Shape is an abstract class.

 The abstract methods of an abstract class must be defined in its subclass.
 We cannot declare abstract constructors or abstract static methods.

An array represents a group of elements of same data type. It can store a group of

elements.

In java arrays are created on dynamic memory i.e. allocated at runtime by JVM.

Arrays are generally categorized into two parts as follows:

 Single dimensional arrays.

 Multi dimensional arrays.

Single dimensional arrays:-
 A list of items can be given one variable name using only one subscript. Such

a variable is called single dimensional array.

 Arrays must be declared and created in the computer memory before they are

used

 Creation of array involves 3 steps:

1) Declaring the array

2) Creating memory locations

3) Initialization of values into the memory locations.

Declaring the array:-

 Arrays in java may be declared in two forms:
 type arrayname[];
 (or)
 type[] arrayname[];

Ex:-
int counter[];
int[] counter;

Creating memory location to array:-

After declaration of arrays, memory locations are created by new operator.

28. Define Array.

 23

IIMC Prashanth Kumar K(Head-Dept of Computers)

arrayname = new type[size];

Ex: counter =new int[5];

 These lines create necessary memory locations for the array counter. It is

also possible to combine the two steps declaration and creation of memory location

as follows:

int number[] = new int[5];

Initialization of arrays:-
 Putting values into the array is known a “initialization”. This is done as

follows:

arrayname[subscript]=value;
Ex:-
 counter[0]=35;

 Java creates arrays starting with the subscript of 0 and ends with a value one

less than the size specified.

 Arrays can also be initialized automatically when they are declared, as shown

below:

Syntax:- type arrayname[]={list of values};

Ex:-

 int number[]={5,4,1,8,9};

In the above example array size is not given, the compiler allocates enough

space for all elements specified in the list.

Multi-dimensional arrays:-

Multidimensional arrays can represent the data in the form of rows and columns i.e. by
taking two or more indexes.

Multidimensional arrays include double dimensional and 3 dimensional arrays.

2-Dimensional Arrays: 2-Dimensional Arrays can represent the data in the form of rows
and columns i.e. by taking two indexes. Generally, these are used to work with matrices.

In java, a double dimensional array can be declared as follows:

int a[][] = new int[5][5];

Advantages of arrays:

 It is capable of storing many elements at a time
 It allows random accessing of elements i.e. any element of the array can be

randomly accessed using indexes.

Disadvantages:

 24

IIMC Prashanth Kumar K(Head-Dept of Computers)

 Predetermining the size of the array is a must.
 There is a chance of memory wastage or shortage.
 To delete one element in the array, we need to traverse throughout the array.

Matrix Multiplication(Two-Dimensional Array):

import java.io.*;
class matrixmult
{
public static void main(String args[]) throws IOException
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int m1[][]=new int[3][3];
int m2[][]=new int[3][3];
int m3[][]=new int[3][3];
int i,j,k;
System.out.println("Enter elements of first matrix ");
for(i=0;i<3;i++)
{
for(j=0;j<3;j++)
{
m1[i][j]=Integer.parseInt(br.readLine());
}
}

System.out.println("Enter elements of second matrix ");
for(i=0;i<3;i++)
{
for(j=0;j<3;j++)
{
m2[i][j]=Integer.parseInt(br.readLine());
}
}

System.out.println(" elements of first matrix are");
for(i=0;i<3;i++)
{
for(j=0;j<3;j++)

{
System.out.print(m1[i][j]);
}
System.out.println();
}

System.out.println("Elements of second matrix ");
for(i=0;i<3;i++)
{
for(j=0;j<3;j++)
{
System.out.print(m2[i][j]);
}
System.out.println();

}

 25

IIMC Prashanth Kumar K(Head-Dept of Computers)

/*Matrix multiplication*/
for(i=0;i<3;i++)
{
for(j=0;j<3;j++)
{

m3[i][j]=0;
for(k=0;k<3;k++)
{
//m3[i][j]+=m1[i][k]*m2[k][j];
m3[i][j]=m3[i][j]+m1[i][k]*m2[k][j];
}
}
}

System.out.println("matrix multiplication result is ");
for(i=0;i<3;i++)
{
for(j=0;j<3;j++)
{
System.out.print(m3[i][j] +" ");
}
System.out.println();
}
}

}

class VectorTest
{
public static void main(String as[])
{
Vector v1=new Vector(10);
v1.add(“10”);
v1.add(“20”);
v1.add(“30”);
System.out.println("Number of Elements:"+v.size());
System.out.println("Vector Elements:"+v1);
}
}

Interfaces: Java provides an approach known as interfaces to support the concept
of multiple Inheritance. An interface contains methods and variables. All methods of
the interface are public and abstract. Interfaces do not specify any code to
implement these methods. Therefore it is the responsibility of the class that
implements an interface to define the code for implementation of these methods.

The general form of an interface definition is as follows:

interface InterfaceName
{

Variables declaration;
Methods declaration;

29. Define Interfaces.

 26

IIMC Prashanth Kumar K(Head-Dept of Computers)

}

An interface variable is public, static and final by default. This means all the variables
of the interface are constants. Methods declaration will contain only a list of methods
without anybody statements.

Interfaces can be implemented in two ways:

1. Extending interfaces

Interfaces can also be extended. The sub interface will inherit all the members of the
super interface. This is achieved by using the keyword extends.

interface interfacename2 extends interfacename1
{
body of name2
}

 Sub interfaces can not define the methods declared in the super interfaces. So class

is
used to implement the derived interface, to define all the methods.

2. Implementing interfaces:-

Class must be defined to implement the code for the method of interface.

class classname implements interfacename
{
body of classname;
}

Here classname “implements” the interface interfacename. A class can implements
more than one interface, separated by comma.

Example:

interface Area
{
final static double pi=3.14;
double compute (double x, double y);

}

class Rectangle implements Area
{
public double compute(double x, double y)
{
return(x*y);
}
}

class Circle implements Area
{
public double compute(double x, double y)
{

return(pi*x*x);
}

 27

IIMC Prashanth Kumar K(Head-Dept of Computers)

class InterfaceDemo
{
public static void main(String args[])
{
Rectangle r=new Rectangle();
System.out.println(“Area of rectangle is”+r.compute(10,20));

Circle c=new Circle();
System.out.println(“Area of circle is”+c.compute(5.1,0);
}
}

Class Interface

A class must be declared using the
keyword class

An interface must be declared using the
keyword interface

A class contains the methods which are
defined.

An interface consists of methods which
are declared.

A class can implement many interfaces An interface can extend another interface

A class can simultaneously extend a class
and implement multiple interfaces

An interface is that which can simulate
multiple inheritance.

A class which implements an interface
must implement all of the methods

declared in the interface or be an
abstract class.

An interface is implicitly abstract. It
cannot be directly instantiated except

when instantiated by a class .

Methods of a class can use any access
specifier.

In an interface, all methods are implicitly
public

Variables of a class can be defined
according to the requirement

In an interface, all variables are static
and final by default.

30. What is the difference between an interface & a class?

	Class Declaration
	Opening Brace
	The Main Line
	The Output Line

